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Abstract

The debris particles, discharged due to the degradation and wear, initiate an inflammatory 

response at the implantation site or lead to the aseptic loosening of the prosthesis, ultimately 

resulting in implant failure over time. The toxicity concern becomes more severe for the 

release of nano-sized debris particles due to augmented interfacial interactions, even if the 

bulk counterpart is highly biocompatible. Towards this perspective, the present study aims to 

assess the in vivo toxicity both, local and systemic of Mg1-xCaxSi1-xZrxO3 (x = 0 - 0.4) 

[MCSZO-X, X = 0 - 4] nanoparticles using rat model. Initially, the in vitro cytotoxicity of 

varying concentrations (0.25, 2.5, and 25 mg/ml) of MCSZO-X nanoparticles was evaluated 

using MG-63 cells. The cell proliferation increases after the early interfacial interactions. 

Following this, 100 µl of MCSZO nanoparticles (25 mg/ml) was administered through intra-

articular injection into the knee joint of male Wistar rats. The biochemical analyses showed 

no pathological change in the liver and kidney of the injected group of rats. Also, the 

histopathological analyses demonstrated that there is no inflammation due to interfacial 

interactions with injected nanoparticles in various organs like liver, heart, kidney and knee. 

Overall, the above findings pave the way for further advancement in bone repair and implant 

design.

Keywords: MgSiO3, silicate, inflammation, in vivo, biochemical assay orthopedic implant, 

histopathological analyses.
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1. Introduction

The wear resistance of implants and the biological response of debris particles are the key 

factors in determining the long-term success of implants.1 The debris particles, released due 

to degradation, friction, and wear, have the ability to trigger harmful biological reactions at 

the implantation sites due to interfacial interactions, resulting in periprosthetic osteolysis, 

inflammation, and aseptic loosening.1, 2 Specifically, inflammation activates osteoclast cells, 

leading to the improper balance between osteoclasts and osteoblasts. This imbalance initiates 

osteolysis, ultimately causing aseptic loosening of the prosthetic implant.1-3 Also, the 

properties of debris particles, such as their composition, morphology, volume, and size, play 

a crucial role in their biological response and profoundly affect the fate of peri-implant cells.4

Numerous studies (both, in vitro and in vivo) demonstrated that nanoparticles consistently 

raise interfacial concerns because of their specific features, such as surface area, morphology, 

size and concentration.5, 6  The wear particles, smaller than 2 µm, can be easily entered to 

other organs, penetrate inside the cell through plasma membrane and induce toxicity, even at 

sub-cellular level.7, 8 Wang et al.8 revealed that intra-articular injection (with concentrations 

of 2 and 20 mg/ml) of TiO2 nanoparticles (38 to 54 nm) into the knees of rats, allowed the 

migration of TiO2 nanoparticles into crucial organs like heart and liver and results in 

pathological damage to these organs. Additionally, biochemical assessments demonstrated 

impairments in the renal and hepatic systems of the rats.8 Mabrouk et al.9 reported that the 

performance of the liver does not affect after implantation of pure and BaO (3 and 5 %)- 

doped  MgSiO3 nanopowders in the tibia of fractured rats. 

Several studies reported the excellent osteogenic activity and antibacterial efficiency, in vitro, 

of Mg and Ca silicate-based bioceramics which substantiate the potentiality of these materials 

for bone tissue engineering applications.10-17 Mg1-xCaxSi1-xZrxO3 (x = 0 - 0.4) has been 
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established as an excellent biomaterial, however, the toxicity of such nanoparticles due to 

interfacial interactions has not been explored. As a step ahead, this study examined the in 

vivo toxicity of Mg1-xCaxSi1-xZrxO3 (x = 0-0.4) [MCSZO-X (X = 0 - 4)] nanoparticles using 

rat model. 

Initially, MG-63 cells were exposed with different concentrations of MCSZO-X eluates 

(0.25, 2.5, and 25 mg/ml in normal saline) for 1 and 3 days. Following the in vitro results, the 

highest concentration (25 mg/ml) of MCSZO-X nanoparticle eluates were injected into the 

knee joints of rat for 7 days. After the designated exposure period, the rats were euthanized. 

