Application of advanced quantum dots in perovskite solar cells: synthesis, characterization, mechanism, and performance enhancement
Abstract
Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs. We thoroughly examine advances in defect passivation, energy band alignment, perovskite crystallinity, device stability, and broader light absorption. In particular, novel approaches to enhance the photoelectric conversion efficiency (PCE) of quantum dot-enhanced perovskite solar cells are highlighted. Lastly, based on a comprehensive overview, we provide a forward-looking outlook on advanced quantum dot fabrication and its impact on enhancing the photovoltaic performance of solar cells. This review offers insights into fundamental mechanisms that endorse quantum dots for improved PSC performance, paving the way for further development of quantum dot-integrated PSCs.
- This article is part of the themed collection: Recent Review Articles