Synthesis and in vitro antiprotozoal evaluation of novel Knoevenagel hydroxychloroquine derivatives

Abstract

Leishmaniasis and Chagas diseases affect millions of people, particularly in developing countries, with conventional treatments proving unsatisfactory due to increasing drug resistance and high toxicity. Therefore, there is an urgent need for new drugs to combat neglected tropical diseases (NTDs). In this study, we synthesized 15 new Knoevenagel adducts derived from hydroxychloroquine and evaluated their antiprotozoal activity against Leishmania infantum, L. amazonensis, and Trypanosoma cruzi. The new adducts exhibited low toxicity in epithelial LLC-MK2 cells and J774A.1 macrophages. The Knoevenagel adducts derived from meta- and para-chloro benzaldehyde demonstrated antiprotozoal activity against T. cruzi epimastigotes, though with a lower selective index (SI) compared to the standard drug benznidazole. However, the adducts derived from isovaleraldehyde and ortho-, meta-, and para-chloro benzaldehyde showed SI values ranging from 10.97 to 8.11 against L. amazonensis, similar to Amphotericin B (AmpB, SI = 9.37), with no statistically significant difference (p > 0.05). These same compounds inhibited L. infantum promastigotes, but with less activity compared to AmpB. These results suggest that Knoevenagel adducts derived from hydroxychloroquine may serve as selective antileishmanial agents.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Research Article
Submitted
12 Nov 2024
Accepted
17 Feb 2025
First published
24 Feb 2025

RSC Med. Chem., 2025, Accepted Manuscript

Synthesis and in vitro antiprotozoal evaluation of novel Knoevenagel hydroxychloroquine derivatives

P. P. Dario, L. Yamashita , K. Salome, G. Kosinski, G. Justen, D. D. S. Rampon, D. Lazarin-Bidóia, C. V. Nakamura, F. A. Rosa and M. G. Montes D’Oca, RSC Med. Chem., 2025, Accepted Manuscript , DOI: 10.1039/D4MD00884G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements