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Memristive neuromorphic interfaces: integrating
sensory modalities with artificial neural networks

Ji Eun Kim,†ab Keunho Soh,†c Su In Hwang,c Do Young Yangc and Jung Ho Yoon *c

The advent of the Internet of Things (IoT) has led to exponential growth in data generated from sensors,

requiring efficient methods to process complex and unstructured external information. Unlike conventional

von Neumann sensory systems with separate data collection and processing units, biological sensory

systems integrate sensing, memory, and computing to process environmental information in real time with

high efficiency. Memristive neuromorphic sensory systems using memristors as their basic components have

emerged as promising alternatives to CMOS-based systems. Memristors can closely replicate the key

characteristics of biological receptors, neurons, and synapses by integrating the threshold and adaptation

properties of receptors, the action potential firing in neurons, and the synaptic plasticity of synapses.

Furthermore, through careful engineering of their switching dynamics, the electrical properties of

memristors can be tailored to emulate specific functions, while benefiting from high operational speed, low

power consumption, and exceptional scalability. Consequently, their integration with high-performance

sensors offers a promising pathway toward realizing fully integrated artificial sensory systems that can

efficiently process and respond to diverse environmental stimuli in real time. In this review, we first introduce

the fundamental principles of memristive neuromorphic technologies for artificial sensory systems,

explaining how each component is structured and what functions it performs. We then discuss how these

principles can be applied to replicate the four traditional senses, highlighting the underlying mechanisms and

recent advances in mimicking biological sensory functions. Finally, we address the remaining challenges and

provide prospects for the continued development of memristor-based artificial sensory systems.

Wider impact
The implementation of artificial sensory systems is essential for converting vast amounts of environmental information into input signals required for
neuromorphic computing. When realized using memristors, such systems effectively compress signals during the conversion process while retaining adaptive,
nociceptive, and spatiotemporal information critical for learning and inference. Furthermore, their compatibility with a wide range of sensors ensures excellent
expandability, while the dynamic resistive switching properties of memristors enable the development of diverse signal conversion strategies. Memristor-based
artificial sensory systems not only emulate human sensory processing but also offer significant advantages in terms of energy efficiency and miniaturization,
making them highly suitable for edge computing and wearable technologies. Their ability to perform parallel signal processing can also enhance real-time
decision-making in complex environments. Gaining insights into memristor-based artificial sensory systems, which process patterned sensory data akin to
human perception, can drive future advancements in neuromorphic computing, industrial automation, and robotics.

1. Introduction

The growing demand for automation in supply chains, manu-
facturing, robotics, and unmanned vehicles has driven the

development of artificial intelligence (AI) technologies. These
technologies have the potential to significantly improve effi-
ciency and autonomy across various industries using sensory
systems comprising sensors and computational networks to
sense the surroundings and acquire information from the
environment in real time.1,2 For instance, conventional comple-
mentary metal-oxide semiconductor (CMOS)-based systems have
demonstrated intelligent recognition and control applications,
such as image classification, natural language processing, and
decision-making tasks.3–10 However, because the von Neumann
architecture physically separates memory and processing units,
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conventional systems require massive amounts of data transfer
between them. This results in high power consumption and
causes significant latency, commonly referred to as the von
Neumann bottleneck, which fundamentally degrades the perfor-
mance of AI applications.11–14

Unlike conventional systems, biological sensory systems
detect, interpret, and store external information in a data-
parallel and integrated manner.15 This is enabled by receptors
that generate electrical signals only when stimuli exceed a thresh-
old, selectively adapting to harmless, repetitive inputs. These
signals are transmitted as action potentials (spikes) through
neurons to specific brain regions, where they are processed in
an event-driven, adaptive, and parallel manner, enabling learning
and inference.16,17 Inspired by the energy-efficient and fault-
tolerant nature of biological systems, neuromorphic computing
has been developed to overcome the technical limitations of
conventional CMOS-based systems.18–21 It supports the integra-
tion, processing, and storage of sensory information, playing a
crucial role in advanced functions, such as decision-making,
cognition, learning, and memory. Moreover, neuromorphic com-
puting can execute multiple tasks simultaneously in highly parallel
settings with a low power consumption of 1–100 fJ per synaptic
event.22 The exceptional capabilities of memristors enable their
integration with neuromorphic learning algorithms to facilitate
advanced functions. Large-scale integration and hardware imple-
mentation using CMOS-compatible processes are essential to
leverage these capabilities, with extensive research currently under-
way. The technology has now advanced beyond hybrid 1T1R
structures, reaching a stage where fully memristor-based hardware
implementations are feasible. This progress has demonstrated the
practical applicability of memristors across various AI applications,
validating their potential for widespread deployment.23–27

Therefore, it is crucial to implement artificial sensory systems
capable of mimicking the roles of biological receptors, neurons,
and synapses to fully leverage neuromorphic computing.28–31

Although conventional CMOS-based electronics have been used
to develop artificial synapses and neurons as neuromorphic
devices, they are limited by circuit area and energy efficiency.32–34

Since the CMOS-based devices are optimized for digital switching,
they struggle to handle smooth and continuous signal variations,
which are essential for accurately reflecting external stimuli. Thus,
essential functions, such as the accumulation of external stimuli,
the generation of corresponding output signals, and information
storage, are inevitably performed by separate components. As a
result, the emulation process compromises both area and energy
efficiency in proportion to the number of devices used.35 Moreover,
implementing analog switching to achieve both the precision and
dynamic range required for emulating biological counterparts
remains a significant challenge in conventional CMOS-based sys-
tems. These systems necessitate the incorporation of additional
circuitry, such as digital-to-analog converters (DACs), to facilitate
analog switching. Although more complex DAC configurations are
required to enhance the output resolution, the resulting output
often lacks the desired smoothness. Meanwhile, among various
neuromorphic devices, memristors stand out for their area-efficient
structure as well as high-speed and low-power operation.

Additionally, their excellent scalability, durability, and uniformity
make them well-suited for the reliable implementation of artificial
sensory systems.36–40 Furthermore, a unique attribute of memris-
tors is their ability to gradually switch between a low-resistance
state (LRS) and a high-resistance state (HRS) in response to external
stimuli, such as voltage or current. In other words, memristors
exhibit continuous and dynamic resistive state changes rather than
relying on binary resistance states. This enables the direct proces-
sing of analog external stimuli without the complex configuration
of using multiple devices or peripheral circuits such as analog-to-
digital converters. Therefore, the dynamic resistive switching pro-
vided by memristors is essential for replicating the artificial sensory
systems, as they more efficiently capture the full fidelity of incom-
ing signals. Owing to these advantages, memristors have been
widely utilized in the implementation of artificial receptors,
synapses, and neurons.41,42 In particular, their material composi-
tion, device structure, and switching dynamics can be carefully
engineered to optimize switching behavior, making them adapta-
ble to both volatile and non-volatile properties—key characteristics
for mimicking biological elements.34,43–51 Thus, integrating mem-
ristive devices with various sensors facilitates the implementation
of artificial sensory systems corresponding to tactile, visual, audi-
tory, and olfactory modalities.52,53

In biological sensory systems, sensory receptors located in
the sensory organs convert external perceptual signals into
receptor potentials, and sensory neurons integrate these poten-
tials to initiate action potentials. Finally, the synapses store the
encoded sensory information. Similarly, in a bioinspired mem-
ristive sensory system, sensors generally convert external stimuli
into electrical signals, which are then applied to memristors.
Subsequently, the memristive receptor device that receives the
signal generates a potential that is proportional to the input,
incorporates information regarding harmful stimuli, and trans-
fers it to the subsequent sensory system. Subsequently, the
integrated memristive synapse and neural devices respond to
input signals in a manner analogous to biological perception
systems. By mimicking the biological sensory systems, the
integration of sensory, processing, and memory components in
bioinspired memristive systems enables high power efficiency,
low latency, and excellent processing capabilities.

Despite the versatility of memristors, current research has
predominantly focused on signal conversion based on their
switching characteristics. This approach has contributed immen-
sely to the advancement of neuromorphic computing by enabling
reliable and direct conversion of external stimuli into signals that
drive neural networks implemented in hardware and software.
However, studies on how closely these conversions align with the
behavior of the human nervous system are lacking. The existing
memristor-based systems often fail to fully capture the intricate
dynamics of biological sensory systems, particularly in terms of
complexity and adaptability. Devices capable of replicating the full
range of functions of biological receptors, neurons, and synapses
remain exceedingly rare. Even at the individual level, most
artificial systems struggle to replicate all the critical functions of
a single biological element. In artificial sensory systems, this
limitation is further compounded by the frequent exclusion of

Review Materials Horizons

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 6
/1

7/
20

25
 2

:2
5:

01
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5mh00038f


This journal is © The Royal Society of Chemistry 2025 Mater. Horiz., 2025, 12, 3667–3690 |  3669

specific functions or entire elements, resulting in incomplete or
inefficient performance. This highlights a critical challenge:
implementing all essential characteristics necessary for effective
emulation. For artificial sensory systems to accurately process
external stimuli across diverse environmental conditions, several
crucial properties must be considered, including sensitivity,
adaptability, and spatiotemporal processability. For instance,
biological systems can dynamically adjust their sensitivity to
external stimuli, such as by enhancing auditory perception in
noisy environments or modulating visual processing under low
light. Emulating this adaptability requires devices capable of self-
tuning and learning in response to changing environmental
conditions. Moreover, processing spatiotemporal patterns—
similar to biological synapses responding to time-dependent
signals—remains essential for replicating complex sensory func-
tions. A systematic understanding of these properties is funda-
mental to developing artificial sensory systems that process
complex input patterns with greater accuracy and efficiency.

In this review, the recent advances, challenges, and pro-
spects of bio-inspired memristive artificial sensory systems are
comprehensively examined. In this context, the switching per-
formance metrics required for memristors in the implementa-
tion of artificial sensory systems, as depicted in Fig. 1, along
with the sensory modalities they aim to emulate, are discussed.
The subsequent sections first explore the fundamental roles of

receptors, neurons, and synapses in biological sensory systems,
along with the corresponding switching characteristics of
memristors essential for replicating these neuronal compo-
nents. Next, innovative cases of bio-inspired artificial sensory
systems developed for the four primary senses—tactile, visual,
auditory, and olfactory—are presented. Recent memristor
research progress is then examined, focusing on how closely
these systems mimic biological sensory functions and evaluat-
ing the effectiveness of these advancements. Finally, challenges
and prospects for the development of memristor-based artifi-
cial sensory systems are addressed. This review aims to encou-
rage ongoing research and development, fostering a deeper
understanding and broader range of applications of bio-
inspired sensory systems by analyzing the roles of receptors,
neurons, and synapses, the switching dynamics of memristors,
and the necessary characteristics for each type of neural
implementation.

2. Elements of the nervous system:
receptors, neurons, and synapses

To emulate the characteristics of receptors, neurons, and
synapses using memristors, a comprehensive understanding
of their operational mechanisms is required. Additionally,

Fig. 1 Schematic of the artificial sensory system and functions, featuring integrated and collaborative networks of memristive receptors, neurons, and synapses.
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investigating the switching properties of memristors and
exploring how these properties can be utilized to mimic each
component are essential. This process is crucial for precisely
controlling the electrical characteristics of memristors and
effectively reproducing the complex functions of the nervous
system, as shown in Fig. 2.

2.1. Receptors

Receptors play a crucial role in detecting and responding to
various stimuli, enabling us to perceive and interact with the
environment.54,55 Receptors convert physical and chemical
stimuli into electrical signals. This process enables humans
to appropriately respond to stimuli. Receptors have evolved to
be specifically responsive to stimuli and can be classified into
categories based on their ability to accommodate different
external stimuli, such as mechanoreceptors, thermoreceptors,
photoreceptors, chemoreceptors, and nociceptors.

Receptors operate based on thresholds and relaxation.56 The
threshold indicates the minimum intensity of a stimulus
required to be activated, below which the receptor remains
unresponsive. This characteristic enables the receptors to filter
out insignificant minor stimuli and focus on more critical

signals. Upon activation by external stimuli, receptors transi-
tion into a relaxed state where their responsiveness to the
stimulus gradually diminishes, enabling them to revert to their
initial state. During the relaxation state, receptors retain a
certain degree of activation; consequently, the threshold inten-
sity of the stimulus for reactivation is reduced compared with
that of the initial activation. This phenomenon, known as
sensitization, is crucial for modulating receptor sensitivity.57

Additionally, some receptors exhibit adaptation characteristics,
whereby their response diminishes in the presence of contin-
uous stimuli. These receptors provide essential protection
against persistent and harmful stimuli while also preventing
energy expenditure on non-essential stimuli.

The volatile memristor is suitable as an artificial nociceptor
because it reacts only to electric pulses above a certain threshold
and gradually reduces the output signal once the pulse is
removed.58–60 Moreover, such threshold and relaxation beha-
viors strongly depend on the strength, period, and duration of
the input signal. Regulating relaxation enables the mimicry of
phenomena observed in certain receptors, such as allodynia, in
which the threshold is lowered upon exposure to harmful
stimuli, and hyperalgesia, in which the response is amplified.

Fig. 2 Features and performances required to implement artificial sensory receptors, neurons, and synapses. Function characteristics of volatile and
non-volatile memristors to mimic sensory elements.
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In addition, this approach enables the implementation of adap-
tation functionality, which allows the receptors to adjust to
repeated stimuli. The detailed mechanisms and applications
are discussed in Section 3.

2.2. Neurons

Neurons constitute the fundamental units of the nervous system
that transmit electrical signals generated by external stimuli at
receptors in the brain, enabling recognition and response to
these stimuli.61,62 Neurons are primarily composed of the cell
body (soma), dendrites, and axons. The soma acts as the meta-
bolic and genetic center of the neuron, housing the cell nucleus
and supporting vital cellular functions. Dendrites extending
from the soma receive signals from other neurons or sensory
receptors, whereas axons transmit electrical signals to other
neurons and muscles. These electrical signals are generated
from rapid changes in the membrane potential of the axon,
known as the action potential.63 When the action potential
reaches the axon terminal, neurotransmitters are released into
the synapse and subsequently interact with the dendrites of the
postsynaptic neuron. Synaptic transmission facilitates the for-
mation of complex neural networks that enable information
collection, integration, transmission, and coordination. Neurons
are classified based on their functions and characteristics. For
instance, sensory neurons detect external stimuli, such as light,
sound, and temperature, and transmit this information to the
central nervous system. Motor neurons carry commands from
the central nervous system to the muscles or glands. Interneur-
ons function as intermediaries, processing and relaying infor-
mation between sensory and motor neurons.

Volatile memristors are well-suited as artificial neurons due
to their ability to exhibit a steep current response exceeding a
threshold stimulus, followed by a decrease through volatile
switching—closely mimicking action potentials. Additionally,
they effectively integrate inputs from multiple channels and
generate repetitive spike signals with frequencies proportional
to the combined input levels. During signal generation, volatile
memristors dynamically adjust their responses based on input
strength and frequency, efficiently encoding continuous analog
signals into spike trains—similar to biological neurons. This
adaptability enables differentiation between weak and strong
stimuli, replicating sensory adaptation mechanisms in the human
nervous system. Recent studies have demonstrated the imple-
mentation of Hodgkin–Huxley (HH) and leaky integrate-and-fire
(LIF) model neurons using volatile memristors, further highlight-
ing their compatibility with biological neuron models. These
models leverage the ability of memristors to replicate essential
neuronal behaviors such as voltage-dependent conductance and
firing dynamics. Specifically, artificial neurons constructed using
volatile memristors encode temporal information by adjusting
their spiking frequency based on the input intensity, closely
resembling the time-dependent stimulus information of biologi-
cal sensory neurons. Moreover, memristor-based implementa-
tions offer advantages such as low power consumption and
scalability while achieving comparable performance to biological
neurons.

2.3. Synapses

Synapses serve as junctions between the axon of one neuron
and the dendrite of another, playing an essential role in neural
transmission.52,64 When an electrical signal reaches the axon of a
presynaptic neuron, the synapse adjusts the connection strength
(synaptic weight) based on the input signal, either strengthening
or weakening the synaptic weight. The dynamic regulation of
synaptic weight is fundamental to learning and memory and
serves as a critical component in understanding the functional
mechanisms of the human brain. Adjustments in synaptic weight,
such as spike-timing-dependent plasticity (STDP), short-term
plasticity (STP), and long-term plasticity (LTP), are fundamental
to the ability of the brain to adapt, learn, and form memories.65–67

STDP is used to effectively control synaptic weight, demonstrating
a type of synaptic plasticity that depends on the exact timing
between the two neurons. This mechanism facilitates the efficient
utilization of neural networks by leveraging the temporal inter-
actions between neurons. STP refers to temporary changes in
synaptic strength. The STP lasts from a few seconds to several
minutes and can fluctuate based on the activity patterns of the
neurons. It is primarily governed by intracellular mechanisms
associated with neurotransmitter release and plays a crucial role
in adapting to rapidly changing environments and processing
transient information. Unlike STP, LTP is required for long-term
memory formation. LTP refers to the sustained enhancement of
synaptic strength over extended periods, ranging from hours to
years. It is known to play a critical role in learning and memory
processes and arises from the repeated activation of specific
neural paths.

Non-volatile memristors are highly suitable for mimicking
synaptic characteristics.59,68,69 Non-volatile memristors exhibit
resistance changes in response to electrical stimuli, effectively
replicating the synaptic weight. Furthermore, the switching
behavior of non-volatile memristors, which allows them to retain
information even in the absence of a bias, enables the emulation
of long-term memory functionality. The modulation of resistance
and synaptic weight assumes a critical function for assessing the
intensity of previous input signals within the frameworks of
machine learning and neural network algorithms. The linearity
of resistance modulation is crucial and can be effectively utilized
to deduce the strength of the signals. Linearity is essential
for improving the precision of the numerous algorithms used
in machine learning and neural networks. Furthermore, the
potential of utilizing non-volatile memristors to emulate the
characteristics of synaptic devices has been demonstrated,
enabling the replication of various forms of synaptic plasticity
such as LTP, STP, and STDP. In detail, non-volatile memristors
can exhibit STDP behavior, where synaptic strength is modified
based on the timing of pre- and post-synaptic input spikes. In
addition, LTP and STP can be achieved by adjusting the device
conductance in response to varying input frequencies, allowing
non-volatile memristors to adapt to both transient and sustained
input patterns. This is achieved through the precise control of
the formation of conductive pathways, which are closely asso-
ciated with resistance changes in non-volatile memristors. This
approach can effectively reproduce the dynamic properties of
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synaptic plasticity. These findings demonstrate the ability to
implement various forms of synaptic plasticity and memory
functions, highlighting their potential suitability for efficient
brain-inspired computing architectures.

