New bis-pyrazolate zinc(ii) complexes as potential anticancer drugs: from structure to anticancer activity

Abstract

Three novel Zn(II) complexes [ZnCl2(H2LtBu)], [ZnCl2(Me2LtBu)] and [Zn2Cl4(H2LCatBiPyPh)2] (where H2LtBu is 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine, Me2LtBu is 2,6-bis(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)pyridine and H2LCatBiPyrPh is 1,2-bis((5-phenyl-1H-pyrazol-3-yl)methoxy)benzene) were synthesized and characterized using various spectroscopic techniques, including UV-vis, IR, 1D (1H and 13C) and 2D (1H–1H COSY) NMR. The structures of complexes [ZnCl2(H2LtBu)] and [Zn2Cl4(H2LCatBiPyPh)2] were elucidated through X-ray crystallography. The interactions of the complexes with CT-DNA and human serum albumin (HSA) were investigated using UV-vis spectroscopy and fluorescence emission titration. All examined complexes exhibited quenching constant, Ksv, values in the order of 104 with CT-DNA. Constant values followed the trend [ZnCl2(Me2LtBu)] < [Zn2Cl4(H2LCatBiPyPh)2] < [ZnCl2(H2LtBu)]. The results indicated a moderate interaction between the complexes and HSA. In terms of cytotoxic activity, the zinc(II) complexes significantly decreased the viability of colon (HCT-116) and pancreatic (MIA PaCa-2) cancer cell lines, where the effect on pancreatic cells after 72 h is especially emphasized. The most pronounced occurrence of apoptosis, as the dominant type of complex-induced cell death, was associated with complex [ZnCl2(H2LtBu)], while necrosis was observed at lower percentages in all investigated treatments. All complexes demonstrated downregulation of the tumor suppressor gene TP53 (homo sapiens tumor protein p53). Treatment with [ZnCl2(H2LtBu)] resulted in downregulation of TP53, CASP3 (Caspase 3) and IGF1R (insulin-like growth factor 1), potentially impairing the effective apoptotic process and reducing cell proliferation.

Graphical abstract: New bis-pyrazolate zinc(ii) complexes as potential anticancer drugs: from structure to anticancer activity

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2025
Accepted
29 Jan 2025
First published
07 Feb 2025

New J. Chem., 2025, Advance Article

New bis-pyrazolate zinc(II) complexes as potential anticancer drugs: from structure to anticancer activity

R. Hasić, M. K. Serezlić, A. Caković, J. Bogojeski, D. Nikodijević, M. Milutinović, A. Stanojević, M. Čavić, A. V. Egorov, A. V. Komolkin, I. V. Kornyakov, A. Scheurer, R. Puchta and T. V. Soldatović, New J. Chem., 2025, Advance Article , DOI: 10.1039/D5NJ00043B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements