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A Short Stereodivergent Synthesis of (R) and (S)-Nicotine 
Rafid S Dawooda  and Robert A. Stockman*b 

A straightforward and efficient enantioselective synthesis of (S)-nicotine and unnatural (R)-nicotine with high yields is 
presented. Judicious choice of solvent in the key asymmetric addition of the pyridyl Grignard reagent to the chiral sulfinimine 
promotes either an open or closed transition state, allowing the selective formation of either of two distinct diastereomers, 
which are then transformed into either enantiomer of the natural product via ring-closure and deprotection/methylation of 
the pyrrolidine amine.

Introduction

Nicotine (3-(1-methyl-2-pyrrolidinyl)pyridine) is a bicyclic 
tertiary amine of note due to the widespread recreational use 
of tobacco products, and their effects on the central nervous 
system, with recent studies indicating it may have potential in 
the treatment Parkinson’s disease, Alzheimer’s disease and 
epilepsy, among several other disorders.1 The nicotine molecule 
has a chiral centre at the 2'-position of its pyrrolidine moiety. 
Consequently, the two enantiomers are designated as S-(-)-
nicotine (1) and R-(+)-nicotine (2), as displayed in Figure 1.

Figure 1: Structures of S-(-)-nicotine (1) and R-(+)-nicotine (2)

The term "nicotine" is frequently used interchangeably with 
"(S)-nicotine" in the scientific literature, which is by far the most 
prevalent of the two enantiomeric forms found in Nature. (S)-
Nicotine is found in a concentration of 0.5 to 7.5% in the dried 
leaves of the tobacco plant (Nicotiana tabacum Linn),2 whereas 
the lesser-known "Aztec tobacco" (Nicotiana rustica) contains 
even greater concentrations, reaching up to 14%.3-6 An 
enantiomer, (R)-nicotine, is the unnatural isomer of nicotine. 
Typically, tobacco plants (cured leaves) only contain minute 

amounts of the (R) enantiomer.7 The concentration of (R)-
nicotine in unprocessed and processed tobacco is about 0.2% of 
the total nicotine. However, in tobacco smoke, the amount of 
(R)-nicotine compared to the total nicotine is significantly 
greater, ranging from 2% to 3%.7-9 The impact of (R)-nicotine is 
distinct from that of the predominant (S)-enantiomer. In several 
species, it has been documented that (S)-nicotine exhibits 
greater toxicity in comparison to (R)-nicotine and can induce a 
range of adverse effects.10,11 Moreover, it has been observed 
that the racemic mixture of (S)/(R)-nicotine is more detrimental 
than (R)-nicotine.11 Also, both enantiomers of nicotine have 
been reported to cause varying inhibition degrees of 
acetylcholinesterase, with (R)-nicotine exhibiting greater 
inhibitory potency.12 For neurodegenerative diseases and 
addiction to tobacco, (R)-nicotine showed promise as a 
treatment target.6 Vincek and co-workers reported that the 
lethal dose (LD50) for (R)-nicotine is 2.75 mg/kg, and the LD50 
for (S)-nicotine is estimated to be 0.38 mg/kg.13 In the 
cytochrome P450cam, it was discovered that the metabolic rate 
of (R)-nicotine was 1.4 times more rapid than the metabolic rate 
of (S)-nicotine.14 Although (S)-nicotine has a possible 
pharmacological role in the treatment of depression, 
Alzheimer's disease, Parkinson's disease, and other diseases 
associated with the central nervous system,15,16 its high 
addiction liability in particular and its cardiovascular, 
gastrointestinal, and neuromuscular side effects restrict its 
clinical usefulness.17,18 Various synthetic strategies have 
recently been published towards the synthesis of the two 
nicotine enantiomers, including racemic mixture19-21, and 
enantioselective reactions.22-26 In this work, we present a simple 
and effective approach for synthesizing each of the two 
enantiomers, (R)-nicotine and (S)-nicotine, with high 
enantioselectivity, exploiting the relative coordinating ability of 
the solvent used to allow either a closed transition state or an 
open transition state in the key Grignard addition to chiral 
sulfinimine 4, as shown in Figure 2.
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Figure 2: Choice of solvent to promote an open or closed transition state for Grignard 
addition to sulfinimine. Restricted rotation around the N-S bond, caused by dipole 
opposition, means rear approach from the in-coming nucleophile is blocked by the tert-
butyl group in the open transition state.

Results and discussion 

Our synthetic strategy for acquiring (S)-nicotine (1) began with 
the synthesis of sulfinimine 4 by a two-step process that 
involved oxidising 4-chloro-1-butanol (3) with pyridinium 
chlorochromate (PCC) to provide the aldehyde form of 3. Next, 
product 3 was reacted with (S)-tert-butanesulfinamide 
(Ellman's sulfinamide) as a chiral auxiliary and protecting group 
via Ellman's procedure.27-29 This produced the desired (Ss)-
sulfinimine 4 with a high yield of 89% (Scheme 1). Using a non-
coordinating solvent (toluene), compound 4 reacted with 
pyridin-3-ylmagnesium chloride, which was synthesized in situ 
through the treatment of 3-bromopyridine with 
isopropylmagnesium chloride,30 resulting in the desired 
sulfinamide (Ss,R)-5 in a good yield (75%) as a single 
diastereoisomer. The dr value was assigned using 1H NMR 
spectroscopy of the crude material. Based on the methodology 
of Ellman and co-workers,27,28 the stereochemistry of the 
produced stereogenic center (C-2) was designated as S. This is 
the specific stereochemistry required for the production of (S)-
nicotine (1).