3. Memristor-based tactile sensory
systems

Human skin enables us to recognize objects and interpret the
environment through the sense of touch. Tactile perception is
complex and involves sensing, refining, learning, and forming
interactions with the external environment.70–73 Receptors on
sensory neurons embedded in the skin, such as nociceptors,
chemoreceptors, and mechanoreceptors, detect various somatic
sensations and convey tactile information to the brain via elec-
trical signals. This process enables exquisite sensations of object
recognition, texture discrimination, and sensory feedback. Tactile
receptors can detect even small amounts of pressure or force, and
when combined with external stimuli, they provide a detailed and
nuanced picture of the object or surface being touched. This
information can help humans navigate their environment, manip-
ulate objects, and perform tasks that require a sense of touch.
They can also improve the functionality and comfort of prosthetic
limbs by providing users with a more natural and intuitive sense
of touch. This chapter explains memristor-based electronic tactile
sensory systems related to somatic sensations.

3.1. Memristor-based nociceptors and adaptive receptors

Nociceptors play a vital role in mimicking human acceptance
and processing of external stimuli. When a stimulus such as
mechanical stress, chemical stress, or temperature is applied,
the nociceptor determines the degree of hazard and generates
the corresponding biochemical signals. Therefore, to assess the
danger posed by external stimuli and to respond to and safe-
guard oneself, all diverse features must be incorporated into
the nociceptor.74,75

Memristor-based nociceptors are similar to bionociceptors
in that they respond differently to different stimuli. As shown in
Fig. 3a, Yoon et al. established an artificial nociceptor based on an
Ag-based threshold-switching memristor with the function of a
nociceptor that implements four key functions (threshold,
relaxation, no adaptation, and sensitization).76 Allodynia and
hyperalgesia, resulting from harmful or abnormal stimuli, can
be effectively induced in memristors by applying high voltages
that exceed the threshold level. When the input voltage is
increased to a level perceived as harmful, the conductive paths
in the memristor grow excessively, making spontaneous and
complete rupture challenging after the voltage is removed.
Consequently, residual Ag clusters or conductive paths remain
within the oxide film, facilitating a rapid response to stimuli
below the threshold (sensitization). To further demonstrate the
potential of the nociceptor, an artificial Ag-based nociceptor
memristor was integrated into the thermoelectric module.
The thermal nociceptor only generated an electric spike at
a critical temperature (50 1C, hazardous temperature). As the

temperature increased, the signal amplitude increased, and the
onset time decreased.

Kim et al.79 reported an artificial nociceptor based on a Pt/
HfO2/TiN memristor utilizing trap/detrap mechanisms instead of
a cation-based threshold-switching memristor. The nociceptive
function was imitated by adjusting the trap depth of the HfO2

layer. When a sufficiently high positive voltage was applied to Pt,
lowering the trap level below the Fermi energy level of TiN
facilitated electron injection from TiN to fill the trap sites. Once
filled, the electron transport increased sharply due to trap-assisted
tunneling conduction between trap sites, turning the device on
(threshold switching). After the voltage was removed, the differ-
ence in work functions between the Pt and TiN electrodes created
a built-in potential that caused the trapped electrons to relax over
time (relaxation). The device exhibited a wide operation time span
ranging from milliseconds to ten seconds, with a relaxation time
scale well-matched to typical biological systems making it highly
effective for mimicking nociceptor behavior. Therefore, additional
circuits have been designed to effectively mimic biological reflex
actions, enabling immediate response generation and transmis-
sion to the spinal cord when exposed to danger.

There is an increasing need for humanoid robots to imitate
advanced biological functions to respond efficiently to external
environments. Biological skin can protect itself against harmful
damage by detecting the degree of danger and initiating appro-
priate actions using nociceptors. Moreover, biological skin can
self-heal and eventually return to its normal state when damaged
by external stimuli. The design of a memristor is crucial for
mimicking the complex characteristics of bioskin. Xiaojie et al.
reported an artificial sensory system with the ability to sense and
warn patients of pain and heal itself. The FK-800-based organic
volatile memristor acted as an electronic skin (Fig. 3b).77

Self-healing was achieved because of the intrinsic characteristics
of the organic material, similar to human skin. In addition, to
sense pain and signs of injury, the artificial tactile system was
composed of a triboelectric generator, volatile memristor,
and light-emitting diode (LED). The triboelectric generator and
volatile switching memristor act as mechanoreceptors and noci-
ceptors, respectively. The triboelectric generator generates an
output voltage based on the intensity of the external stimulus,
and the generated voltage is applied to a volatile memristor.
When a voltage above the threshold value was applied to the
volatile memristor, the memristor and LED turned on. This case
was considered to have minimal damage or pain and was not
considered a threat. When a voltage below the threshold value
was applied, the memristor and LED did not turn on, causing no
damage or pain. Conversely, when a large input voltage was
applied to the memristor as a strong stimulus, the relaxation
time and resistance of the volatile memristor were longer and
lower, respectively. Therefore, the LED was stronger and
required a longer time to turn off completely.

To effectively perceive the external environment, it is essential
to recognize both harmful and incoming nonharmful stimuli.
Nociceptors react to potentially harmful stimuli such as pres-
sure, heat, or chemicals, transmitting signals to the brain, where
they are interpreted as pain. They respond consistently to
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specific types of stimuli (no adaptation). In contrast, adaptive
receptors reduce their sensitivity when exposed to continuous
stimulation (adaptation), facilitating the filtration of unimpor-
tant and repetitive information.80,81 This mechanism is essential
for sensory processes such as vision, hearing, and touch, allow-
ing humans to adjust to dynamic surroundings.

However, its implementation is difficult for both the existing
CMOS-based and memristor-based receptors. Song et al. proposed
an artificial receptor that mimicked both the adaptive and mala-
daptive characteristics using an Ag-based volatile memristor.78 The
artificial receptor was implemented by adjusting the thickness of
the conductive filament with varying amounts of metal ions.
The competitive relationship between Joule heating and electro-
migration was controlled by the number of metal ions, which

determined the thickness of the conductive filament. Fig. 3c shows
that the thin conductive filament (low Ag concentration) ruptured
due to Joule heating during high-intensity stimuli (adaptive recep-
tor), whereas the thick filament (high Ag concentration) main-
tained an electrical on-state (maladaptive receptor). Thus, the
authors demonstrated the feasibility of implementing normal
sensory-receptor behaviors.

3.2. Tactile stimulus perception

Artificial electronic skin, which captures surrounding
tactile stimuli, is deployed in advanced intelligent systems.
Conventionally, artificial electronic skin requires additional
external equipment to store and process large amounts of data.
However, this structure is inefficient in terms of energy

Fig. 3 (a) Threshold switching behavior, allodynia, and hyperalgesia. Schematic of an artificial thermal nociceptor circuit comprising a thermoelectric
module and a volatile memristor. Generated voltage by a thermoelectric module and threshold switching behavior. Reproduced with permission from
ref. 76. Copyright 2018 Springer Nature. (b) Bio-inspired artificial injury response system including a sense of pain, sign of injury, and healing. Lighting of
light-emitting diodes (LEDs) according to intensity of stimulation. Reproduced with permission from ref. 77. Copyright 2022 John Wiley and Sons. (c)
Pulse response of memristors to multiple 100 ms pulse widths with an amplitude of 3 V. Adaptation rates of 1, 2, and 3 nm Ag memristors are classified as
rapidly, slowly, and no-adapting, respectively. Circuit schematic of an artificial sensory nervous system. Generated voltage from the thermoelectric
module and volatile memristors was monitored by oscilloscope channels at hot plate temperatures of 40 and 70 1C. Reproduced with permission from
ref. 78. Copyright 2021 John Wiley and Sons.
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consumption and processing speed because it causes time
delays and large energy consumption. Memristor-based tactile
sensory systems can effectively emulate the functions of human
tactile nerves in low-power operations without requiring addi-
tional equipment. Memristor-based tactile sensory systems
enable the recording of stimuli by translating external mechan-
ical stimuli into modulated electrical spikes. To mimic a tactile
sensory system, an artificial system generally comprises a bio-
inspired synaptic or neuron memristor and various sensors for
detecting the external environment. The sensor connected to
the memristor detected the strength of the external stimulus
and generated various electrical signals based on the degree of
stimulation applied. The memristor integrates the output sig-
nals of the parallel sensor and processes them into unified
electrical spikes.82–84

Wang et al.85 demonstrated an ultrafast artificial skin sys-
tem based on near-sensor analog computing architecture. The
artificial skin was implemented by combining a memristor with
a tactile sensor and was fabricated on a flexible substrate.
When a tactile sensor recognizes an external stimulus, an input
pulse is generated and applied to the memristor to alter its

resistance. Accordingly, the system simultaneously captures
and processes the tactile stimuli in real time. In addition, the
authors suggested that the system could be mounted on a
finger or prosthesis to detect the edge information of external
objects in real-time (Fig. 4a).

