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Electrode informatics accelerated the optimization
of key catalyst layer parameters in direct methanol
fuel cells†
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As the core component of direct methanol fuel cells, the catalyst layer plays the key role as a species,

proton and electron transport channel. However, due to the complexity of the system, optimizing its per-

formance involves a large number of experiments and high costs. In this study, finite element simulation

combined with machine learning model was constructed to accelerate power density prediction and

evaluate the influence of catalyst layer parameters on the maximum power density of direct methanol

fuel cells. We built a fuel cell simulation model corresponding to different parameters, obtaining a data-

base of more than 200 sets of 19 eigenvalues, and then used different machine learning models for train-

ing and prediction. Finally, three tree-integration methods were selected to rank the importance of 19

characteristic parameters. In addition, we performed a high-throughput screening of 200 000 different

parameter combinations based on sequential model-based algorithm configuration. We selected the top

10 parameter combinations with high expected improvement scores and employed them into a numerical

simulation model. The results show that a majority of the polarization curves obtained from the top com-

binations exceed the maximum power density of the original database. This method greatly saves the

time of collecting fuel cell data for experiments and speeds up the parameter optimization process.

1 Introduction

As a device that converts chemical energy directly into electrical
energy, fuel cells have the advantages of high efficiency and
environmental protection.1–4 Among fuel cells, hydrogen-related
proton-exchange membrane fuel cell is one of the important
types.5 However, before the application of hydrogen fuel cells,
problems related to hydrogen production, hydrogen storage, and
hydrogen transportation need to be solved, which brings devel-
opment opportunities for methanol fuel cells.6 Among them,

direct methanol fuel cell (DMFC) has the characteristics of direct
fuel injection into the stack, simple cell structure, and high cell
energy density.7–10 In the membrane electrode assembly, the
catalyst layer (CL) is the core component, and its performance
has a great influence on the output power density of the elec-
trode in DMFC. Therefore, optimizing the CL design parameters
of DMFC is crucial to improve its power density and overall
performance.11,12 At the physical level, factors such as catalyst
loading,21 ionomer ratio,22 and humidity23 play key roles in fuel
cell performance. It is also of great significance to study the
parameters that affect the operation of DMFC for the efficient
and sustainable operation of DMFC.13–20 Operating parameters
such as temperature, backpressure, and reactant flow rates
further increase the complexity of the parameter space. This
means that the development of efficient electrode designs for
DMFCs needs the integration of multiple aspects of effort.
Experiments involving too many factors can also lead to con-
founding of the test criteria. Therefore, it is extremely difficult to
draw general rules from these complex data. To address the
above challenge, a suitable tool is required to draw effective con-
clusions from a large number of interrelated and mutually
affecting factors to guide the design of electrodes for DMFC.

Numerical modelling has played a crucial role in recent
research related to DMFCs as it allows for the modification of
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relevant parameters to understand and predict the behaviour
and performance of fuel cells. A variety of DMFC models has
been developed to better understand the performance of
DMFC under different conditions. For example, Yang et al.24

combined theoretical and empirical models to establish a
semi-empirical model that describes the relationship between
the operating parameters, such as temperature, methanol con-
centration, methanol and air flow rates, and the performance
of DMFCs. The model is sufficiently accurate to estimate the
system performance and is suitable to investigate the DMFC
degradation mechanism. Yu et al.25 established a single-phase
three-dimensional computational fluid dynamics (CFD) model
to study the effects of channel geometry and operating para-
meters on DMFC performance. In addition, the model also
has the potential for geometric parameter optimization design
and operational parameter optimization control to develop
DMFC systems. Tafaoli-Masoule26 proposed a quasi-two-
dimensional isothermal model for DMFCs to obtain the power
exponent as the fitness function of a genetic algorithm and
used genetic algorithms to determine the optimal parameters
for maximizing the power of a single-cell DMFC. The optimal
values of the DMFC cell temperature, anode and cathode
pressure and channel height were determined to be 130 °C,
2.5 bar, 5 bar and 1 mm, respectively. Lee et al.27 proposed an
active DMFC system model that combines a one-dimensional
DMFC stack model with major system components. The
effects of DMFC operating parameters and thermal manage-
ment were analysed through numerical modelling and simu-
lations. The model determined that 0.6 M is the optimal
methanol feed concentration to achieve the highest stack per-
formance and also revealed the influence of ambient tempera-
ture and anode inlet temperature. Jiang et al.28 proposed a
two-phase two-dimensional model for DMFC with an ordered
structure cathode CL, considering water accumulation around
the cylindrical carbon nanowires in oxygen radial transport.
The results show that DMFC with ordered electrodes can
produce better cell performance. The above research results
indicate that the application of numerical simulation in
DMFCs has been very extensive, and it can gradually reveal the
influence of many complex physical fields on the performance
of DMFCs and provide guidance for the design of electrodes.
However, numerical simulation also has the disadvantages of
large amount of calculation, long time-consuming, and high
computational cost. Moreover, if researchers want to study the
relationship between different parameters and optimize a
series of parameters at the same time, numerical simulation is
particularly difficult.