Hematological evaluations were conducted to measure white blood cell (WBC) counts and 

mean corpuscular volume (MCV). Additionally, biochemical analyses were performed on the 

serum to assess the overall functional status of the organs in the groups treated with 

nanoparticles, including evaluations of alkaline phosphatase and creatinine activity. The 

histopathological evaluations were conducted to identify any potential signs of inflammation 

on major organs (kidney, heart and liver) and knee joint.

2. In-vivo toxicity assessment of MCSZO-X (X = 0 -4) nanoparticles 

2.1.1. Sample preparation and material characterization

The procedure for synthesizing micron-sized MCSZO-X (X = 0 -4) powders has already been 

reported in our earlier work.18 The solid-state method was employed to prepare these powders 

within a compositional range of X = 0 to X = 4. The particle size of prepared micron-sized 

powders was reduced via ball milling (Fritsch Pulverisette 5) for 12-14 h at 300 rpm. For this 

purpose, cylindrical zirconia balls (6 mm diameter, 6 mm height, 0.9 g/ ball) were used for 

grinding. The ratio of balls to powder was 10:1. In a ball mill jar, 50 g (about 56 balls) of 

zirconia balls were combined with 5 g of MCSZO-X (X = 0 - 4) powder in 50 ml of ethanol.
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2.1.2. Phase and morphological characterization 

The phase verification of MCSZO-X nanoparticles was done via X-ray diffraction with Cu 

Kα radiation (XRD, X-ray Diffractometer, Rigaku Miniflex II Desktop) with a wavelength of 

1.5418 Å (scan range: 20 to 60° and step size: 0.02°). High-resolution scanning electron 

microscopy (Nova Nano SEM, FEI) was used to determine the particle size and morphology 

of the ball-milled MCSZO-X nanoparticles. 

2.1.3. Eluate solution preparation

The MCSZO-X ball-milled particles were autoclaved at 121ºC for 25 - 30 min. Following 

this, the sterilized powders were dispersed in normal saline (0.9 % w/v NaCl) at three 

different concentrations of 0.25 (C1), 2.5 (C2), and 25 (C3) mg/ml. Saline served as the 

medium for injecting MCSZO-X nanoparticles into rats. To achieve uniformly in dispersed 

nanoparticles, the eluates were ultrasonicated for 15 min after every 6 h, over a period of 2- 4 

days. Before injection, the eluates were again sterilized.

2.1.4. Leaching behavior 

The leaching behavior of ready eluates (C1, C2 and C3) of MCSZO-X nanoparticles were 

examined in saline after 1, 3 and 5 days of incubation. ICP-AES was used to evaluate the 

amounts of leached ions (Mg, Ca, Si and Zr) from different elutes of MCSZO-X samples. 

Before measurements, the resulting solutions were diluted 10 times in distilled water, 

followed by filtration using a pore size of 0.22 micron-sized syringe filter. 

2.1.5. Cellular response 

The cellular behavior of MCSZO-X (X= 0 - 4) nanoparticles due to interfacial interactions 

was studied using MG-63 cells. The procured cells were grown in a CO2 incubator under 

specific conditions of 37 ºC temperature, 5 % CO2, and 95 % humidity. The DMEM 

(Himedia) with a growth factor of 15 % FBS (Gibco) and 1 % antibiotic (Antibiotic-

Antimycotic, Gibco) solution was used as a growth media. After, 90 - 95 % confluency, the 
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cells were trypsinized using 0.25% trypsin (Gibco) solution and 104 cells/ml were seeded 

onto glass coverslips (gelatin-coated) in 24-well. The well plate was then incubated for a 

period of 12 h for the adhesion of cells to the substrate. After 12 h of the incubation period, 

100 µl of eluates (C1, C2, and C3) of M1 M2, M3, M4 and M5 samples were added to the 

adhered cells. The cells with nanoparticles were further incubated for 1 and 3 days, 

respectively, to quantify the viability of cells. The proliferation of cells, grown on MCSZO-X 

samples, was measured using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-

tetrazolium-bromide, SRL). After cell seeding for 1 and 3 days, 500 μL of MTT reagent was 

added to samples. After 6 h of incubation in the prescribed environment, the well plate was 

taken out, and the solution was replaced with DMSO (500 μL, Himedia) to dissolve the 

formazan crystals. After that, the culture for each sample was moved to a 96-well plate and 

optical density was measured using an ELISA reader at the wavelength of 595 nm.

