
rsc.li/materials-horizons

Materials
Horizons

rsc.li/materials-horizons

ISSN 2051-6347

COMMUNICATION
Blaise L. Tardy, Orlando J. Rojas et al. 
Biofabrication of multifunctional nanocellulosic 3D structures: 
a facile and customizable route

Volume 5
Number 3
May 2018
Pages 311-580Materials

Horizons

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

Accepted Manuscript

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  B. Xu, T. A.

Sultana, K. Kitai, J. Guo, T. Seki, R. Tamura, K. Tsuda and J. Shiomi, Mater. Horiz., 2025, DOI:

10.1039/D4MH01606H.

http://rsc.li/materials-horizons
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d4mh01606h
https://rsc.66557.net/en/journals/journal/MH
http://crossmark.crossref.org/dialog/?doi=10.1039/D4MH01606H&domain=pdf&date_stamp=2025-02-21


In this manuscript, Bayesian optimization using an ARD kernel was employed to facilitate an 

interactive experiment-in-loop optimization process in the fabrication of polymer composites for 

applications in the field of "5G and beyond."

While machine learning approaches, including Bayesian optimization, have proven effective in 

optimizing material structures and processing parameters in materials fabrication, the fabrication 

of complex composites with anisotropic and high-dimensional parameter spaces remains 

challenging. The efficiency of the current optimization methodology we developed is notable: 

composite materials with superior performance, surpassing previous studies, were achieved in 

only a few iterations. The resulting materials exhibit both low thermal expansion and low 

dielectric loss concurrently at high operational frequencies, up to the GHz range, addressing one 

of the most critical issues in packaging materials for "5G and beyond."

This work demonstrates a proof-of-concept for an interactive, experiment-in-loop optimization 

equipped with an ARD kernel. The significance of this approach in handling high-dimensional 

and anisotropic candidate spaces has been validated, showing promise for accelerating 

advancements in materials science, even when fundamental knowledge and experience are limited. 
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Data Availability Statement: 
All data generated or analyzed during this study are included in this published article. 

Additional raw data supporting the figures are available from the corresponding author 
upon reasonable request.
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Experiment-in-Loop Interactive Optimization of Polymer 
Composites for "5G-and-Beyond" 
Bin Xua,b,#, Touchy Abeda Sultanab,#, Koki Kitaib, Jiang Guoc, Toyomitsu Sekid, Ryo Tamurae, Koji 
Tsudac, Junichiro Shiomia,b*

“Fifth generation and beyond” communication technologies have sparked considerable demand for polymer composite 
materials with low thermal expansion coefficients (CTE) and low dielectric loss under high operation frequency. However, 
the complexity of process parameters and the lack of knowledge in fabrication procedures hinder this goal. In this study, 
state-of-the-art experiment-in-loop Bayesian optimization (EiL-BO) is developed to optimize a composite of 
perfluoroalkoxyalkane matrix with silica fillers. The Gaussian process equipped with an automatic relevance determination 
kernel that automatically adjusts the scaling parameters of individual dimensions effectively enhances the EiL-BO’s ability 
to search for candidates in a complex and anisotropic multidimensional space. This address the most critical issue regarding 
the eight-dimensional parameters, including filler morphology, surface chemistry, and compounding process parameters. 
The obtained optimal composite shows a low CTE of 24.7 ppm/K and an extinction coefficient of 9.5×10-4, outperforming 
existing polymeric composite, revealing exceptionally effective and versatile of EiL-BO in accelerates the advanced materials 
development.

Introduction
The With the advent of fifth-generation (5G) wireless technology, 
there is a growing demand for polymer materials as packaging 
materials and device components such as printed circuit boards1,2. 
Owing to the utilization of high-frequency micro/millimeter-wave 
bands, materials with low dielectric permittivity (𝜀) and loss tangent 
(tan 𝛿) at high frequency are required to facilitate speedy and high-
quality signal transmission. However, the high heat intensity because 
of the elevating device power may lead to thermal deformation. 
Since polymer typically exhibits a coefficient of thermal expansion 
(CTE) that is far higher than those of other parts of the device, the 
difference in CTE can thus degrade the device and affect its 
operation. Therefore, polymeric materials with low CTE are in high 
demand. 

Fluororesin, such as perfluoroalkoxyalkane (PFA) and 
polytetrafluoroethylene (PTFE), are among the most promising 

candidates because the C-F bond has an ultralow dipole moment and 
electronic susceptibility, which is the key to low 𝜀 and tan 𝛿. 
Moreover, the strong electronegativity of fluorine is effective for 
reducing ion and electron polarizability, which is also beneficial for 
the low dielectric loss. However, the CTEs of fluororesin is relatively 
high. This issue can be addressed by compositing fluor resin with 
ceramic fillers such as silica3, TeO2

4, perovskite (Ca, Li, Sm)TiO3
5, and 

0.7Ba (Co1/3Nb2/3)O3-0.3Ba(Zn1/3Nb2/3)O3 (BCZN)6. 

In polymer composites, both the CTE and dielectric properties are 
highly sensitive to various factors. These include the shape and 
volume fraction of the fillers, their surface chemistry, and processing 
parameters. Liu et al. performed surface functionalization for the 
silica filler using methyltriethoxysilane to enhance the compatibility 
between the silica filler and the PTFE matrix. The enhanced 
compatibility not only improves the dispersion of the filler but also 
promotes interaction at the interface, which can confine the 
movement of the PTFE chain and thus reduce the CTE and dielectric 
loss3. A similar approach involving surface functionalization was 
adopted by Jin et al.7, Yuan et al.8, and Wang et al.6, where reduction 
of CTE and dielectric loss was achieved. Ren et al. studied the effect 
of the filler shape by comparing the spherical and fibrous silica and 
reduced 𝜀 and tan 𝛿 by using fibrous silica. They attributed this to the 
high aspect ratio, which hindered chain relaxation9. Alhaji et al. 
studied the effect of the size of spherical silica filler and realized that 
a smaller filler size can effectively reduce the CTE but lead to larger  
𝜀 and tan 𝛿10. This conclusion is supported by the work of Chen et al., 
who claimed that the dielectric-performance degradation is caused 
by interfacial polarization because of the higher interface density in 
the case of the smaller filler size11. However, contradictory 
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conclusions were drawn in the theoretical study by Qin et al.12 and 
experimental study by Ibrahim et al.13. In these cases, except for the 
interfacial polarization, the effect that interface limit the orientation 
and the movement of dipoles and the polymer chain in is more 
predominant the interfacial region, which decrease the 𝜀 and tan 𝛿. 
The competition between these two effects is affected by the 
interfacial structures, which are determined by the filler dispersion 
and the interfacial compatibility14. Overall, owing to the complexity 
of the fabrication parameters and the resultant filler dispersion and 
interfacial effect, fabricating the desired polymer composites with a 
low CTE and high-frequency dielectric loss is challenging and requires 
time- and labor-intensive tasks. 

Recently, machine learning-driven optimization has emerged as a 
valuable tool in materials science. Bayesian optimization (BO), as one 
of the commonly used machine learning methods, has proven to be 
useful for various applications, particularly those combining high-
throughput computational methods for data acquisition. Ju et al. 
optimized the thermal conductivity of a Si/Ge superlattice structure 
and achieved the optimized structure by 438 data, only 3.4% of the 
total candidates15. In the study by Yamawaki et al., BO could identify 
the top 0.5% structures using less than half the amount of data 
required in a random search for optimizing the thermoelectric figure 
of merit (FOM) of a holey graphene nanoribbon structure16. Okazawa 
et al. optimized the structure of binary alloy catalysts for the 
dissociation of the nitrogen bond using BO and realized a minimal 
surface energy of ∼0.2 eV/Å2 within only one iteration, significantly 
outperforming the random search strategy17. Tsuji et al. optimized 
nanocluster catalysts for efficient ammonia synthesis, where BO 
significantly accelerated the searching for the optimal catalyst within 
two or three iterations18. Takahashi et al. achieved a far higher 
efficiency in exploring dielectrics with high dielectric constant using 
BO compared with a random search19. BO has also been utilized in 
the polymer materials, including machining process optimization20, 
porous media analysis21, and laser material processing22. These 
studies demonstrate the effectiveness of BO in experiments 
searching for optimal process parameters for polymer. In these 
studies, a kernel involving simple Gaussian process regression (GPR) 
with a fixed length scale was proven to be sufficiently effective for 
the BO of an isotropic data space. However, in practical 
investigations aimed at fabricating ready-to-use materials, the 
transition from simulation-based optimization to experiment-in-loop 
optimization is critical. Although there has been an increasing 
number of studies on experiment-in-loop optimization23–26, 
researchers typically avoid complicating the variety of input 
parameters to reduce the required number of experiments, because 
the acquisition of experimental data is far more costly than 
simulation data. This has motivated the development of high-
throughput robot-assisted experimental approaches specialized for 
a particular purpose23–26. However, neither manual nor automated 
experimental-in-loop optimization has been realized for polymer 
compounds because of the large dimensions in the material and 
process parameters and the complexity of the processes like 
compounding and hot pressing, which are difficult to fully automate.