Machine learning (ML), as a data-driven technique based
on limited data and model training, has the potential to solve
this problem. ML can obtain a certain data fitting model on
the basis of existing data, revealing the hidden rules behind
the input characteristics and output of the target system, such
as image recognition driven by deep learning network,29 per-
sonal recognition,30 and automatic driving.31 The complexity
of DMFC also provides a suitable place for data-driven model-
ling. At present, the M model has been successfully applied to

performance prediction, aging prediction and fault diagnosis
of fuel cells and has obtained good accuracy in solving non-
linear problems. Combined with the optimization algorithm,
the ML model can further optimize the design and operating
parameters to achieve multiple optimization goals with good
accuracy and efficiency.32–39 For example, Liu et al.40 designed
an AI-based NPME auxiliary model for proton-exchange mem-
brane fuel cell, which can well predict and analyse the
maximum output power density and polarization curve by
training with real experimental data in the literature. Ding
et al.41 trained nine different ML algorithms on experimental
datasets in the laboratory to accurately predict performance
and Pt utilization (Max R2 = 0.973/0.968). The black-box
interpretation method is applied to provide reliable insights
into the optimal synthesis conditions from both qualitative
and quantitative perspectives. Under the guidance of ML
results, the ionomer/catalyst ratio, water content, organic
solvent, catalyst load, stirring mode, solid content and ultra-
sonic spraying flow rate were optimized. The utilization rate of
platinum is 0.147 g Pt kW−1 and the power density is 1.02 W
cm−2. The above research work shows that compared with
numerical simulation technology, data-driven technology
occupies much less time and computational resources and has
a high degree of versatility. However, due to the complex struc-
ture and spatial characteristics of DMFC system electrodes, it
is challenging to build a directly coupled electrode model by
numerical simulation. Combining ML with numerical model-
ling is a promising method to improve the model accuracy and
speed up the simulation process. This combination helps to
better understand and predict the behaviour of complex
systems, providing stronger support for scientific research and
engineering practice.

In this paper, a 3D MEA model of DMFC is firstly estab-
lished, and the influence of key parameters affecting CL on
DMFC performance is discussed. The model consists of an
anode/cathode flow channel, an anode/cathode diffusion layer,
an anode/cathode CL, and a proton-exchange membrane that
work together to achieve efficient energy conversion in DMFC.
The model follows the mass conservation equation, momen-
tum conservation equation and charge conservation equation,
and the established model can clearly show the mass transfer
process of the inlet and outlet flow channels and membrane
electrodes of the fuel cell. Then, the different parameters of CL
are calculated as input parameters, and the power density is
used as the output parameter to establish the database.
Regression models were built using 7 different ML algorithms
to assess the importance of each parameter. Finally, precise
combined data for predicting the output performance were
obtained and calculated using the simulation model to obtain
the I–V polarization curve and maximum power density, which
were then compared with the data in the database. Scheme 1
describes the main aspects of the work. The results show that
more than half of the polarization curves obtained from the
top 10 parameter combinations with expected improvement
(EI) score exceed the maximum power density of the original
data. Therefore, the combination of numerical simulation and
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machine learning can greatly save the time of collecting fuel
cell data for experiments and accelerate the parameter optimiz-
ation process.