2.3. In vivo assessment 

2.3.1. Animals

In this study, male Wister rats, weighing 250 ± 50 g, were used. Rats were housed under 

controlled conditions of humidity and temperature (21-25 ± 2ºC) with a light-dark cycle. The 

rats were randomly allocated to different experimental groups (n = 5/group). The animal 

experimentation protocols were properly authorized by the Institute Animal Ethics 

Committee at the Indian Institute of Technology, Banaras Hindu University, situated in 

Varanasi, Uttar Pradesh, India (IAEC approval number: IIT(BHU)/IAEC/2023/II/083).

2.3.2. Experimental procedure

Rats were intraarticularly administered with 100 µl of MCSZO-X nanoparticles (Fig. 1), 

suspended in sterile saline (25 mg/ml). Animals were divided into seven groups with n = 5 

rats in each group. Group 1 was used as a control and group 2 was injected with saline. The 

remaining five groups, designated as M1, M2, M3, M4 and M5, were treated with MCSZO-X 
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nanoparticles. The animals were closely observed for any signs of physical changes during 

the initial 30 min, following the experimental procedures. Subsequently, they were monitored 

at regular intervals over the next 24 h, with particular attention given to first 4 h. Animals 

were daily observed for a duration of 7 days. Body weights of all the rats were measured at 

day 1, 3, 5 and 7 post-injections. After 7 days, blood serum was collected through retro-

orbital plexus puncture. Following this, the animals were sacrificed with high dose of 

anesthesia and major organs (kidney, heart and liver) and knee joint were collected for 

histopathological studies. 

2.4. Hematology and Biochemical assay

EDTA (Ethylenediaminetetraacetic acid) -coated vials were used to collect the serum samples 

for hematological analyses, and hematologic toxicity was assessed using an automated 

hematological analyzer (Cell-Dyn Ruby Hematology Analyzer). Hematological parameters 

like, white blood cells (WBC) and mean corpuscular volume (MCV) were estimated. 

Biochemical testing was performed on serum, which was obtained after the centrifugation 

(4000 RPM for 10 min) of blood samples, to evaluate the activities of creatinine and alkaline 

phosphatase (ALP) in the rats, injected with nanoparticles and compared with control and 

saline treated group. AUTOSPAN Liquid and MKB Alkaline Phosphatase kit was used for 

the determination of ALP activity. The entire test was conducted as per the guidelines, 

provided by the manufacturer. Additionally, creatinine level was also measured using 

standard kit (Crystal Chem, IL, USA).

2.5. Histopathological analyses

The fixed tissues, including the kidney, liver, and heart, were dehydrated using a series of 

ethanol solution. The paraffin blocks were made after fixing with paraffin wax. Hematoxylin 

and eosin (H&E) stains were used for staining the tissue blocks after they were divided (10 

μm) for histopathological evaluations. The tissues of the fixed knee joint were first 
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dehydrated with ethanol solution, and then decalcification was done with nitric acid solution 

(10%). The paraffin-embedded joint tissue blocks were prepared for histopathological 

examination, similar to other organs. Nikon Eclipse LV 100 ND fluorescence microscope 

photographs of stained tissues have been examined.

2.6. Statistical analyses 

The SPSS software was applied to investigate the statistically significant differences among 

various testing by means of the one-way ANOVA method and Tukey's post hoc tests at a p ≤ 

0.05. For in vivo data analyses, Graph Pad Prism software was used. The weights of animals 

were examined through the application of two-way ANOVA, whereas the hematological 

parameters were statistically assessed via one-way ANOVA (at p > 0.05).

3. Results and discussion

3.1. Phase analyses

Fig. 2 represents the XRD pattern of MCSZO-X (X = 0 - 4) nanoparticles. XRD pattern 

confirms the formation of monoclinic pure MgSiO3 [JCPDS # 35-0610] phase with P21/c 

space group. In addition, a few minor peaks were indexed with JCPDS # 34-0189 with Pmnb 

space group. However, the peak shifted towards a lower angle with the incorporation of Ca/ 

Zr with increasing the concentration, from X = 0 to X = 3, as shown in Fig. 2 b. Moreover, 

the crystallite size was calculated from Scherrer's formula.19, 20 The crystallite size reduced 

from 35 nm to 31 nm as the Ca/Zr increased from X = 0 to X = 3. After that crystallite size 

again increases from 31 nm to 33 nm with an increase in the amount of Ca / Zr, from X = 3 to 

X = 4. 