To increase the efficiency of BO, recent efforts have focused on 
improving the surrogate model. Herbol et al. increased the efficiency 
of structure optimization for hybrid organic–inorganic perovskites by 
applying a custom GPR kernel that used the underlying knowledge of 
this material system27. Similar approaches were adopted by 
Khatamsaz et al., who used physics-informed GPR to optimize the 
design of NiTi shape-memory alloys through a thermal treatment 
process28. Nevertheless, these approaches typically require an in-
depth understanding of the underlying mechanisms, which are not 
applicable to the fabrication of polymer composites for 5G. 
Automatic relevance determination (ARD) kernel is an alternative 
approach that can automatically adjust the “weights” of individual 
input dimensions to accurately capture and balance the unique 
influence of each input feature on the objective29,30. The ARD kernel 
may be a valuable tool for optimizing the fabrication process for the 
proposed polymer-based composite with a low CTE, 𝜀, and tan 𝛿. 

In this study, we employ experiment-in-loop BO in fabricating a PFA 
polymer/silica composite through a compounding process. We use 
five types of silica fillers, which differed in shape, size, surface 
functionalization, and volume fraction. In addition to the 
compounding process parameters, an eight-dimensional parameter 
space was defined as the input parameters. To manage this high-
dimensional space, the weights of the individual dimensions is 
automatically adjusted using an ARD kernel. The application of the 
ARD kernel increases the efficiency of BO, by quickly targeting the 
parameters for fabricating composites. The obtained optimal 
composite shows low CTE of 24.7 ppm/K and extinction coefficient 
of 9.5 × 10―4, superior to polymers for 5G wireless technology in 
previous studies. We also systematically examined the structural 
improvement during the BO process and found that the topological 
structure is crucial for achieving a low CTE. We find a three-phase 

Figure 1. Schematic of the experiment-in-loop BO process for the fabrication of the 
“5G-and-beyond” PFA composite with low dielectric loss and thermal expansion. 
An experiment involving (a) compounding and hot pressing was conducted for the 
fabrication of (b) the PFA/silica composite, followed by (c) performance evaluation 
of the FOM based on measurements of the CTE and dielectric properties. (d) 
Collected experimental data were then fed to (e) the ARD kernel to train the model 
to suggest experimental parameters of candidates in the next iteration. 
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composite consisting of voids, fillers, and matrix, with a specific 
distribution, shape, and volume fraction, that can lead to the 
relaxation of inward bending deformation by the collective 
movement of the silica filler and PFA may be responsible for the 
strongly suppressed thermal expansion.

Result and discussion
Fabrication of PFA/silica composite
To realize a high CTE and low dielectric loss, we composed PFA resin 
(HS-230, Daikin) with silica fillers of various shapes, sizes, and surface 
functionalization via a compounding process (filler details are 
presented in Table S1). A dual-screw cycling-type compounding 
machine (MC15HT, Xplore Instruments) was used, which allowed 
flexible control of the compounding time and rotation speed. The 
compounding temperature was fixed at 380 °C, which was higher 
than the melting point of PFA at 310 °C. The process temperature 
was fixed according to a pre-experiment, which revealed that the CTE 
decrease with an increase in compounding temperature and 
saturates above 370 °C (Fig. S1). Following the compounding process, 
we used a hot-press machine to mold the sample from the filament 
shape into a thin film at 360 °C. The hot-pressing temperature was 
selected to achieve the appropriate thickness for subsequent 
measurements. The film was then cut to a specific size and assessed 
through dielectric measurements and thermomechanical analysis to 
obtain the CTE, 𝜺, and 𝐭𝐚𝐧 𝜹.

Evaluation of the PFA composite 
The dielectric properties, including 𝜺 and 𝐭𝐚𝐧 𝜹 were measured using 
a cavity resonator method at a frequency of 10 GHz. The 
measurement was conducted using a Microstrip Line Dielectric 
Resonator System (AET Japan), which ensures high precision in high-
frequency dielectric property characterization. The system operates 
in the Transverse Electric (TE) mode, where the electric field is 
primarily transverse to the propagation direction, minimizing 

conductor losses and enhancing measurement accuracy. This 
method provides high sensitivity to dielectric properties, making it 
particularly suitable for characterizing low-loss polymer composites.
The coefficient of thermal expansion (CTE) was measured using a 
NETZSCH TMA 402 thermomechanical analyzer under a nitrogen (N2) 
atmosphere. The measurement was conducted over a temperature 
range of 20°C to 150°C, with both heating and cooling rates set at 5 
K/min. The CTE was determined from the cooling curve by calculating 
the average expansion rate, i.e., the total change in length divided by 
the total temperature change.