Scheme 1: Asymmetric synthesis of (Ss,S)-5 starting from alcohol 3

Thereafter, different reaction conditions were employed on 
(Ss,S)-5 to explore the best results for ring closing to furnish the 
corresponding pyrrolidine derivative (Ss,S)-6, as listed in Table 
1. The reaction conditions included a variety of solvents and 
bases at different temperatures (Table 1, Entries 1-9). It was 
observed that LDA was the best base tested, which is likely due 
to its increased basicity compared with other bases. This base 

has the ability to fully deprotonate (Ss,S)-5, producing the anion 
form of (Ss,S)-5, which is more reactive to intramolecular SN2. 
This procedure furnished pyrrolidine derivative (Ss,S)-6 in 
excellent yield (90%) with a dr >25:1 (Table 1, Entry 6). 

Table 1: Optimization of ring closing conditions for accessing of the pyrrolidine (Ss,S)-6

Entry Base Solvent T (°C) Yield[a]

1 - THF 25 Trace[b]

2 LiHMDS THF -78 to 25 72
3 LiHMDS MeCN -78 to 25 56
4 LiHMDS Toluene -78 to 25 23
5 LiHMDS THF 66 50
6 LDA THF -78 to 25 90
7 Et3N THF 25 19
8 K2CO3 THF 25 30
9 KOtBu THF 25 33

[a] Isolated Yield.

[b] No conversion to the desired product was observed by TLC but detected by HRMS.

Pyrrolidine formation was followed by the removal of the 
sulfinyl group of (Ss,S)-6 under acidic conditions (HCl, 1.0 M) to 
afford (S)-nornicotine (7) in an excellent yield (94%). In the 
literature, the specific rotation of (S)-7 is [α]22

D = -89.0 (c = 1.0, 
MeOH)31,32, which was used to compare with our obtained 
value ([α]27

D = -86.4 (c = 1.0, MeOH). Finally, N-methylation of 
(S)-nornicotine (7) was achieved successfully using dimethyl 
carbonate (DMC) and N,N,N’,N’-tetramethylethylenediamine 
(TMEDA) as a methylating reagent and nucleophilic catalyst, 
respectively. This provided the desired natural product (S)-1 in 
83% yield (47% overall yield from alcohol 3) and high 
enantiomeric excess (93.2%) (Scheme 2). The enantiomeric 
excess (ee) value of (S)-1 was evaluated using chiral HPLC 
analysis on a chiral stationary phase.33 Comparatively with our 
observed value [α]26

D = -166.3 (c = 1.0, MeOH), the specific 
rotation value from the literature of (S)-1 is [α]20

D = -169.0 (c = 
1.0, MeOH).34-36

Scheme 2: Preparation of (S)-nicotine (1) via a two-step protocol starting from (Ss,S)-6
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The synthesis of (R)-nicotine (2) has been accomplished by the 
use of a method that is similar to the one utilized for the 
synthesis of (S)-nicotine (1), with the exception of the crucial 
step of the Grignard reagent addition. Therefore, the required 
pyrrolidine derivative (Ss,R)-9 was successfully produced with a 
high dr value (>25:1) and an overall yield of 59% from 4-
chlorobutan-1-ol (3) (Scheme 3). This involved adding pyridin-3-
ylmagnesium chloride to (Ss)-sulfinimine 4 in a coordinating 
solvent (THF). This established an open transition state that 
allowed the appropriate stereochemistry to form at the 
sulfinamide C-N bond, which led to the formation of (Ss,R)-8 in 
72% yield and >25:1 dr. Ring closing of (Ss,R)-8, deprotection on 
(Ss,R)-9 using acidic conditions, and N-methylation of the (R)-
nornicotine (10) with DMC have been conducted as employed 
in the last synthesis to access the desired (R)-nicotine (2) (65% 
yield over the three steps from 8, with 94.4% ee33). From the 
literature, the specific rotation of (R)-nicotine (2) is [α]20

D = 
+169.0 (c = 1.0, MeOH)26,34,35, which was employed to compare 
with our measured value [α]28

D = +165.9 (c = 1.0, MeOH). The 
relative stereochemistry and absolute configuration of (S)-
nicotine (1) and (R)-nicotine (2) were confirmed according to 
the 1H NMR and 13C NMR spectra, as well as specific rotation 
from previous research.22,23,26,34–37

Scheme 3: Asymmetric synthesis of (R)-nicotine (2)

Conclusions
Successful enantioselective synthesis of (S)-nicotine and (R)-
nicotine from alcohol 3 has been accomplished with overall 
yields of 47% and 41%, respectively. Controlling the 
stereochemistry of C-2 is a crucial step in these syntheses. 
Choice of solvent in the nucleophilic addition of Grignard 
reagent to a sulfinimine enables an enantioselective route to 
both target products by exploiting the switching of transition 
states.
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• The data supporting this article have been included as part of the 
Supplementary Information.
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