Fig. 2 b demonstrates that with increasing the concentration from X = 0 to X = 3, the peaks 

shifted towards lower 2 θ values from 28.24º to 28.08º. With a further increase in the 

concentration from X = 0 to X = 3, the peak shifts towards the higher angle again from 28.08º 

to 28.33º (as represented by the enlarged view). The incorporation of larger Ca2+ cations 
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(1.34 Å) at the reduced Mg2+ site (0.72 Å) and Zr4+ cations (0.74 Å) at the diminutive Si4+ site 

(0.40 Å) leads to an expansion of the lattice in MgSiO3 as the concentrations of Ca and Zr 

increase from 0 to 3, resulting in peak shifts toward lower 2θ values. Nonetheless, as the 

concentration ascends beyond 0.3, the peaks migrate to elevated angles owing to lattice 

contraction stemming from the presence of a greater quantity of Ca2+ at the Mg2+ locus.11, 21-23

The five polymorphic variants of MgSiO3 adopt either monoclinic or orthorhombic crystal 

structures.24 As the concentration of Ca and Zr increased from 0 to 0.2, peak positions in X-

ray diffraction patterns shifted to lower 2θ angles, from 22.96º to 22.82º. This shift results 

from the substitution of larger Ca2+ ions for smaller Mg2+ ions at the A-site and Zr4+ ions for 

smaller Si4+ ions at the B-site. Conversely, increasing Ca and Zr concentrations from 0.2 to 

0.4 caused the peaks to shift to higher 2θ values, from 22.82º to 23.12º, likely due to lattice 

contraction in MCSZO-X bioceramics driven by greater Ca2+ substitution at Mg2+ sites. For 

compositions with x = 0.3 to x = 0.4, phase analyses revealed minor secondary phases, ZrO2 

(JCPDS # 37-1484), CaSiO3 (JCPDS # 43-1460) and CaMgSiO4 (JCPDS # 19-0240). The 

emergence of an additional secondary phase, Mg2SiO3, poses challenges in synthesizing 

single-phase MgSiO3. Therefore, with increasing Ca and Zr concentrations from 0.3 to 0.4, 

further minor phases, including ZrO2, CaSiO3, Ca2MgSiO7, Mg2SiO4, and CaMg(SiO3)2, 

began to appear.

The FT-IR spectra of MCSZO-X nanoparticles confirmed the incorporation of Ca/Zr in the 

MgSiO3 structure (Fig. 3).  The specific peaks of Si - O at 470, 500, 600, and 1052 cm-1 

correspond to bending and stretching vibrations, respectively. The bending vibration 

observed at around 800 cm-1 in Si-O-Si indicates the formation of MgSiO3.
25, 26 Moreover, the 

vibrational peak, representing Si-O within silicate tetrahedra, is found at 682 cm-1. 

Page 8 of 32RSC Applied Interfaces

R
S

C
A

pp
lie

d
In

te
rf

ac
es

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

2:
14

:2
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5LF00045A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5lf00045a


9

Furthermore, the stretching and bending vibrations of Mg-O are associated with the 

vibrational bands at 517 cm-1 and a peak close to 870 cm-1.27 Additionally, the peaks at 1320 

cm-1 and 1127 cm-1 correspond to the stretching vibrations of C=O and C-O, respectively.28

3.2. Microstructural analyses

Fig. 4 represents the high-resolution scanning electron microscopic (HRSEM) images of 

MCSZO-X nanoparticles. The average particle size of MCSZO-X nanoparticles increased 

from 346 to 452 nm as the amount of Ca/Zr in MCSZO-X was raised from 0 to 4.

3.3. Leaching behavior 

Fig. 5 illustrates the amounts of Ca2+, Mg2+, Si4+, and Zr4+ ions, leached from MCSZO-X 

nanoparticles after 3, 5, and 7 days of immersion in saline. The leaching of Mg2+, and Si4+ 

ions from different nanoparticles (M1, M2, M3, M4, and M5) are lower in comparison to 

pure MCSZO-X (X = 0) nanoparticles as the concentration of Mg2+ and Si4+ decreases with 

increasing the concentration of Ca2+ and Zr4+ dopant. However, the leaching of Ca2+ and Zr4+ 

ions increase. In addition, the amount of Ca2+, leached from MCSZO-X nanoparticles is also 

increased with increase in the immersion time. 

Bones incorporate ions such as Mg²⁺, Ca²⁺, Zr⁴⁺, and Si⁴⁺, which play vital roles in 

regulating various metabolic activities, including supporting bone formation and reducing the 

risk of osteoporosis.10, 29-32 Ca plays a vital role and also affects the metabolic functions of 

osteoblast cells.29, 33 Concentrations of Ca²⁺ ions above 10 mM have been shown to exert 

cytotoxic effects, whereas levels in the 2–4 mM range support osteoblast proliferation and 

differentiation, thereby enhancing the osteogenic response.34 Si is essential for bone 

development and overall bone health.10 Incorporating zirconium into Ca–Si-based 

bioceramics, like baghdadite, has been reported to enhance the attachment and growth of 

osteoblast-like cells.35
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3.4. Cell viability

The viability of MG-63 cells was evaluated using MTT assay at different elute concentrations 

(C1, C2, and C3 for M1, M2, M3, M4 and M5 samples). Fig. 6. demonstrates the 

proliferation of MG-63 cells on prepared MCSZO-X nanoparticles, after 1 and 3 days of 

incubation. The viability of osteoblast-like MG-63 cells, cultured on the MCSZO-X 

nanoparticles, was lower than the control after 1 day. 

This is probably due to the physical damage of the cells due to the early stage interaction with 

nanoparticle eluates. However, after 3 days of culture, the cell viability significantly as 

compared to those on after 1 day of incubation, across all the concentrations of MCSZO-X 

nanoparticles. For these samples, the viability was comparable to that of the control group 

[Fig. 6 (b)].

3.5. In-vivo studies

3.5.1. General observation 

After injecting the MCSZO-X particles for seven days, the skin texture and salivation of the 

rat remained unchanged. Also, after the intra-articular injection, the rats did not exhibit 

symptoms such as diarrhea, tremor, or convulsions. Additionally, after seven days of post-

injection, no notable changes were observed in the behavior of rats. Also, the injection site in 

every group of rats did not display any sign of inflammation (swelling or redness) throughout 

the observation period. Digital cameras were used to take paw photographs of the rats, treated 

with MCSZO-X particles injected group, which were then compared to the paw images of the 

control as well as saline-treated groups [Fig. 7]. 

The paws of the rats, injected with MCSZO-X nanoparticles (M1, M2, M3, M4 and M5), are 

similar to those of the saline-treated and control rats, revealing no indication of abnormalities, 

inflammation, redness, or edema. Likewise, after completion of the experiment, the knee 

joints of the control, saline and treated rats displayed unchanged morphology. 
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Furthermore, as aforementioned, no inflammation was detected at the injection site, and no 

signs of atrophy were noted in the adjacent bone structures such as the tibia and femur. This 

result corresponds to the in vitro cytocompatibility of MCSZO-X nanoparticles with varying 

concentrations of Ca / Zr [Fig. 6].

3.5.1.1. Impact of intra-articular injection of MCSZO-X on body weight 

The variation in body weight is crucial for assessing whether injected nanoparticles have 

adversely affected the function of vital organs.36, 37 Consequently, before and after (after 7 

days) injection, the weights of each of the 35 rats were recorded. Control, saline, and 

MCSZO-X nanoparticle injected rats did not show any significant weight changes [Fig. 8]. 

Statistical analyses using two-way ANOVA showed no noticeable variation in body weight. 

38

3.5.2. Hematological analyses

Changes in hematological parameters in humans and animals are indicative of drug-induced 

toxicity. The hemotopoietic system is a vital body system that produces the cellular blood 

components.38 In this study, the effects of intrarticularly injected MCSZO-X nanoparticles on 

the blood cells such as, WBC and MCV were evaluated as compared to the control group 

[Fig. 9]. The evaluation of basic hematological parameters, such as the measurement of WBC 

and MCV is a crucial stage in the toxicity detection process. 