Bayesian optimization
To efficiently optimize the experimental parameters for the 
fabrication of the PFA/silica composite, we employed BO with an 
ARD kernel GPR model using the PHYSBO package31. The common 
kernel setting for the GPR model is the radius basis function (RBF), 
which is also called the squared exponential kernel. The RBF kernel 

between two points 𝑥′and 𝑥 in the input space is defined as

𝑘(𝑥,𝑥′) = 𝜎2exp ‖𝑥 𝑥′‖2

2𝑙2
, (1)

where 𝜎 is the variance parameter, which controls the overall 
variability; 𝑙 is the length-scale parameter, which controls how fast 

the correlation for two points decays with distance; and ‖𝑥𝑖 ― 𝑥′𝑖‖2 
is the Euclidean distance between the two points. For the ARD kernel, 
the RBF kernel is modified to allow an independent length scale for 
each input dimension:

𝑘𝐴𝑅𝐷 𝑥𝑖,𝑥′𝑖 = 𝜎2exp ― 1
2

∑𝐷
𝑖=1

‖𝑥𝑖 𝑥′𝑖‖2

𝑙2
𝑖

, (2)

where D represents the number of dimensions in the input space, 𝑥𝑖 

and 𝑥′𝑖 represent the ith-dimension input, and 𝑙𝑖 is the length-scale 
parameter for the ith-dimension input32. The ARD kernel 
automatically adjusts the relevance of individual dimensions of 

Table 1. Definitions of descriptors for the input parameters.

Process
parameters

Plate filler 
condition

Spherical filler 
condition

Filament filler condition Filler weights*

Time
(min)

Rotation 
(rpm)

Surface 
treatment

Surface 
treatment

Diameter
Surface 

treatment
Diameter

Weight of
plate filler (g)

Weight of spherical 
filler (g)

Weight of filament filler 
(g)

5 50 With (1) With
Small

(2.2 μm)
With

Small
(0.7-2.1μm）

0 0 0

7 100 Without (0) without
Large

(20 μm)
without

Large
(7.5μm)

1 1 1

9 150 2 2 2

200 3 3 3

250 small diameter & without surface function (0) 4 4 4

small diameter & with surface function (1) 5 5 5

large diameter & without surface function (2) 6 6 6

large diameter & with surface function (3) 7 7 7

* Maximum 7 g in total
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distinct physical factors, which was proved to be more effective than 
the RBF kernel in handling tasks with complexities as high as eight 
dimensions10. In the ARD kernel, 𝑙𝑖  were adjusted by maximizing the 
marginal log-likelihood (MLE) of the Gaussian Process mode. For this 
process, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, 
which efficiently estimates the inverse Hessian approximation by 
storing only the most recent gradient information, was used. Notably, 
in the PHYSBO package, all these above hyperparameters was 
adjusted automatically.

A schematic of the BO-driven experimental loop is shown in Fig. 1. In 
the first round of BO, we conducted six experiments and used the 
datasets to train a GPR model, aiming to predict the mean of the 
target yield 𝜇(𝑥) and the standard deviation 𝜎(𝑥), where 𝑥 
represents the input parameters. These experiments were 
conducted using randomly selected experimental parameters, which 
included the material parameters determined by the materials 
added to the compounding machine and the process parameters for 
compounding, such as the compounding time and rotation speed. 
The definitions of each dimension and the range of the input 
parameters are listed in Table 1. We allowed the mixing of different 
filler shapes owing to the synergistic effect observed in previous 
studies, where a mixture of fillers with varying shapes and sizes 

significantly improved both the CTE and dielectric properties33,34. 
Although the underlying mechanism has not been well established, 
this strategy was helpful for achieving the desired properties. 
Moreover, this setting allowed us to determine the optimal filler type.

On the other hand, since the 5G and beyond wireless technology 
requires low CTE and low dielectric loss simultaneously, we defined 
a figure of merit (FOM) as the target function, as follows: 

𝐹𝑂𝑀 =  (𝑒𝑚𝑎𝑥 ―𝑒) / 𝑒𝑟𝑎𝑛𝑔𝑒 ― (𝑑 ― 𝑑𝑚𝑖𝑛)/𝑑𝑟𝑎𝑛𝑔𝑒, (3)

Here, 𝑒 represents the CTE, and 𝑑 represents the dielectric extinction 
coefficient, which is given by 𝜀 × tan 𝛿. The subscripts max, min, 
and range represent the maximum, minimum, and range of either 𝑒 
or 𝑑. Herein, 𝑒𝑚𝑎𝑥 represents the highest CTE achievable in the 
composite, which corresponds to the CTE of pure PFA. 𝑑𝑚𝑖𝑛 refers to 
the lowest achievable dielectric extinction coefficient, which is the 
extinction coefficient of pure silica. Both parameters were obtained 
through experimental measurements. The FOM formulation was 
designed to ensure balanced optimization of CTE and extinction 
coefficient by normalizing both terms. This prevents the BO process 
from disproportionately prioritizing one parameter over the other 
due to differences in their absolute variation ranges. This FOM 
describes the normalized variation rate of the CTE and the extinction 
coefficient; a larger FOM corresponds to a lower CTE and extinction 
coefficient.

