Insights From Protein Frustration Analysis of BRD4-Cereblon Degrader Ternary Complexes Show Separation of Strong from Weak Degraders
Abstract
PROteolysis TArgeting Chimeras (PROTACs), also known as Ligand-Directed Degraders (LDDs), are an innovative class of small molecules that leverage the ubiquitin-proteasome system to induce the degradation of target proteins. Structure based design methods are not readily applicable for designing LDDs due to the dynamic nature of the ternary complexes. This study investigates the dynamic properties of five LDD-mediated BRD4-Cereblon complexes, focusing on the challenges of evaluating linker efficiency due to the difficulty in identifying suitable computational metrics that correlate well with the cooperativity or degradation propensity of LDDs. We uncovered that protein frustration, a concept originally developed to understand protein folding, calculated for the residues in the protein-protein interface of the LDD-mediated ternary complexes recapitulate the strength of degradation of the LDDs. Our findings indicated that hydrophobic residues in the interface are among the highly frustrated residues pairs, and they are crucial in distinguishing strong degraders from weak ones. By analyzing frustration patterns, we identified key residues and interactions critical to the effectiveness of the ternary complex. These insights provide practical guidelines for designing and prioritizing more efficient degraders, paving the way for the development of next-generation LDDs with improved therapeutic potential.