The statistical analyses showed no significant variation in WBC (p > 0.05) among all groups 

in MCSZO-X nanoparticles injected rats in comparison to the saline group [Fig. 9 (a)]. Also, 

there were no notable changes in the MCV (p > 0.05) among all the injected MCSZO-X 

nanoparticles groups as compared to the saline groups [Fig. 9 (b)]. 

3.5.3. Biochemical assays 

The impact of MCSZO-X nanoparticles (X = 0 - 4) on enzyme levels in rat blood was 

assessed by analyzing the biochemical properties of the extracted serum. 
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Typically, the hepatic function is assessed by measuring the serum ALP activity level. The 

breakdown and restoration of liver tissue contribute to alteration in ALP activity.39, 40 

Additionally, hepatotoxicity raised by chemicals or drugs also increases the ALP activity in 

blood serum.41, 42  

As a result, the liver is an essential organ for examining the impact of toxicity induced by the 

nanoparticles. In this study, MCSZO-X nanoparticles were injected into the synovial joint. 

ALP, a marker of bone formation, plays an essential role in determining whether MCSZO-X 

nanoparticle exposure caused any bone abnormalities. The statistical analyses reveal that 

there were no significant changes in serum levels (ALP) between the control and MCSZO-X 

nanoparticle treated (M1, M2, M3, M4 and M5) groups [Fig. 10 (a)]. Consequently, exposure 

to MCSZO-X nanoparticles did not alter liver function. Moreover, the assessment of serum 

creatinine levels is a typical method to detect potential adverse effects on renal function 

(Creatinine) caused by implant or foreign particles.43 

Elevated blood creatinine levels indicate reduced kidney filtration capacity.44-47  In this study, 

the creatinine levels in the rat's blood serum, injected with M1, M2, M3, M4 and M4 

nanoparticles, do not show any substantial differences in comparison to the saline group [Fig. 

10 (b)]. Also, the MCSZO-X nanoparticles did not lead to kidney impairment. 

3.5.4. Histopathological analyses 

Over the period of seven days, it is possible that the nanoparticles, injected into the 

intraarticular region can enter the blood circulation and reach to organs like liver, kidney, 

lung and heart as a result of regular physiological processes. Therefore, the histopathological 

analyses of the liver, heart, kidney and knee was done to determine the toxicity of MCSZO-X 

(X= 0 - 4) nanoparticles. The comparison of histological images of various stained organs 

from particulate-injected groups (M1, M2, M3, M4, M5) with control and saline-injected 

groups are shown in Figs. 11 - 14. 
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The sections of all the stained organs, in general, reveal the normal appearance and without 

the presence of eluate particles. The MCSZO-X treated groups (M1, M2, M3, M4, and M5) 

did not reflect any sign of tissue shrinkage, cardiac muscle disorder, vacuolization, and 

bleeding. The muscle fibers appear straight and organized, similar to those in the control 

group (Fig. 11). The connective tissues of the hearts in the nanoparticle-treated rat groups 

show normal architecture. In number of studies, it has been observed that exposure to fine 

concentrated particles can result in irregular beat and, in some cases, cardiac dysfunction.48-52 

The injection of TiO2 nanoparticles has been shown to swell the endothelial cells of the heart, 

after 7 days.8

In this study, the hearts of the rats in the M1, M2, M3, M4 and M5 eluates treated groups did 

not exhibit enlarged endothelial cells [Fig.11]. Overall, the cardiac tissues of the rats treated 

with MCSZO-X (M1, M2, M3, M4 and M5) reveal no histopathological changes. Evidently, 

the kidney is the main organ of the body to remove foreign nanoparticles.6 As the kidney 

removes foreign substances from the body by filtering, it is crucial for the kidney to take part 

to release of nanoparticles if they reach to the vital organs. Besides, the histopathology 

analyses of kidney’s tissue are crucial for both identifying the nanoparticles and determining 

that how they may affect the structure and functioning of the kidneys. 