After the GPR was trained with the initial datasets, the acquisition 
functions based on the trained GPR model can output several new 
data points corresponding to the experimental parameters that are 
likely to yield a high FOM and the corresponding 𝑥 via the expected 
improvement (EI), as follows: 

𝐸𝐼(𝑥) = (𝜇(𝑥) ― 𝐹𝑂𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑎𝑥)𝜙(𝑧) +𝜎(𝑥)𝜙(𝑧), (4)

𝑧 = 𝜇(𝑥) 𝐹𝑂𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑎𝑥

𝜎(𝑥) , (5)

We then performed experiments following the sets of parameters of 
the top five candidates predicted by the EI function and repeated the 
procedure for 11 rounds. All hyperparameters and scaling 
parameters of the individual dimensions were automatically 
adjusted in each round.

BO process analysis
Figure 2 (a) illustrates the results of the BO process, showing a rapid 
increase in the FOM, which peaked in the fourth round, as indicated 
by the gray spots. We also compared the predicted values and 
variances of the FOM before each round to assess the divergence 
between the experimental results and the GPR model prediction, 
which helps us evaluate the impact of the BO process and verify its 
effect. The predicted values vary similarly to the experimental results, 
peaking in the fourth round, and the variance decreased as the 
predicted values increased. During the third and fourth rounds, the 
predicted values closely matched the experimental results with a 
small variance, demonstrating the effectiveness of the ARD-GPR 

Figure 2. Evolution of the properties of the PFA/silica composite fabricated during the 
BO process. (a) Evolution of the prediction/variance in the BO process and the 
experimental results. (b) Evolution of the ARD scaling parameters of individual 
dimensions during the BO process. (c) CTE, (d) ε and tanδ variations during the BO. 
The dots indicate the value at each iteration, and the lines represent the present best 
value during the BO.
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surrogate model in capturing the relationship between input 
parameters and target material properties. This consistency suggests 
that the BO process effectively guided the optimization towards 
high-FOM candidates. After reaching the maximum FOM in the 
fourth round, predictions with a larger variance were observed, 
indicating that the BO process exploited the search space with higher 
uncertainty. Conversely, predictions with smaller variances aim to 
further explore the maximum FOM in search regions with lower 
uncertainty, as the model was trained with a more densely 
distributed dataset. The selection between exploration and 
exploitation is automatically determined by auto-adjusted 
hyperparameters in PHYSBO. 　 

To further analyze the prediction accuracy of the surrogate model 
throughout the BO process, a series of parity plots was made (Figure 
S5). The results show that the coefficient of determination (R²) 
reaches its highest value (~0.73) around iteration 4, aligning well with 
the optimization peak observed in Figure 2 (a). However, after 
iteration 6, R² declines, indicating an increase in prediction variance. 
This can be attributed to the shift from exploitation to exploration, 
the uneven distribution of data points leading to reduced model 
accuracy in unexplored regions, and the increasing complexity of the 
objective function. These findings highlight the limitations of the 
surrogate model in later iterations, suggesting potential 
improvements in BO strategies.

Further analysis of the scaling parameters of the ARD kernel during 
BO (Fig. 2(b)) revealed the most critical dimensions for determining 
the FOM across the BO rounds. Herein, smaller scaling parameters 
indicate the dimensions that are more important for determining the 
output value. As the optimization progressed, these parameters 
initially fluctuated significantly. Here, we focused on the fourth 
round, in which the BO prediction value peaked with a small variance. 
We found that the top three critical dimensions were the weight of 
the plate filler, the condition (size/surface chemistry) of the plate 
filler, and the weight of the filament filler. These scaling parameters 

provide valuable insight into the most critical parameters for 
designing polymer composites with low CTE and dielectric losses. 
Notably, they can be either positive or negative for the FOM. As 
discussed later, the sample with high FOM (sample #D) usually 
consists of large amount of filament fillers, whereas the lower-FOM 
filler samples (sample #A) consists of more plate fillers without 
surface functionalization. The insights from the scaling parameters 
align with the analysis of the sample parameters, indicating the 
effect of the ARD kernel in capturing the critical dimensions. Herein, 
although the scaling parameters eventually stabilized as more 
datasets were used in the BO process, because a large number of 
predictions after the fourth round exhibits large variance, thus they 
were less valuable.  

Performance of PFA/silica composite
Figures 2(c) and (d) illustrate the variation of CTE, 𝜀, and tan 𝛿 during 
the BO. As the optimization progresses, the CTE decreases, reaching 
a minimum after four rounds of BO. The CTE aligns well with the FOM, 
which also reaches its optimal value in the fourth round. In 
comparison, tan 𝛿 decreases more rapidly. After just one round of BO, 
it reaches 5.75 × 10―4, which is close to the minimum value (5.47 ×
10―4) among all the acquired data. After the first iteration, tan 𝛿 
remains relatively constant, with only a few data points exhibiting 
relatively high values. In contrast, 𝜀 does not exhibit a clear trend in 
the BO process, fluctuating slightly around an average of 2.44, with a 
standard deviation within 6% and a maximum fluctuation of only 18% 
(Fig. S2). This makes the extinction coefficient follow the trend of 
tan 𝛿; rapidly reduced by in the first iteration by approximately 400% 
and remain relatively constant within a standard deviation of 60% for 
the remainder of the BO process. The reduction in the CTE is 
relatively slow; the CTE is minimized in the fourth round, which 
indicates the required number of rounds for maximizing the FOM.