Sensory systems can simultaneously receive and transmit
various types of information from the environment via various
receptors. Similar to human reliance on multiple stimuli for
decision-making and responses, artificial nervous systems
that utilize memristors require the integration of information
from diverse external stimuli to achieve effective functionality.
Artificial sensory systems aim to achieve multisensory functions
by simultaneously integrating and processing various sensory
input signals. The first approach involves integrating the input
signals obtained from a circuit comprising multiple sensors and
a memristor. Xinqiang et al.86 developed a multimodal sensory
system that utilized pressure and temperature sensors in con-
junction with non-volatile memristors and employed a signal
coupling method to integrate the outputs (Fig. 4b). The input
stimulus can be integrated from different sensors, and an output
signal can be generated once the input signal from each sensor

Fig. 4 (a) Near-sensor analog computing using an artificial tactile system. Resistance changes in a synapse memristor using a continuous pulse train.
Near-sensor analog computing for real-time edge detection of the captured pressure pattern. Reproduced with permission from ref. 85. Copyright 2022
John Wiley and Sons. (b) Multimodal sensory system with multi-sensors accepting pressure and temperature stimuli. Resistance modulation of the
pressure and temperature sensors as a response to pressure and hot stimuli. Reproduced with permission from ref. 86. Copyright 2022 John Wiley and
Sons. (c) Characterization of an artificial temperature perception VO2-based neuron memristor. Haptic-temperature fusion is based on a VO2 volatile
memristor and MLP by simulation. Reproduced with permission from ref. 87. Copyright 2022 John Wiley and Sons.
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reaches a fixed threshold voltage. Six pressed and two hot stimuli
were applied to the system, which recognized eight stimuli and
generated an eight-fold output. Correspondingly, the memristor
reacted to several toxic stimuli and modulated conductance.
This study demonstrates that a multimodal artificial sensory
system can be constructed using different sensors (pressure and
temperature) and signal-coupling modules.

A multimodal sensory system can be realized using memristor
materials. This approach simplifies the circuits that constitute the
multimodal sensing, making it efficient and advantageous in
terms of energy utilization. Qingxi et al. developed a multisensory
system by configuring an oscillation circuit using piezoresistive
sensors and a VO2-based volatile memristor (Fig. 4c).87 VO2

exhibits inherent thermal sensitivity, which enables its resistance
state and characteristics to change in response to temperature
fluctuations. Consequently, the VO2-based memristor enables the
monitoring of temperature stimuli without the need for supple-
mentary sensors. When direct thermal stimuli are applied to a
memristor, the inherent thermal sensitivity characteristics of VO2

alter the switching behavior, thereby inducing a change in the
oscillation circuit characteristics. In addition, when haptic actions
are applied to a piezoresistive sensor, the magnitude of the
stimulus alters the output of the sensor, which in turn changes
the voltage applied to the non-volatile memristor, consequently
modifying the oscillation characteristics of the volatile memristor.
Therefore, without multiple sensors or electrical modules, an
artificial mechanical sensory system can effectively synchronize
information regarding external stimuli through vibrations that
vary in response to pressure and temperature.

Memristor-based tactile receptors effectively detect various
external stimuli, including heat and pressure. These receptors
mimic the ability to recognize external stimulus patterns and
generate appropriate responses through sensor integration and
computational analyses. However, integration of sensors remains
energy inefficient, and research on their ability to process multiple
stimuli simultaneously remains limited. Further investigation is
needed on software-based approaches for classifying and analyz-
ing simultaneous stimuli, such as applying algorithms similar to
the single-coupling module shown in Fig. 4b. These additional
approaches can enhance the accuracy of human tactile system
emulation.

4. Memristor-based visual sensory
systems

Human vision is the primary method used to assess the size,
shape, color, brightness, distance, and surface roughness of an
object. Humans acquire more than 80% of their external
information through the visual sensory system. In the informa-
tion acquisition process, the eyes, brain, and muscles collabo-
rate to perceive light stimuli and protect oneself by responding
to potentially harmful stimuli.88–90 The human visual sensory
system rapidly processes these complicated tasks in a highly
accurate and energy-efficient manner. Thus, mimicking this
system is desirable for the efficient detection, processing, and

storage of large volumes of visual information. However, the
biological visual system features a complex hierarchical organiza-
tion, including neural structures, such as the retina, bipolar cells,
horizontal cells, and ganglion cells. Consequently, mimicking this
system by using electronic circuits requires highly complex cir-
cuits and substantial energy consumption for information proces-
sing. Therefore, the development of more compact and efficient
artificial visual sensory systems that can integrate sensing, proces-
sing, and storage functions is required. In this section, we
describe a method that mimics human visual characteristics,
such as light and motion detection, and the perception of an
object using a memristor. This approach employs a memristor to
mimic the visual adaptation functions, enhance efficiency, and
reduce the complexity of an artificial visual system.

4.1. Retina-like preprocessing

The retina contains photoreceptors that detect external stimuli
and transmit visual data to bipolar cells, which serve as inter-
mediaries between the photoreceptors and ganglion cells. The
data are then relayed through synapses with ganglion cells,
triggering action potentials that travel to the lateral geniculate
nucleus (LGN). The LGN transmits these signals to the visual
cortex. In this process flow, a memristor can process informa-
tion related to light intensity, directly detect the light intensity,
or appropriately adapt to changes in the ambient light levels of
the external environment.91,92

Dang et al.93 demonstrated that the one-phototransistor–
one-memristor (1PT1R) synaptic device shown in Fig. 5a has the
potential for in-sensor computing and edge computing in
visual sensory systems. In the 1PT1R structure, the ZnO-based
phototransistor provides a driving current proportional to the
light illumination, enabling the implementation of a high-
linearity light-tunable multilevel conductance state within the
Mo/SiO2/W memristor. Moreover, an optical artificial neural
network (OANN) composed of a 16 � 3 1PT1R array performs
cross-talk-free conductance updates because the phototransis-
tor functions as a selector. The proposed OANN achieved a
99.3% accuracy in image recognition, demonstrating that the
1PT1R device is a promising hardware solution for artificial
visual systems.

Shan et al.94 demonstrated fully light-modulated synaptic
plasticity using a plasmonic optoelectronic memristor comprising
Ag nanoparticles embedded in a TiO2 nanoporous film. Fig. 5b
illustrates the photooxidation and reduction processes of the Ag
nanoparticles embedded in the device under UV/vis irradiation.
Under visible light irradiation, electrons from Ag transferred to
the conduction band of the TiO2 film, generating Ag+ ions. This
increased the effective diameter of the Ag conducting filament,
thereby enhancing device conductivity. In contrast, UV irradiation
excited electrons in the valence band of the TiO2 film to its
conduction band, which reduced the number of Ag+ ions and
suppressed the increase in device conductivity. Consequently,
when electrical pulses were applied after UV and visible-light
irradiation, the current response was greatly improved only under
visible-light irradiation. This enables the emulation of light-
induced and gated synaptic plasticity. The STDP learning was
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conducted using UV/vis light. The memristor effectively elimi-
nates image noise owing to its specific UV light-induced long-term
depression (LTD) function. In addition, light-induced STDP learn-
ing has been identified as a feature of high-level image processing.
By incorporating low-level image preprocessing steps, such as
contrast enhancement and noise reduction, the learning rate and
efficiency of high-level image recognition processes can be signifi-
cantly improved by these memristors, as demonstrated through
simulations.

Xu et al.95 reported the HH neuron-based artificial visual
sensory system shown in Fig. 5c constructed using a volatile VO2

memristor. The volatile VO2 memristor modulates the threshold
and hold voltages based on temperature, which mimics a
biological neuron. The proposed volatile memristor exhibits
frequency relaxation in tonic spiking (a type of neuron spiking
model) under varying pulse inputs, and a transition between
spiking models when the input pulse changes abruptly. This is

analogous to the light-adaptive functions of photoreceptors
(cone and rod cells) in the retina. Primary photoreceptors
responsible for light processing change during the transition
between bright and dark environments. This shift, referred to as
photopic and scotopic adaptation, has been successfully realized
in a circuit comprising an HH neuron, a thermoelectric ceramic,
and a light-dependent resistor. These components convert light
into thermal stimuli that are subsequently used to generate
input pulses that induce frequency changes during spiking. This
light-adaptable function is useful for artificial applications. The
authors demonstrated the potential of integrating spiking neural
network (SNN) algorithms into machine vision applications to
simplify circuits and complex processing.

4.2. Self-protection via detecting the intensity of light

In addition to light detection, the visual system should also be
capable of analyzing the diverse spatiotemporal patterns of

Fig. 5 (a) Schematic illustration of the integrated 1PT1R structure device and light-tunable conductance update performance of the device. Reproduced
with permission from ref. 93. Copyright 2023 John Wiley and Sons. (b) Schematic illustration of a light-induced synaptic modification mechanism based
on photo-induced redox reaction and current response after UV/vis light irradiation. Reproduced with permission from ref. 94 Copyright 2021 John
Wiley and Sons. (c) Bio-inspired HH neurons for an artificial retinal system with firing frequency modulated in a manner similar to photopic/scotopic
adaptation of a biological photoreceptor. Reproduced with permission from ref. 95. Copyright 2022 John Wiley and Sons.
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photoreceptors activated in the retina. This involves protective
behaviors such as closing the eyes to shield against damage
from intense light and impending collisions, and nociceptive
functions to detect harmful light stimuli.

A highly efficient artificial visual sensory system comprising
an optoelectronic threshold-switching memristor and an actua-
tor was proposed by Pei et al.96 The Sb2Se3/CdS-core/shell
nanorod array-based (SC) optoelectronic memristor enhanced
light-harvesting activities, received optical signals, and converted
them to a voltage before transmitting them to the threshold-
switching memristor-based neuron circuit. The SC memristor
exhibited resistive switching characteristics in a light-irradiated
environment, as shown in Fig. 6a, driven by conductive dangling
bonds and vacancy defects on the surface of the Sb2Se3 nanor-
ods. This results in an increased ON/OFF resistance ratio, which
in turn increases the firing frequency of neuronal circuits
proportional to the light intensity. When the light exceeded

the safety range, the firing frequency and amplitude of the SC
memristor and neuron circuit increased significantly, potentially
triggering an electric actuator. This emulates eye muscle con-
traction and reproduces the self-protective behavior of closing
eyes in response to intense light damage.