The exposure to different nanoparticles like ZnO, Au, and TiO2 causes pathological 

alterations in the kidney, including necrosis, dispersed glomeruli, and tubular dilatation.8, 53-55 

However, in comparison to control rat groups, the histopathological images of the kidney 

sections of rats, injected with MCSZO-X particles (M1, M2, M3, M4 and M5) show 

unchanged renal tubules within the cortex (absence of any indication of vacuolar 

degeneration) [Fig. 12].

The kidney sections of rats, treated with control and MCSZO-X groups show normal renal 

cortex and glomerular cells without tubule dilation. Overall, histology of kidney sections 
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reveals that the intra-articularly injected MCSZO-X nanoparticles (M1, M2, M3, M4 and 

M5) have no adverse effect on the kidney. 

The liver organs play a main role in detoxifying the body. This means that the foreign 

particles can move through the circulatory or lymphatic systems and into the liver.56-58 

Cytoplasmic vacuolization disrupts the function of the membrane and can occasionally be a 

sign of liver injury.59-61 In this study, there is no evidence of any vacuolization in the 

cytoplasm of hepatocytes in the livers of the rats, treated with MCSZO-X nanoparticles. As a 

result, histological features of liver cells, injected with MCSZO-X particles (M1, M2, M3, 

M4 and M5) revealed no indications of any damage, bleeding, or necrosis near the sinusoids, 

when compared to those of control and saline rats [Fig. 13]. 

Overall, the histopathological images of the organs stained with H & E of the M1, M2, M3, 

M4 and M5 injected nanoparticles reveal normal appearance, comparable to that of the 

control and saline groups. The major organs of the rats of the nanoparticles treated groups 

show no evidence of particle dissemination.

The histological images provide a clear indication of the presence of nanoparticles within the 

fibroadipose tissue surrounding the synovial joint [Fig.14 (a-e)]. Moreover, the absence of 

macrophage infiltration can be clearly seen [Fig. 14 (c-e)], which suggests the biocompatible 

nature of the prepared MCSZO-X nanoparticles.62, 63 Furthermore, the administration of 

MCSZO-X nanoparticles via intra-articular injection did not lead to any injury to the cartilage 

or excessive growth of the synovial membrane. The thickening of the synovial membrane, 

which occurs due to an increased density of cells resulting from the influx of different cell 

types.64-66 The histological analyses of the knee joint did not reveal any negative response to 

the intra-articular administration of MCSZO-X nanoparticles.

The histological analyses of rats treated with MCSZO-X (M1, M2, M3, M4 and M5) 

nanoparticles show no signs of inflammation at the implantation site of injection (synovial 
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joint) or in vital organs [Fig. 14]. Moreover, MCSZO-X nanoparticles promote the 

proliferation of MG-63 cells [Fig. 6]. Overall, MCSZO-X nanoparticles demonstrate in vitro 

cytocompatibility and in vivo biocompatibility. 

In ceramic based implants  the wear debris particles such as, Al2O3 and ZrO2 are typically 

submicron in size.67, 68 Earlier studies have reported macrophages engulf submicron-sized 

particles, which increases the risk of an adverse reaction or inflammation.7, 69, 70 However, 

histological images of knee joints treated with MCSZO-X nanoparticles showed no signs of 

macrophage infiltration (Fig. 14 (c-f)), suggesting that MCSZO-X nanoparticles are 

biocompatible.

6. Conclusion 

In vitro investigations indicate that Mg1-xCaxSi1-xZrxO3 nanoparticles promote the 

proliferation of MG-63 cells up to concentrations of 25 mg/ml after initial interfacial 

interaction. The in vivo assessment revealed that the nanoparticles, intraarticularly injected 

into the rats did not migrate to any of the major organs, including the kidney, heart and liver. 