After the fourth round of BO, a PFA/silica composite (sample #D) with 
excellent properties were fabricated, featuring a CTE of 24.76 ppm/K, 

Figure 3. Excellent performance compared with previous studies. Comparison of the (a) CTE, dielectric extinction coefficient, and (b) FOM of the PFA/silica composite with 
those of previous reported polymer composites3–8,10,11,34–36,44,45; different colors indicate materials with different chemical components (green: fluor resin/silica composite; 
orange: fluor resin/other filler composite; purple: composite of other polymers). The red star/column corresponds to the PFA/silica composite in present study.
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𝜀 of 2.56, and tan 𝛿 of 6 × 10―4 (extinction coefficient of 9.5 × 10―4). 
This sample consists only of filament fillers, with no surface 
functionalization and small diameters (details of the sample #D 
parameters in Table 2). In contrast, the low-FOM samples typically 
include spherical and plate fillers (the parameters and performance 
of all samples are presented in Table S2). Moreover, the rotation 
speed and time are less important in determining the FOM (samples 
#D and #E). As stated above, these results are consistent with the 
conclusions drawn from the scaling parameters of the ARD kernel. 

Figures 3(a) and (b) present comparisons of the CTE/dielectric 
extinction coefficient and FOM of the present study with those of 
previous studies, whose FOM were calculated based on Eq. (3). The 
CTE of 24.76 ppm/K is almost the lowest, except for the silica/PTFE 
and silica/PEEK composite fabricated by Jiang. et al33 and Xue et al.35, 
respectively, while their extinction coefficient are more than one 
order of magnitude higher than those in the present study. Despite 
showing a slightly higher CTE than the composites reported by Jiang 
et al. and Xue et al., the composite fabricated in this study shows a 
better performance overall considering a combination of both CTE 
and extinction coefficient values, which achieved a record-high FOM 
of 0.782, surpassing not only the fluor resin/silica composite but also 
composites with other components, such as polystyrene (PS)/silica34, 
polyetheretherketone (PEEK)/silica35, and epoxy resin/boron nitride 
nanotube (BNNT)36. Details regarding the component of these 
samples and their CTE, dielectric properties, are presented in Table 
S3. The highly efficient process for the fabrication of practical PFA 
composite with excellent performance highlights the superiority of 
combining the ARD kernel with experiment-in-loop optimization.

Chemical components and structure of PFA/silica composite
We systematically investigated the chemical components and 
structure of the PFA composite to gain insights into the enhanced 
performance, particularly focusing on the CTE, which is primarily 
optimized during the BO process. We analyzed five representative 
samples, labeled #A to #E selected from the BO process. The 
fabrication parameters and properties are presented in Table 2. 
According to the effective medium theory (EMT)37–39, the CTE of a 
composite materials is determined by the CTE and the mechanical 
properties (Young’s modulus and shear modulus) of individual 
components of the composite, including the polymer matrix, fillers, 
and voids. The properties of the filler and the matrix are affected by 
their chemical properties. The silica filler is stable during the 

compounding process because of its high melting point and 
mechanical strength. Consequently, the CTE and mechanical 
properties remain unchanged, and was considered identical for all 
the samples. 

However, because the compounding temperature is higher than the 
melting point of PFA, chemical properties such as the concentration 
of the amorphous component in PFA are assumed to differ under 
different compounding parameters. In this study, we focused on the 
amorphous degree of PFA, as a high amorphous degree typically 
leads to a high CTE40 and low mechanical strength41, yielding a high 
CTE of the composite. We investigated the PFA matrix using X-ray 
diffraction (XRD) analysis. Figure 4(a) shows the XRD patterns of 
samples #A–#E. The broad peak at 2𝜃 = 17o corresponds to the 
amorphous component (𝐼𝑎), and the sharp peak at 2𝜃 = 18o signifies 
the crystal component (𝐼𝑐). Therefore, we can evaluate the 
amorphous degree by 𝐼𝑎/(𝐼𝑎 + 𝐼𝑐). As indicated by Fig. 4(b), the 
samples with a lower CTE exhibit a higher amorphous degree. This 
trend is opposite to the aforementioned trend that a higher 
amorphous degree typically leads to a higher CTE; therefore, it is 
unlikely that the strongly suppressed CTE is caused by the change in 
the amorphous degree of the PFA matrix. 