Wang et al.97 developed an artificial visual sensory system
motivated by locusts, which, compared to humans, have a super-
ior perception of moving objects. The vision system of locusts
includes a lobular giant movement detector (LGMD) that gener-
ates danger signals before the occurrence of collisions. This
functionality is demonstrated in Fig. 6b using an Ag conductive
filament-based threshold-switching memristor. The formation
and rupture of Ag conductive filaments in the volatile memristor
were used to implement the excitatory and inhibitory effects on
LGMD neurons. The conductivity of the volatile memristor
increased and then decreased as the intensity of light increased.
When the light power applied to the device was gradually

Fig. 6 (a) Multifunctional artificial visual perception nervous system constructed using an optoelectronic memristor based on an Sb2Se3 nanorod array.
Increasing ON/OFF resistance ratio under light irradiation increases the firing frequency, activating an eyelid-shaped actuator. Reproduced with
permission from ref. 96. Copyright 2022 John Wiley and Sons. (b) Schematics of the artificial LGMD neuron device and current response under looming
light stimulus. The formation of the Ag conductive filament is initially facilitated by the increasing light stimulus but ruptures due to Joule heating beyond
a certain light intensity, providing information before the collision point. Reproduced with permission from ref. 97. Copyright 2021 Springer Nature. (c)
Schematic of the monolayer MoS2 device and current response under varying light intensity, pulse interval, and degree of injury. Reproduced with
permission from ref. 98. Copyright 2024 American Chemical Society.
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increased to correspond to the approaching objects, the current
response initially increased, reached a peak, and then decreased
as the collision point approached. In detail, at low light intensi-
ties, moderate Joule heating accelerates the drift of Ag+ ions and
the formation of conductive filaments, while at high light inten-
sities, significant Joule heating induces the rupture of Ag con-
ductive filaments. Consequently, the LGMD neuron implemented
in this configuration provides information prior to the collision
point, enabling self-protective behavior.

Li et al.98 demonstrated a visual nociceptor based on a two-
terminal optical synaptic device with a monolayer MoS2 depicted
in Fig. 6c. The optical synaptic device successfully emulated
adjustable synaptic behaviors, including STP, LTP, and paired-
pulse facilitation (PPF), by leveraging the persistent photocon-
ductivity resulting from charge trapping. Notably, when the
device was stimulated with light intensities ranging from 2.5 to
7.5 nW mm�2, the photocurrent reached a higher level of satura-
tion, which aligned with the no-adaptation characteristic of
nociceptors. Furthermore, when paired 320 nm light pulses were
applied to the optical synaptic device at intervals of 1, 2, and 3 s,
a stronger photocurrent was observed at shorter intervals,
demonstrating the dependence of the device on the relaxation
time. Additionally, ultraviolet pulses with a wavelength of
320 nm and power densities of 25 and 75 nW mm�2 were used
to induce low-injured and strong-injured states, respectively. In
these injured states, the device exhibited a heightened sensitivity
to light pulses. In the low-injured state, even a low-intensity
ultraviolet pulse (1.5 nW mm�2, 1 s) exceeded the activation
threshold, while in the strong-injured state, an intensity of
1.2 nW mm�2, which is below the threshold, produced a sig-
nificant photocurrent. This behavior mirrors the nociceptor
characteristics of ‘‘allodynia’’ and ‘‘hyperalgesia,’’ where sub-
threshold stimuli can elicit a response in an injured state.

To implement artificial visual sensory systems, memristors
have been integrated with separate photodetection devices or
fabricated using photoresponsive materials. While integration
with separate devices ensures reliable processing of external
stimuli, photoresponsive memristors offer superior integration
density. However, incorporating photodetection capabilities into
memristors often requires additional fabrication steps, such as
coating nanorod arrays with photoactive materials or using ultra-
thin channel materials like nanosheets, which increases complex-
ity. Therefore, further research is required to develop simplified
fabrication techniques for photoresponsive memristors.

5. Memristor-based auditorial sensory
systems

The biological auditory system detects and collects information
from pressure waves of different amplitudes, frequencies,
and components in the medium generated by motion or
collision.99–101 Sound waves that arrive at the ear are mechani-
cally transmitted to sensory hair cells in the cochlea, generating
amplified electrical signals owing to mechanical vibrations.
Information in the form of amplified electrical signals is

transmitted from the auditory sensory nerves to the cerebral
cortex. Through this process, humans recognize sounds in their
surroundings. The input sound is encoded as a train of electrical
pulses created from the output of a frequency-selective channel
in the cochlea (space-to-rate encoding). Sparse sampling of the
frequency information was performed according to the active
frequency channel without capturing all information from the
sound source at the maximum sampling rate. Using this coding
strategy, the cerebral cortex efficiently extracts key information from
complex sound signals, enabling the biological auditory system to
produce higher-level perceptions including sound location, rhythm
perception, pitch recognition, and sound recognition. The ear
receives a combination of simultaneous sound sources with various
frequency components. This complexity is further exacerbated
because both the frequency and amplitude of these components
can be converted into a single sound. Owing to the spatiotemporally
encoded nature and time dependency of sound waves, signal
processing in the auditory system is more complicated than that
in the visual or tactile systems. This section introduces the pioneer-
ing demonstration of an integrated memristor-based artificial audi-
tory system and is divided into two subsections: sound location
(azimuth detection) and sound recognition.

5.1. Sound location

To determine the location and direction of a sound source, the
human brain relies on interaural time difference (ITD), which is
the difference in the time of sound arrival between the two ears.
The sound signal is generally divided into a left and right signal
to be processed, and the important clue for sound location is
the ITD in the range of �0.6 ms to 0.6 ms. Based on ITD theory,
several successful demonstrations of sound localization have
been conducted using memristors.

To emulate sound localization based on the ITD, Sun
et al.102 demonstrated precise temporal computation for the
identification of acoustic sound locations using the intrinsic
synaptic capability of short-term synapses. Based on the Joule
heating and versatile doping-induced metal–insulator transitions
in a scalable monolayer MoS2 device, synaptic computation was
conducted to process a given acoustic signal, as shown in Fig. 7a.
The memristor device was designed with a biologically compar-
able energy consumption (10 fJ), and tunable STP was demon-
strated by the flexible doping level of MoS2. A circuit with this
tunable synaptic device achieved ITD detection, emulating precise
temporal computations in the human brain by suppressing the
sound intensity- or frequency-dependent synaptic connectivity.

The integration of piezoelectric micromachined ultrasound
transducer (pMUT) sensors into a neuromorphic RRAM-based
computational map has been reported to demonstrate real-world
sensory processing in object localization.103 As shown in Fig. 7b, an
event-driven auditory processing system applied to object localiza-
tion was developed using an in-memory computing architecture.
Inspired by the neuroanatomy of the barn owl, which is known to be
an efficient auditory localization system with hunting capabilities
during the night, the time-of-flight (ToF) of the sound wave was
encoded, and the difference between the two ToF measurements
(ITD) was analyzed to identify the sound location. The energy
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efficiency of object localization was realized by exploiting event-
driven RRAM-based neuromorphic circuits that processed the signal
information produced by the embedded sensors to calculate the
position of the target object in real time. Unlike conventional
sensory systems that continuously sample and calculate the
detected signal to extract useful information, this energy-efficient
auditory system performs asynchronous computations as useful
information arrives.

Moreover, with the integrated 1 K HfOx-based analog memristor
array and a multithreshold update scheme, the in situ learning ability
of the sound location function was demonstrated.104 As shown in
Fig. 7c, a brain-like learning algorithm and architecture for the
sound location function were successfully realized, demonstrating
the capability of processing sound signals from two artificial ears.
With high accuracy (45.7%) and energy efficiency (184�) compared
to existing methods, it demonstrated a significant advancement
toward realizing advanced auditory localization systems.

5.2. Speech recognition

Speech recognition, a key requirement for artificial intelligence
machines to communicate with humans, has been widely

developed in software-based neural networks. However, the long
latency and large storage requirements for large amounts of voice
data in speech recognition tasks in the existing von Neumann
architecture pose limitations. Therefore, energy-efficient neuro-
morphic computing systems have a significant potential for
processing audio signals. In this subsection, several memristive-
based artificial auditory systems with highly accurate and efficient
speech recognition performances are presented.

A TiN/HfOx/TaOx/TiN memristor device that features a mul-
tilevel analog resistive state was developed.105 The artificial
cochlea-based circuit was used to experimentally demonstrate
the filtering behaviors of five channels with different central
frequencies. Consequently, when connected to a convolutional
neural network, as shown in Fig. 8a, it achieved the extraction
of speech features, demonstrating the feasibility of a highly
efficient artificial cochlear system.

