Transcriptome and proteome analyses reveal the virulence of the Vibrio alginolyticus effector gene vopR
Abstract
Vibrio alginolyticus is an opportunistic infectious pathogen, and its pathogenicity is related to various virulence factors, with the type III secretion system (T3SS) being one of the important systems for secreting virulence factors. vopR is one of the effector genes of V. alginolyticus T3SS1. To investigate its pathogenicity, this study constructed an overexpression vector to express vopR in host cells and analyzed its impact on the mRNA and protein expression levels of host cells. Transcriptomic analysis revealed that overexpression of vopR led to the upregulation of 410 genes and the downregulation of 207 genes. Proteomic analysis showed that 126 proteins were upregulated, and 518 proteins were downregulated. GO enrichment analysis indicated that the differential genes were significantly enriched in various biological processes such as cellular processes, metabolic processes, and biological regulation, as well as in cellular components like cell parts and membranes, and molecular functions such as binding and catalytic activity. KEGG enrichment analysis demonstrated that the differential genes were mainly enriched in metabolic pathways, cancer-related pathways, and the MAPK signaling pathway. The combined analysis of the transcriptome and proteome screened out 144 overlapping differentially expressed genes, with 60 being upregulated and 54 being downregulated. These results suggest that vopR has a significant impact on the cytoskeleton, metabolism, and immune regulation of host cells during the pathogenic process of V. alginolyticus. This study provides a theoretical basis for a deeper understanding of the pathogenic mechanism of V. alginolyticus.