Because the volume fraction of voids and fillers can influence the 
effective CTE of the composite according to the EMT, we investigated 
the concentration of voids by measuring the density of the composite 
using Archimedes’ method and calculated the practical volume 
fractions of the individual components. The densities of the samples 
#A–#E are presented in Table S4 and are lower than the theoretical 
density of a 100% dense composite by the presence of voids. 
Therefore, we can consider the sample as a three-phase composite 
consisting of voids, silica fillers, and PFA matrix. Figure S3 shows the 
EMT calculation of the CTE for a three-phase composite along with 
the theoretical CTE values for samples #A–#E (see Supplementary 
Information for details). According to the EMT calculation, although 
both voids and fillers can result in a lower CTE, the CTE is less 
sensitive to voids because their elastic and shear moduli are 
negligibly small. However, in the actual experiments, as indicated by 
Fig. 4(d), although the changes in the volume fraction of voids are 
within a limited range of 7.5%–14.2% for samples #A–#E, the CTE 
varies by up to 97.5 ppm/K, which significantly increased the FOM, 
from –0.802 to 0.782 (Fig. 4(c)). Moreover, although the EMT 
predicts a reduction in the CTE with an increase in the filler volume 

Table 2. Definitions of descriptors for the input parameters.

Sample

No.

Sample properties Fabrication parameters

CTE

(ppm/K)
ε tan σ

Extinction

coefficient
FOM

Time

(min)

Rotation

(rpm)

Plate filler 

condition

Spherical filler

condition

Filament filler

condition

Weight of plate 

filler (g)

Weight of

spherical filler (g)

Weight of

filament filler (g)

#A 121.3 2.26 5.64×10-3 8.46×10-3 -0.802 5 50 1 0 3 5 0 1

#B 122.3 2.25 5.75×10-4 8.62E×10-4 0.141 5 250 1 2 0 0 7 0

#C 49.9 2.43 8.27×10-4 1.28×10-3 0.572 5 250 0 2 0 0 1 6

#D 24.8 2.56 5.97×10-4 9.50E×10-4 0.782 7 50 0 0 0 0 0 7

#E 28.5 2.50 6.42×10-4 1.01×10-3 0.750 5 100 0 0 0 0 0 7
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fraction, the experimental results do not exhibit such a reduction. In 
fact, there is no clear correlation between the CTE and the volume 
fraction of the filler, as shown in the inset of Fig. 4(d). 

This suggests that the low CTE achieved here may arise from a more 
complex mechanism than the simple weighted average of the CTE. 
One possible mechanism is the topology effect proposed by Sigmund 
et al., where a three-phase composite consisting of a matrix, filler, 
and voids can substantially reduce the CTE, even to a negative value, 
under specific topological conditions42,43. In such a structure, the 
difference in CTE between the filler and matrix leads to anisotropic 
expansion upon heating, potentially causing internal bending 
deformation and macroscopic shrinkage. Voids are critical for 
providing the necessary physical space for internal movement or 
deformation upon heating, which relaxes the thermal expansion 
within the composite and significantly reduces its CTE. In this context, 
apart from the specific topological design of the composite, a higher 
porosity, larger interface area, and larger difference in the CTE 
between the filler and matrix are likely to enhance the topological 
effect, reducing the CTE. This conclusion aligns with the trends 
observed in the present study, where samples #D and #E, which have 
higher porosity and larger interfacial area owing to the high surface-
to-volume ratio of the filament fillers, exhibit a low CTE.

Although drawing a conclusion on how the structural variations 
affect the CTE is challenging without systematically varying the 
topological design to investigate the impact on the CTE, we can gain 
valuable insights into the character of the topology in achieving a low 
CTE by analyzing the specific structures of the composites. Scanning 
electron microscopy (SEM) was used to analyze the microscopic 

topologies of the fillers and voids. Figure 4(e)–(h) present the cross-
sectional SEM images of representative samples #A, #B, #C, and #E 
(additional SEM images of other samples under both high and low 
magnifications are shown in Fig. S4). In sample #A, which contains 
both filament and plate fillers, these components are uniformly 
dispersed and exhibit minimal voids, which corresponds to its low 
porosity. In contrast, sample #B exhibits large voids, primarily 
between the filler and PFA matrix. In sample #C, which features a mix 
of spherical and filament fillers, vacancies were observed near both 
the spherical and filament fillers, and the vacancies near the 
spherical fillers are larger. Samples #D and #E, characterized by the 
highest porosity, exhibit small voids close to the filament filler, with 
sizes ranging from tens to hundreds of nanometers. These SEM 
observations indicate that the void topology differs among samples 
and is related to the type of filler used. In addition, low-CTE samples 
typically consist of filament fillers, which not only affects the 
topology and volume fraction of the voids but also results in 
characterized topology of filler. 

To further characterize the topology of the fillers, we investigated 
samples #A and #E using X-ray computed tomography (XCT) 
(nano3DX, Rigaku). To achieve sufficient contrast in the data with a 
high silica volume fraction, we utilized a voxel size of 0.66 μm, which 
is smaller than the thickness of the plate filler. As a result, only the 
filament filler in sample #A could be analyzed. Figure 4(i) and (j) show 
the filament fillers in samples #A and #E, respectively. The filament 
in sample #A was shorter (51.5 μm) than that in sample #E (58.6 μm), 
as shown in Fig. 4(k). Moreover, the filament fillers are aligned along 
the plane of the film, with better alignment in sample #E than in 

Figure 4. Amorphous component analysis and microstructure characterization of the PFA/silica composite. (a) XRD results for samples #A–#E. The XRD peaks of amorphous and 
crystal components are fitted by the Gaussian function and are indicated by the shadowed areas, respectively. (b) Amorphous degrees obtained from XRD and the corresponding 
CTEs (red) for samples #A–#E. (c) FOM and (d) CTE of sample #A–#E with respect to the porosity; the dashed curve is for visual guidance; the inset in (d) shows the CTE under 
different volume fractions of filler. SEM images of (e) sample #A, (f) sample #B, (g) sample #C, and (h) sample #E (scale bar represents 10 μm). XCT results for (i) sample #A and 
(j) sample #E and the derived (k) length distribution and (l) orientation of filament silica filler. The curves represent a Gaussian fit of the histogram.

Page 9 of 11 Materials Horizons

M
at

er
ia

ls
H

or
iz

on
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
3/

20
25

 3
:2

3:
37

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4MH01606H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4mh01606h


ARTICLE Journal Name

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

sample #A, indicating that the fillers form a continuous network in 
the in-plane direction (Fig. 4(l)). This characteristic of the filler 
topology is similar to the optimal structure that exhibited a negative 
CTE in the previous study43, where the continuous phase of the filler 
is characterized. 

With the above analysis of these representative samples, correlating 
the fabrication process, microstructural topology, and the resultant 
CTE, we can summarize key insights for optimizing the PFA composite. 
For instance, increasing the filament filler content enhances porosity, 
facilitating thermal expansion relaxation, while filament alignment, 
influenced by rotation speed, may contribute to anisotropic 
structural effects. Additionally, untreated fibers tend to form 
interconnected networks, which effectively suppress CTE. However, 
it should be noted that while our analysis provides valuable insights 
into future sample design, the BO approach does not systematically 
vary each parameter, and the process inherently involves some 
degree of bias. Therefore, certain interactions may not be fully 
decoupled, and the conclusions are primarily applicable to local 
optimization.

Conclusions
We employed the ARD-GPR kernel in experiment-in-loop BO to 
optimize the multidimensional experimental parameters for the 
compounding process of PFA/silica composite, targeting a low CTE, 
𝜀, and tan 𝛿 for applications in the 5G and beyond 
telecommunications. Exceptional results were achieved, including a 
CTE of 24.7 ppm/K and an extinction coefficient of 9.5 × 10―4. The 
main feature of the optimal sample is the large amount of small-
diameter filament fillers. As the inaugural machine learning-driven 
experimental endeavour in fabricating polymer composites with 
low CTE, 𝜀, and tan 𝛿, our outcomes surpassed those of previous 
studies that relied on conventional empirical approaches. 
Moreover, the predicted values/variances agree well with the 
experimental results. Before reaching the maximum FOM in the 
fourth round of the BO, the experimental results closely follow the 
predictions, with the variance decreasing and exhibiting minimum 
values at the data point with maximum FOM. This indicates that the 
maximum FOM achieved experimentally was derived from the BO 
and not obtained by chance. Moreover, the most critical 
dimensions, as reflected by the scaling parameters of the ARD 
kernel, aligns with the analysis of the characteristics of samples 
with either a high or low FOM. This consistency verifies the 
effectiveness of the ARD-GPR surrogate model for accelerating the 
BO process with multiple anisotropic dimensions.

Further analysis of the chemical components and structures of 
several representative samples reveals that the microstructural 
topology of the composite, particularly the voids and fillers are 
highly correlations with the resultant low CTE. We attribute the 
significant reduction in the CTE to the topological effect, which is 
typically functional in composites with specifically designed 
topologies. In such structures, a mismatch in the CTE between the 

filler and matrix can lead to uneven heating, causing bending and 
shrinkage. These effects can be mitigated by the spaces provided by 
the voids, leading to a CTE far lower than that predicted via EMT. 

The fabricated polymer composite with ultralow CTE, 𝜀, and tan 𝛿 is 
expected to impact the 5G and beyond applications by providing a 
generic and lossless transmission electronic base material. 
Furthermore, the demonstrated material informatics methodology 
employing the ARD kernel in experiment-in-loop BO with multiple 
anisotropic dimensions showcase a useful approach for accelerating 
the development of composite materials for practical applications 
in diverse fields.
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