An artificial van der Waals hybrid synapse was developed
and demonstrated using acoustic pattern recognition. Its
superior conductance controllability was achieved using WSe2

and MoS2 hybrid channels, which are specialized for linear and
symmetric conductance change characteristics.106 The hybrid

Fig. 7 (a) Schematic of the human auditory perception system and monolayer MoS2-based device with Joule heating-driven conductance facilitation.
ITD-based sound localization can be achieved by suppressing interference and encoding only ITD information through artificial synaptic computation
comprising the MoS2 device. Reproduced with permission from ref. 102. Copyright 2021 American Chemical Society. (b) Object localization system in
barn owls and proposed bio-inspired technology. Response varies across population, impacting both input gain and time constant. Owing to neuron-to-
neuron variability, two output neurons of a direction-sensitive coincidence detector respond differently to input stimuli. Thus, the sound source can be
identified. Reproduced with permission from ref. 103. Copyright 2022 Springer Nature. (c) Conceptual diagram of a memristor-based neuromorphic
sound localization system. Multiple binaural features applied for neural processing to detect sound sources, including binaural time difference, spectral
shape, etc. Reproduced with permission from ref. 104. Copyright 2022 Springer Nature.
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synaptic device was used to perform acoustic pattern recogni-
tion (from recording, transforming, and integrating) with high
accuracy (93.8%), as shown in Fig. 8b, indicating its potential
for brain-inspired computing.

Speech recognition using a memristor array (W/MgO/SiO2/Mo)
with multilevel conductance has also been demonstrated (Fig. 8c).107

Speech recognition in a memristive SNN was achieved by precisely
tuning the weights of the artificial synapses. For effective and
sparse spatiotemporal feature extraction, a one-dimensional elf-
organizing map (SOM) network was used, which essentially
operated to achieve high performance and simplify the SNN
classifier. Compared to other ANN-based systems, the advantages
of a simplified structure and high energy efficiency have been
demonstrated in memristive SNNs for speech recognition tasks.

Memristors have demonstrated excellent performance in
converting acoustic signals into electrical signals for artificial
auditory sensory systems. However, a significant portion of the
processing, such as post-processing and learning of the converted
signals, still relies heavily on software-based computations and

simulations. Additionally, there is potential for applications that
can reduce sensitivity or block sounds in response to sudden loud
noises, but further research is needed to explore and develop
these possibilities.

6. Memristor-based olfactory sensory
systems

The integration and coordination of the olfactory receptors,
cortex, and muscles enables humans to recognize and memor-
ize odor stimuli and respond to specialized gases. In the
biological olfactory sensory system, odorants from the environ-
ment are detected by olfactory receptors, which trigger electri-
cal signals as the output. Spike signals are generated by the
olfactory sensory neurons and transmitted through the olfac-
tory bulb, where signal preprocessing is performed. Finally, the
preprocessed signals are transmitted to higher regions of the
brain (olfactory cortex) to identify and memorize odors.108–112

Fig. 8 (a) Schematic of an artificial cochlea speech recognition system used to demonstrate frequency-selection function of five channels in the
cochlea. Channels have central frequencies determined by the resistance of a memristor. It achieved a recognition accuracy of 92% using 64 channels.
Reproduced with permission from ref. 105. Copyright 2022 Frontiers Media S.A. (b) Design procedure of acoustic patterns (from recording, through
transforming, to integrating). The van der Waals hybrid synapse was utilized to perform acoustic pattern recognition, a common task in speech and sound
processing. Reproduced with permission from ref. 106. Copyright 2020 Springer Nature. (c) Schematic of feature extraction from speech signals.
Extracting features from speech signals enables successful training of SNNs in both software- and memristor-based implementations, resulting in
accurate classification inference. Reproduced with permission from ref. 107. Copyright 2021 John Wiley and Sons.
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Among the various perceptions, olfaction is particularly
complex and vague because of the complexity of the chemo-
sensory system, which must distinguish and quantify gas
molecules in constantly changing environments. Therefore,
these olfactory processes can provide information on complex
smells, which in turn can provide key guidance for awareness,
decision-making, and action in the surrounding environment.

Despite the importance of the olfactory system, relatively few
studies have been conducted because of its complexity. It
remains a challenge to completely emulate the functions of
the human olfactory system in recognizing, memorizing, and
inducing muscle movements in response to dangerous gases.
Section 6 introduces various artificial olfactory systems based
on the functions of the human olfactory system, including odor
recognition, memorization, and protection in dangerous and
gaseous environments.

6.1. Odor recognition and memorization

The olfactory system, comprising thousands of different types of
receptors and classifiers, enables humans to recognize and
memorize odors. Stimulated by odorant molecules, specific
spikes are generated by the olfactory receptors and analyzed
using neural networks. Following learning and training, humans
recognize different odors through memorization using olfactory
systems. Although various strategies have been proposed to
construct artificial olfactory systems, most studies have focused
on developing systems that use gas sensors and complex neural
networks. Recently, a bioinspired memristor-based olfactory
system with perceptual learning and memorization abilities
was developed to classify several different gases.

Qifeng Lu et al. developed a hybrid flexible gas-detection
system utilizing NiO nanowall-based gas sensors, oscillators,
and graphene-based memristor-based synapses. In this system,
the signals generated by the gas sensor are converted into
pulses by an oscillator, and the frequency of these pulses varies
based on the resistance of the gas sensor. The stimulation of
H2S gas at various concentrations was converted into pulse
signals.113 The altered pulses became presynaptic signals trans-
mitted to the synaptic devices, resulting in changes in the
resistance (synaptic weight) of the graphene-oxide-based
synapse memristor. Resistance modulation influences informa-
tion processing and storage using synaptic memristors. The
system implements learning capabilities based on the k-nearest
neighbor (KNN) algorithm, which efficiently categorizes
unknown gas stimuli into the most probable categories by
comparing them with pre-learned boundaries. The gas-
detection system demonstrated enhanced recognition capabil-
ities through iterative learning. Initially, the error rate exceeded
45%; however, as the number of learning iterations increased,
the error rate progressively decreased to approximately 20%.
This methodology enhances the practical application of gas-
detection systems and ensures reliable data analysis.

In addition to the mere recognition of a single gas, olfactory
systems have been reported to enable the detection of various
gases.114 The reported system utilizes an array of gas sensors
along with neurons and synapses to form an olfactory sensory

system capable of effectively analyzing complex gaseous envir-
onments. An array of gas sensors capable of detecting four
different gases (formaldehyde, ethanol, acetone, and toluene)
at various concentrations were used to effectively monitor
diverse gaseous environments. In a gaseous environment, the
resistance changes in each sensor adjusted the intensity of the
voltage applied to the series-connected neuronal memristor (Pt/
Ag/TaOx/Pt) (Fig. 9a). These modifications to the input voltage
translate the chemical information of the gases into electrical
spikes in the neuron memristors, thereby providing informa-
tion on the gas-detection capabilities of the entire system. The
spikes generated in each neuron are transmitted to a synaptic
array (Pt/Ta/TaOx/Pt), where they undergo learning and training
through spike rate-dependent plasticity (SRDP). This process
enables the storage of gas characteristics in memristor devices.
Based on matrix-vector multiplication, the system can effec-
tively classify four different types of gases. This system enables
the precise identification and quantification of gases with
distinct chemical properties, which is highly beneficial for
environmental monitoring. Furthermore, these memristor-
based sensory systems overcome efficiency problems encoun-
tered in existing artificial sensory systems, such as frequent
sampling, data storage, and transfer. Han et al. reported that
sensors with differing sensitivities to the same gas were serially
connected to memristor-based neurons, proposing an olfactory
system capable of clearly recognizing and differentiating mixed
gases.115 In this system, gas exposure alters the resistance of
the gas sensors, modifying neuronal frequency, which can be
used for gas detection. Sensors based on SnO2 and WO3 exhibit
different resistance changes in response to the same gas,
leading to distinct neuronal firing frequencies. This configu-
ration enables the artificial olfactory system to distinguish
unknown gases more accurately. Furthermore, integration with
SNNs has enhanced the ability of the system to identify various
types of reducing gases (NH3, CO, acetone, and NO2). The
introduction of additional hidden layers in the SNNs further
improves the recognition of more complex gas mixtures, high-
lighting their potential for environmental monitoring and
safety applications.

Currently, gas recognition and memory require additional
gas sensors and circuits, which adversely affect the power
consumption and miniaturization of the device. Chun et al.
reported a system capable of recognizing and remembering
gases without requiring additional devices or circuits by
employing materials in synaptic memristors that exhibited
both gas-detection capabilities and resistive change properties,
as depicted in Fig. 9b. A synaptic memristor based on Pt/TiO2

NR/TiN can directly detect gases and remember them through
changes in the resistance state.116 The TiO2 material, the oxide
layer of synaptic devices, is not only used for resistive switching
in synaptic memristors but is also employed for gas detection
in conventional gas sensors. When a synaptic memristor is
exposed to H2 gas, the gas reacts with TiO2 to generate oxygen
vacancies, promoting the growth of conductive paths and
decreasing resistance. Conversely, exposure to NO gas removes
oxygen vacancies, causing disruptions in conductive paths and
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increasing the resistance. The synaptic device detects changes
in resistance due to gas exposure and stores information
regarding the exposure. This process enables accurate record-
ing of information related to gas detection and provides reli-
able environmental monitoring. This technology plays a crucial
role in measuring and managing gas concentrations in various
environments. In addition, the gas detection capability of a
single memristor can be effectively applied to mixed-gas recog-
nition. Beyond conventional gas-sensor arrays, a new approach
has been reported to leverage the unique gas selectivity of

various materials to construct memristor arrays. This study
utilized SnO2, HfO2, and Ta2O5-based memristors, which exhi-
bit resistance changes in response to gas interactions. These
memristors demonstrated varying sensitivities to specific gases
and concentrations, enabling the simultaneous detection of
mixed gases. A parallel array significantly improved the accu-
racy of mixed-gas concentration predictions, outperforming
single-device systems by over 796% compared to individual
Ta2O5-based sensors. This advancement underscores the
potential of memristor-based sensor technology to enhance

Fig. 9 (a) Bio-inspired neuromorphic olfactory system based on the memristive neural network comprising a gas sensor, sensory neurons, synapse
arrays, and relay neurons. Sampling voltages in the LIF neuron. Larger input signals (red lines) result in shorter capacitor charging times (green lines),
quicker device switching (blue lines), and higher output frequencies (orange lines). Training loss and testing accuracy of detection gas. Reproduced with
permission from ref. 114. Copyright 2022 John Wiley and Sons. (b) Schematic of biological olfactory cognitive process mimicking using a chemi-
memristive sensor. Response curves upon exposure to 1% H2 and I–V curves of TiO2 NRs. Conductance modulations based on the type of target gas
(reducing or oxidizing). Reproduced with permission from ref. 116. Copyright 2023 John Wiley and Sons.
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environmental monitoring and improve the accuracy and relia-
bility of gas detection in complex gas environments.117

6.2. Protection in dangerous gas environments

The olfactory system plays a crucial role in human awareness,
perception, and action in response to diverse external gaseous
stimuli. The coordination of olfactory receptors and muscles
enables humans to respond to specific gases, which is crucial
for protection in dangerous environments, such as in the case
of leakage of toxic gases or rooms on fire. However, studies on
the functions of the human olfactory system based on mem-
ristor devices involving perception, memorization, and self-
protection movements are lacking. To emulate a complete
olfactory system, an artificial olfactory system should be devel-
oped to memorize gas information and control muscles to
ensure self-protection in dangerous environments.

Recently, bioinspired olfactory systems that enable the per-
ception and memory of specific gases with the ability to act in
the presence of certain gases have been reported. Gas-sensing

visualization using a smart robot was developed for real-time gas
monitoring by integrating gas sensors and memory devices
(Fig. 10a).118 The robot was equipped with an artificial olfactory
memory system developed to recognize and memorize volatile
organic compound (VOC) gases at different concentrations. The
integration of the sensor and memory unit facilitated the switch-
ing of the synaptic memristor in response to the VOC gas and the
recording of target gas information after the gas stimuli dis-
appeared. Additionally, the system was reconfigured with an
LED to enhance the gas detection visualization. When concen-
trations of VOCs were detected below the threshold, the LED
remained off. However, if the VOC concentration exceeds the
threshold, the LED immediately brightens and remains on.
These capabilities of the olfactory system present great potential
for future humanoid robots, environmental pollution control,
and early warning of chemical and biohazard safety to alert and
respond to emergencies in dangerous environments.

In addition to warning about hazardous gases, the flexible
artificial olfactory system shown in Fig. 10b can recognize,

Fig. 10 (a) Sensory information provided by volatile organic compounds sensed by olfactory sensory receptors. Demonstration of a robot equipped with
an artificial olfactory memory system to visualize gas sensing. Higher concentration of VOCs above threshold resulted in switching of a memory device
and lighting up of an LED. Reproduced with permission from ref. 118. Copyright 2021 John Wiley and Sons. (b) Schematic illustration of nose comprised
of four arc actuators. Response of the bionic nose to high concentration (500 ppm) ammonia and instantaneous current changes of an artificial olfactory
system and actuator array. Reproduced with permission from ref. 119. Copyright 2021 Elsevier.
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memorize, and perform self-protection actions for NH3 and was
developed by integrating Sr–ZnO-based gas sensors, HfOx-
based memristors, and electrochemical actuators.119 The gas
sensor and synaptic memristor are connected in series, such
that changes in NH3 concentration alter the resistance of the
gas sensor, which modifies the voltage intensity applied to
the synaptic memristor according to the voltage division rule.
Thus, the external chemical signals are conveyed as changes in
the electrical signals to the memristor through the resistance
variation of the gas sensor. This process plays a crucial role
in translating chemical stimuli into electrical signals. When
exposed to specific concentrations of NH3, the resistance of
the gas sensor decreased sharply; consequently, a voltage (set
voltage) sufficient to switch the synaptic memristor was
applied. When the NH3 concentration was low, the memristor
remained inactive, causing the actuator to remain unrespon-
sive and the gas to flow normally. Conversely, as the NH3

concentration increased, the olfactory memory device was
activated, causing the actuator to bend inward and close into
a conical shape, thereby preventing gas from entering the nasal
cavity. Thus, the activation of the memristor triggers the move-
ment of the electrochemical actuator to block the gas flow
channel, mimicking the self-protective action of the induced
muscle movement of the hand when it smells NH3.

This section highlights the effective utilization of
memristor-based olfactory systems in humanoid robotics and
environmental monitoring. However, these systems face inher-
ent limitations in selectivity and sensitivity to various gases.
Moreover, there is a need to develop systems that can detect
external gases in real time, process the data, and execute
appropriate responses. This approach facilitates rapid and
accurate reactions to gas leaks and chemical hazards, signifi-
cantly improving the efficiency of environmental monitoring
systems.

7. Conclusions and perspectives

Memristive artificial sensory systems, inspired by the energy-
efficient architecture of biological systems, have been devel-
oped to overcome the technological limitations of conventional
CMOS-based systems. Memristors can emulate the receptors,
neurons, and synapses—the fundamental components of bio-
logical sensory systems. Building on this foundation, memris-
tors enable higher-order functions such as learning, inference,
and hazard detection by mimicking specific biological sensory
systems. Table 1 summarizes how various memristors emulate
biological components and implement sensory characteristics,
demonstrating that memristive artificial sensory systems can
effectively replicate the four major human senses.

In this review, we suggested the emulation of receptor,
neuron, and synapse properties using memristors based on
an understanding of their inherent characteristics. Volatile
memristors exhibit switching behavior, transitioning to an
ON state when stimuli exceed a specific threshold and return-
ing to the Off state when stimuli are removed. This behavior is
suitable for simulating receptors and neurons as it closely
resembles the ‘‘threshold’’ and ‘‘relaxation’’ responses of bio-
logical receptors. In addition, by adjusting stimulus intensity
and duration, volatile memristors can replicate biological phe-
nomena such as adaptation and sensitization. Moreover, their
behavior closely resembles ‘‘the ion channel dynamics’’
observed in neurons. When connected to an external circuit,
volatile memristors can effectively model spike generation,
including LIF and HH models, as well as neuron spike shapes.
Non-volatile memristors, by contrast, alter their resistance in
response to an applied bias and retain their resistance even
after the bias is removed. This characteristic allows them to
mimic the information storage function of biological synapses,
where resistance modulation corresponds to ‘‘synaptic weight’’
adjustments in response to neural stimuli.

Table 1 A summary of memristive artificial sensory systems

Sense Memristor Materials & structure Biological counterpart Specific feature Ref.

Tactile Non-volatile Ag/CsPbBr3/PVA/FTO Synapse Mechanoreceptor (pressure) 120
Non-volatile Al/CS:MWCNTs/ITO Synapse Mechanoreceptor (pressure) 121
Non-volatile Ag/TiOx/Ti3C2Tx/Au Neuron Mechanoreceptor (pressure) 122
Volatile Al/ZnO/FTO Synapse Nociceptor 123
Volatile Ag/c-YY NW/Ag Neuron Mechanoreceptor (humidity) 124

Visual Volatile Al/Ag NW-embedded SA/SA/ITO Synapse/neuron Scotopic/photopic adaptation 125
Volatile Cr/Au/WS2/Cr/Au Synapse Color recognition 126
Volatile ITO/Ta2O5/Ag/IGZO/ITO Neuron Color recognition 127
Volatile/non-volatile FTO/NiO/Organic Interlayer/PMMA/Ag Synapse Color recognition 128
Volatile/non-volatile Pd/TiOx/ZnO/TiN Synapse Object tracking 129

Auditory Volatile Pd/Nb/NbOx/Nb/Pd Synapse Sound localization 130
Non-volatile TiN/TaOy/HfOx/TiN Synapse Sound localization 131
Non-volatile TiN/HfOx/Ti/TiN Synapse Object localization 132
Non-volatile Pt/TiOx/AlOx/Pt Synapse Audio-reward association 133