In addition, the non-toxicity of Mg1-xCaxSi1-xZrxO3 nanoparticles has been established by 

histological analyses of the knee and vital organs of rats, exposed to nanoparticle eluates with 

concentrations as 0.25, 2.5 and 25 mg/ml. Also, the absence of nanoparticles within the 

essential organs suggests that they were not transported to any of these organs. The histology 

of knee tissues of the rats, treated with nanoparticles, reveal the absence of any indications of 

inflammation. Furthermore, biochemical parameters (ALP and creatinine) revealed that Mg1-

xCaxSi1-xZrxO3 nanoparticles had no toxic effect on functioning of vital organs. 
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List of Figures

Fig. 1. Representation of intra-articular injection of MCSZO-X (X = 0 – 4) nanoparticles in 

the Wistar rat knee (synovial) joint.
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Fig. 2. XRD results of MCSZO-X (X = 0 - 4) nanoparticles. (a)  XRD patterns of different 

samples of MCSZO (X = 0 - 4), calcined at 1300º C for 10 h. (b) enlarged view of the highest 

intense peaks of samples. 

Fig. 3.  FT-IR spectra of MCSZO-X (X = 0 - 4) nanoparticles.
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Fig. 4.  Scanning electron micrographs of MCSZO-X nanoparticles. (a) X = 0, (b) X = 1, 

(C) X = 2, (d) X = 3 and (e) X = 4. 

Fig. 5. Leaching behavior of Mg2+, Si4+, Ca2+, and Zr4+ ions from MCSZO- X nanoparticles 

in saline.  
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Fig. 6. Optical density of MG-63 cells, after 1 and 3 days of culture, on MCSZO-X (X = 

0−4); [M1, M2, M3, M4 and M5) nanoparticles at different concentrations, i.e; 0.25, 2.5 and 

25 mg/ml samples] and HA, used as a control. The asterisk symbol (*) indicates the 

significant variation in optical density across all MCSZO-X samples (M1, M2, M3, M4 and 

M5) at different concentrations in comparison to control, after 1 day of culture as [Fig. 6 (a)].  

However, symbol (#) shows the significant variation in the optical density across all 

MCSZO-X (M1, M2, M3, M4 and M5) nanoparticles, cultured for 3 days in comparison to 

the entire MCSZO-X samples, cultured with 1 day [Fig. 6 (b)].
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Fig. 7. Digital camera images of rat paws before injection, on the 3rd and 7th day after 

receiving injections of MCSZO-X nanoparticles into their knee joints. 
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Fig. 8. Effect of intraarticular injection of MCSZO-X (M1, M2, M3, M4 and M5) 

nanoparticles on the body weight of rat’s throughout the experiment. All the results are 

shown as mean ± standard deviation (n = 5 per group).

Fig. 9.  Effect of intracticular injection of MCSZO-X nanoparticles in rats. (a) WBC count 

and (b) MCV on 7 days of injection.  All the results are shown as mean ± standard deviation 

(n = 5 per group).
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Fig. 10. Effect of MCSZO-X nanoparticles on serum concentration after 7 days of post-

injection in rats. (a) ALP and (B) creatinine level. All the results are shown as mean ± 

standard deviation (n = 5 per group).
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Fig. 11.  Histopathological images of the heart tissues, stained with H & E after 7 days of 

injection in the following groups of rats: (a) Control (non-injected), (b) Saline, (c) M1, (d) 

M2, (e) M3, (f) M4 and (g) M5 nanoparticles eluates treated groups (Scale bar: 1 µm)
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Fig. 12. Histopathological images of the kidney tissues, stained with H & E after 7 days of 

injection in the following groups of rats: (a) Control (non-injected), (b) Saline, (c) M1, (d) 

M2, (e) M3, (f) M4 and (g) M5 nanoparticles eluates treated groups (Scale bar: 1 µm)
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Fig. 13. Histopathological images of the liver section, stained with H & E after 7 days of 

injection in the following groups of rats: (a) Control (non-injected), (b) Saline, (c) M1, (d) 

M2, (e) M3, (f) M4 and (g) M5 nanoparticles eluates treated groups (Scale bar: 1 µm).

Page 25 of 32 RSC Applied Interfaces

R
S

C
A

pp
lie

d
In

te
rf

ac
es

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

2:
14

:2
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5LF00045A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5lf00045a


26

Fig. 14.  Histopathological features of rat knee joint tissue, stained with H & E of intra-

articular injection after 7 days in the following groups of rats: (a) Control (non-injected), (b) 

Saline, (c) M1, (d) M2, (e) M3, (f) M4 and (g) M5 nanoparticles eluates treated groups (Scale 

bar: 1 µm).
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