Olfactory Non-volatile Ta/m-ZrO2/Pt Synapse Odor recognition 134
Non-volatile Al/pectin:Ag NPs/ITO Synapse Odor recognition 135
Volatile/non-volatile W/WO3/PEDOT:PSS/Pt, Pd/W/WO3/Pd Synapse/neuron Gas-classification 136
Non-volatile —/TiO2 Nanowire/Ti Sensor Odor recognition 137
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We then discuss the implementation of the four major sen-
ses—tactile, visual, auditory, and olfactory—in the memristor-
based artificial sensory system, as illustrated in Fig. 11. Notably,
memristors enable comprehensive coverage of previously unac-
hievable functionalities that play crucial roles in sensory systems
and offer efficient energy consumption compared to CMOS-based
devices and memristors (Table 2). In artificial tactile systems,
advancements in memristor material and structural design have
enabled the effective emulation of receptor characteristics such as
‘‘sensitivity’’ and ‘‘adaptability,’’ which were previously challen-
ging to emulate. For example, the system demonstrates a function
in which the output gradually decreases in response to innocuous
stimuli. This contradicts the conventional belief that reliable
signal conversion requires a consistent output for identical
inputs. This aligns with the operational tendencies of biological
sensory systems. In the artificial visual system, memristors emu-
late neuron-spiking models with high precision to simulate the
functions of biological photoreceptors. By reducing the output in

response to sudden increases in input signals, the system facil-
itates ‘‘light intensity detection’’ and ‘‘self-protection.’’ Notably, it
efficiently extracts and delivers only essential information for
actions, such as collision avoidance or blinking, from vast visual
data inputs. Furthermore, while nociceptors have predominantly
been implemented for tactile stimuli, the development of noci-
ceptive functionality that is responsive to visual stimuli is parti-
cularly remarkable. In the artificial auditory system, the
memristors are connected to additional circuits that emulate
the filtering function of the cochlea. This system is designed to
recognize only specific sound amplitudes based on memristor
resistance, enabling ‘‘speech recognition’’ in the biological audi-
tory system. This represents a significant advancement in artificial
auditory systems. In the artificial olfactory system, memristors
fabricated from gas-sensitive materials integrate sensing and
switching characteristics. This approach allows the detection of
external stimuli without an additional circuit. Furthermore, mem-
ristor resistance varies depending on gas type, allowing for

Fig. 11 Schematic of biological and artificial sensory systems with a memristor.
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‘‘recognition and memorization’’ of specific gases. These findings
break the conventional stereotype that receptors are solely respon-
sible for stimulus detection while synapses manage information
storage. Instead, they demonstrate that bioinspired and highly
efficient system architectures can perform multiple functions
within a single device. Besides, conventional CMOS-based artifi-
cial neural systems struggle to implement advanced sensory
functions. Even if achievable, such implementations typically
require significant energy consumption and extended processing
times. In contrast, memristor-based artificial sensory systems can
efficiently emulate these advanced functions.

While memristor-based artificial sensory systems demonstrate
extensive potential, key challenges remain to be addressed.
Although progress has been made in using memristors indepen-
dently to detect stimuli and mimic sensory system functions,
system-level integration remains challenging. Most implementa-
tions still rely on additional sensors and circuits primarily used for
signal conversion, such as translating the firing frequency of
artificial neurons into a form that other components can process.
However, improving the energy efficiency of this conversion
process has not been well explored. Although memristors them-
selves consume nanojoule to picojoule-level low energy, integrating
them with CMOS-based systems often introduces mismatches in
electrical parameters, requiring additional circuitry for voltage
conversion, signal processing, and computation. This increases
system complexity and overall energy consumption, limiting mem-
ristors’ ability to mimic biological sensory systems fully. Moreover, if
memristors cannot be fabricated using CMOS-compatible materials
and processes, chip-level integration becomes extremely challenging.
Without chip-level integration, memristors and CMOS-based devices
or circuits must be implemented separately, leading to undesirable
consequences such as signal transmission noise, increased energy
consumption, and a larger system area. For instance, Section 4.2
discussed a memristor-based model mimicking the LGMD neuron,

which was integrated into a car robot to generate avoidance behavior
based on optic input signals. However, implementing this system
required power management chips for voltage conversion and
counter circuits for spike frequency calculation, leading to a complex
structure with additional energy consumption. Unfortunately,
current research primarily focuses on enhancing the performance
of individual memristor devices, with limited studies addressing
CMOS compatibility and efficient architectures for seamless integra-
tion with CMOS-based systems. Therefore, developing a more
advanced memristor-based architecture is essential to enable prac-
tical and energy-efficient system integration. Furthermore, addres-
sing the following challenges is imperative for the advancement of
artificial sensory systems. First, research on advanced data proces-
sing to perform complex tasks is required. Efficient management
of spatiotemporal data requires multiple memristors working in
conjunction, along with mechanisms to compare and integrate data
from each device. Recent studies have primarily focused on single
memristors, with limited algorithms developed for arrays or circuits.
To mimic biological intelligence, it is essential to establish inter-
connections among memristors and integrate their functions.
Additionally, research on integrated system-level memristor-based
receptors, neurons, and synapses is significantly lacking. To con-
struct artificial sensory systems, memristors emulate and integrate
receptors, neurons, and synapses. However, most studies focus on
them in isolation rather than as part of a cohesive system. Achieving
more efficient conversion and data processing between system
components is essential for accurately replicating biological sensory
functions. For artificial sensory systems to function reliably, research
studies must focus on compatible signal conversion between the
pre- and post-components. These investigations have the potential
to advance the overall integration of sensory systems by enabling
electrical processing of neural signals for information transmission
and ensuring accurate execution of output signals. In conclusion,
this review provides a framework for implementing memristive

Table 2 Comparison of switching characteristics with CMOS-based devices

Structure Operating voltage Switching speed ION Ref.

Receptor CMOS Sn-doped polycrystalline b-Ga2O3 FET 10 V (VD) 0.5 s — 138
Memristor Ag/SnSe/Au Set: 0.474 55 ns 10 mA 139

Pt/Ag/SiO2 NRs/Ag/Pt Set: �0.72 V 20 ms 1 mA 78
+0.78 V

Neuron CMOS Si-based MOSFET VG: �1 V 0.1 s E150 mA 140
VD: 43.5 V

Si/SiO2/Si3N4/SiO2/Si-based MOSFET VG: 12 V 0.02 s E150 mA 141
VD: 43 V

Memristor Pt/Ag/TaOx/Pt Set: 0.29 V 80 ms 0.1 mA 114
Ag/MoS2 nanosheet/Ag/MoOx/Ag Set: 0.3 V 16 ns 100 mA 31
Pt/Ag/ZnO/Pt Set: 0.17 V E50 ns 10 mA 142

Synapse CMOS Si/WOx/SiO2-based FET Write: 1.8 V (VG) 0.3 ms — 143
Erase: �2.5 (VG)

IGZO channel-based FET Write: 20 V (VG) 100 ms (write) E10 mA 144
Erase: �20 V (VG) 10 ms (erase)

Memristor Pd/WS2/Pt Set: 0.6 V 14 ns 1 mA 145
Reset: �0.2 V

Al/PVP-CdSe QD/Al Set: 0.61 V 41 ns 5.2 mA 146
Reset: �0.5 V

ITO/CdS QDs-PVP/Al Set: 1.08 V 42 ns 4.44 mA 147
Reset: �0.72 V
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artificial sensory systems based on the characteristics of biological
components and switching properties of memristors.
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Prà, E. Esmanhotto, N. Castellani, F. Blard, F. Gardien,
T. Mesquida, F. Rummens, D. Esseni, J. Casas, G. Indiveri,
M. Payvand and E. Vianello, Nat. Commun., 2022, 13, 3506.

133 C. Sbandati, S. Stathopoulos, P. Foster, N. D. Peer,
C. Sestito, A. Serb, S. Vassanelli, D. Cohen and
T. Prodromakis, Sci. Adv., 2024, 10, eadp7613.

134 R. Chaurasiya, K.-T. Chen, L.-C. Shih, Y.-C. Huang and
J. S. Chen, Adv. Theory Simul., 2024, 7, 2301074.

135 L. Wang, W. Li, L. Wan and D. Wen, ACS Sens., 2023, 8,
4810–4817.

136 T. Wang, H.-M. Huang, X.-X. Wang and X. Guo, InfoMat,
2021, 3, 804–813.

137 P. Qiu, Y. Qin and Q. Xia, Sens. Actuators, B, 2022,
373, 132730.

138 Y. Yoon, Y. Kim, W. S. Hwang and M. Shin, Adv. Electron.
Mater., 2023, 9, 2300098.

139 Y. Qin, M. Wu, N. Yu, Z. Chen, J. Yuan and J. Wang, ACS
Appl. Electron. Mater., 2024, 6, 4939–4947.

140 J.-K. Han, M. Seo, W.-K. Kim, M.-S. Kim, S.-Y. Kim,
M.-S. Kim, G.-J. Yun, G.-B. Lee, J.-M. Yu and Y.-K. Choi,
IEEE Electron Device Lett., 2019, 41, 208–211.

141 J.-K. Han, J. Oh, G.-J. Yun, D. Yoo, M.-S. Kim, J.-M. Yu,
S.-Y. Choi and Y.-K. Choi, Sci. Adv., 2021, 7, eabg8836.

142 L. Wang, L. Zhang, S. Hua, Q. Fu and X. Guo, Sci. China
Mater., 2025, 1–8.

143 S. Seo, B. Kim, D. Kim, S. Park, T. R. Kim, J. Park, H. Jeong,
S.-O. Park, T. Park and H. Shin, Nat. Commun., 2022,
13, 6431.

144 J. Park, Y. Jang, J. Lee, S. An, J. Mok and S. Y. Lee, Adv.
Electron. Mater., 2023, 9, 2201306.

145 X. Yan, Q. Zhao, A. P. Chen, J. Zhao, Z. Zhou, J. Wang,
H. Wang, L. Zhang, X. Li and Z. Xiao, Small, 2019,
15, 1901423.

146 J. Bera, A. Betal, A. Sharma, U. Shankar, A. K. Rath and
S. Sahu, ACS Appl. Nano Mater., 2022, 5, 8502–8510.

147 A. Betal, J. Bera, A. Sharma, A. K. Rath and S. Sahu, Phys.
Chem. Chem. Phys., 2023, 25, 3737–3744.

Review Materials Horizons

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 6
/1

7/
20

25
 2

:2
5:

01
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5mh00038f