2 Methods
2.1 DMFC numerical model

2.1.1 Physical field setting and boundary condition
setting. We developed a three-dimensional steady-state multi-
physics coupling model for DMFCs to study mass transfer,
including anode and cathode flow channels, GDL, CL, and
Nafion membranes. Several simplifying assumptions are intro-
duced into the model.

(1) DMFC operates under steady-state conditions.
(2) The cross methanol from anode to cathode is completely

oxidized by oxygen in the cathode CL.
(3) GDL, CL and membrane have isotropic permeability and

effective porosity.
(4) The electrochemical reaction is complete, with only CO2

and H2O being produced.
(5) The flow is laminar, both fully developed and

incompressible.
(6) A mixture of reaction gases is considered ideal.
(7) The process is isothermal.
(8) Gravity effects are ignored.
(9) The catalytic layer and diffusion layer of the anode and

the cathode have the same diffusivity and other characteristic
parameters. The effects of the resulting carbon dioxide are
ignored; the transfer of heat throughout the process is
ignored.

(10) All physical properties are assumed to be immutable.
(11) The contact resistance between layers is ignored.
2.1.2 Electrochemical equation
2.1.2.1 Electrochemical kinetics. The reaction mechanism of

the electrooxidation reaction of methanol at the anode and the
electroreduction reaction of oxygen at the cathode is relatively
complex, and its electrochemical reaction rate can be

described by the Butler–Volmer rate expression,42 which can
be simplified to obtain a Tafel type equation of methanol con-
centration, as shown below.

ja ¼ A � iref0;a
CMeOH

Cref
MeOH

� �γa

exp
6Fαaηa
RT

� �
ð1Þ

jc ¼ A � iref0;c
CO2

Cref
O2

 !γc

exp � 6Fαcηc
RT

� �
ð2Þ

where ja and jc (A m−2) are the reference exchange current
density multiplied by the specific surface area A (1 m−1) of the
anode and cathode sides, γa and γc are the anode and cathode
reaction order, ηa and ηc are the anode and cathode activation
over (over) potential (V), and αa and αc are the anode and
cathode transfer coefficients, respectively. CMeOH and CO2

are
the concentrations of methyl alcohol and oxygen in the CL
(mol m−3). The superscript ref represents the reference
concentration.

The overpotential ηa and ηc for the anode and cathode at
any location within the CL is defined as follows.

ηa ¼ ϕs � ϕm � Ea
eq ð3Þ

ηc ¼ ϕs � ϕm � Ec
eq ð4Þ

where ϕs is the potential of the electron-conducting phase of
the CL, ϕm is the potential of the ionomer phase, and Eeq is
the thermodynamic equilibrium potential of the cell.

2.1.2.2 Ohm’s law. The transport of protons and
electrons in the membrane electrode assembly follows Ohm’s
law. The general equation form can be given by the following
formula.

∇ � ð�σeffm ∇ϕmÞ ¼ im ð5Þ

∇ � ð�σeffs ∇ϕsÞ ¼ is ð6Þ

where σeffm and σeffs are the effective conductivity of the ionomer
electrolyte and the solid phase, ϕm and ϕs are the potential of
the ionomer electrolyte and the solid phase, and im and is are
the charge source terms of protons and electrons related to
electrochemical reactions, respectively.

2.1.3 Governing equation
2.1.3.1 Mass conservation equation. The mass conservation

equation (continuity equation) basically requires that the
change in mass per unit volume in a given time must be equal
to the sum of all substances entering or leaving that volume.
The mass conservation equation is

@ðερÞ
@t

þ ∇ � ðερvÞ ¼ 0 ð7Þ

where ε is the porosity, ρ is the material density, and v is the
fluid velocity field. Smass is the mass source term, indicating
the rate of mass change per unit volume of each layer of the
cell structure. The electrochemical reaction only occurs in the
CL; thus, the mass change of the reaction substance only

Scheme 1 Simulation and data dual-drive parameter optimization
process.
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exists in the catalytic layer, while the other parts of the mass
source term are 0 and only exist in the catalytic layer.

@ðερÞ
@t

¼ Smass: ð8Þ

2.1.3.2 Charge conservation equation. Momentum transfer
can be described by the Navier–Stokes equation.43 The flow of
methanol in the flow channel is considered laminar and con-
tinuous, and the momentum of the flow comes from the
pressure difference ∇P.

@ðερvÞ
@t

þ ∇ � ðερvvÞ ¼ �ε∇P þ ∇ � ðεμ∇vÞ þ Sv ð9Þ

Since the steady-state system is used, it will not change with
time, and the above formula can be simplified as follows.

∇ � ðερvvÞ ¼ �ε∇P þ ∇ � ðεμ∇vÞ þ Sv ð10Þ
where ρ is the density of the methanol solution (kg m−3), v rep-
resents the flow rate of the liquid (m s−1), P is the liquid
pressure (Pa), ε is the porosity, whose value in each part of the
cell is different, µ is the liquid viscosity coefficient (kg m−1

s−1), and Sv is the source term.
2.1.3.3 Species conservation equation. The transport of sub-

stances through the anode and cathode is controlled by a com-
bination of diffusion and convection.

ρðu � ∇ Þwi ¼ ρDeff
i ∇ 2wi þ Si ð11Þ

where wi is the mass fraction of species i and Deff
i is the

effective diffusion coefficient. The source term Si describes the
consumption or production (electrochemical and chemical) of
species i, and it applies only to the CL. The mass fraction can
be calculated from the mole fraction(xi)

wi ¼ xi
Mi

M
ð12Þ

where Mi is the molecular weight of substance i and M is the
average molecular weight of the mixture.

2.1.3.4 Membrane permeability equation. The transfer of
methanol through Nafion membranes occurs through
diffusion and electroosmosis. Since the pressure difference
between the two sides of the membrane is negligible, metha-
nol permeated from the anode passes through the membrane
to the cathode CL and is then completely consumed, resulting
in a parasitic current; thus, the methanol permeation equi-
valent current density (Ixover) is determined by the following
formula.

Ixover ¼ 6FNM
MeOH ð13Þ

The cross flux of methanol is calculated by eqn (2)–(13).

NM
MeOH ¼ �DM

MeOH∇CM
MeOH þ nEODMeOH

Icell
F

ð14Þ

where NM
MeOH is the flux of methanol through the membrane,

nEODMeOH is the resistance coefficient of methanol electroosmosis,
and DM

MeOH is the diffusion coefficient of methanol in Nafion.

2.1.4 Solver setup. The concentration fractions of metha-
nol (cMeOH) and water (cH2Oa) in the anode and the mass frac-
tions of oxygen (wO2

), nitrogen (wN2
) and water (wH2Oc) in the

cathode are solved in the flow channel, gas diffusion layer
(GDL) and CL. The boundary conditions are as follows. (1)
Zero flux conditions at the inlet mass fraction or inlet concen-
tration and other external boundaries. (2) Velocity (u) and
pressure (P) are solved by Brinkmann equations in the flow
channel, GDL, and CL. (3) The inlet velocity and outlet
pressure of laminar flow are zero. In addition, symmetry con-
ditions apply to other walls. (4) Ohm’s law is used to solve the
electron potential (ϕs) in GDL and CL and the ion potential
(ϕm) in CL and membrane. (5) The local current density
depends on the ϕs and ϕm in CL and the local reactant concen-
tration. (6) The anode is electrically grounded ϕs = 0, the
cathode ϕs = E_cell, and the rest of the external boundaries are
electrically insulated. Table S1† shows detailed boundary con-
ditions. Due to the nonlinearity of the equations, a stable non-
linear setting is used and a direct solver is used to solve each
governing equation in turn.

2.2 Machine learning

In this study, we applied seven different ML algorithms to
process the data. In order to improve the fitness of ML model
and database, we correctly processed and evaluated the per-
formance of seven model algorithms based on Root Mean
Square Error (RMSE). In performance prediction, we chose
three algorithms with the smallest RMSE, namely, ETR, RFR
and XGB for performance prediction. Two of these methods
involve linear regression methods (Lasso, Ridge), and five
involve nonlinear regression methods (including two kernel
methods (KRR, SVR) and three tree integration methods (RFR,
XGB, and ETR)). This set of ML models covers a wide range of
model types that can reveal relevant aspects of different data.

The quantitative evaluation of prediction accuracy is based
on the root-mean-square error calculated by 10-fold cross-vali-
dation, which is the most commonly used method in predic-
tion error estimation.44–48 Ten-fold cross-validation is an ML
cross-validation method that divides the data set into 10
subsets, each of which is used to train the model and then
combines the results of these 10 subsets to evaluate the per-
formance of the model. The main advantage of ten-fold cross-
validation is that the performance of the model can be evalu-
ated in a shorter period of time as it only needs to evaluate the
results of 10 subsets rather than the entire data set.
Furthermore, ten-fold cross-validation can also help find
potential flaws in the model as it can find problems in the
model in a shorter period of time. Herein, we used ten-fold
cross-validation to evaluate the predictive performance of the
model.

To evaluate the input feature variables that contribute the
most to the prediction of the target of interest, the feature
importance score provided by the tree-integration method was
used.49,50 The importance score, which can be of many types,
is usually calculated as a weighted average of the squared error
improvement attributed to a single feature variable and rep-
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resents the relative importance of each feature variable relative
to the predictability of the target variable. The input feature
variables are rarely equally correlated and usually only a few
have a significant effect on the predicted target variable.

We then extend this further to predict the entire output I–V
polarization curve of the DMFC. An SBO (surrogate-based
optimization) strategy based on the sequential model-based
algorithm configuration (SMAC) program was developed and
evaluated using expected improvement (EI). EI calculates the
expected improvement value for each candidate configuration
based on the prediction results and uncertainty of the current
surrogate model. This value typically considers two factors: the
performance prediction (mean) and the uncertainty (standard
deviation) of the candidate configuration. By comparing the EI
values of different candidate configurations, the SBO strategy
can select the most promising one.

All of the ML computational work was done by writing code
in the Python 3.7 environment. All ML models make extensive
use of the Scikit-learn package (version 0.24.1) and XGB uses
the XGBoost package (version 1.3.3).

3. Results and discussion
3.1 Grid independence verification

In this study, COMSOL Multiphysics was used as the finite
element solver. In order to simplify the model and improve
the computing efficiency, we cut out a part of the structure of
the DMFC and constructed a model including the flow
channel of the positive (negative) electrode, the diffusion layer
of the positive/negative electrode, the catalytic layer of the posi-
tive/negative electrode, and the proton exchange membrane.
After entering all the necessary equations (secondary current
distribution, transport of dilute matter, transport of dense
matter, Brinkman equations, phase transport of porous media
and electrochemical relations), a grid was generated for the
geometry using the software’s built-in module. Fig. 1 shows
the DMFC model after grid division. The structured hexahedral
grid was generated by scanning and mapping methods. To
build the grid, the maximum cell size was set to 1 mm and the
maximum element growth rate was set to 1.5. Grid indepen-
dence verification can determine the balance between calcu-
lation speed and calculation accuracy.51–53 Fig. S1† shows the
results of the grid independence verification. Considering the
cost and time, the number of mesh encryption layers is

selected as the norm after balancing the accuracy and
calculation.

3.2 DMFC simulation model

The geometric parameters, physical and chemical properties and
operating conditions used in this modeling work are shown in
Table S2.† The operating temperature was maintained at
333.15 K, the methanol concentration was 1 M, and the flow
rates of methanol and air were 6 mL min−1 and 600 sccm,
respectively. More details corresponding to the literature simu-
lation can be found in the references.54 It can be seen from
Fig. 2(a) that the simulated polarization curve is consistent with
the simulation results in the literature. The polarization curve of
the simulated 1 M methanol solution was compared with the cal-
culated polarization curve obtained from the experimental data
obtained in the research group’s literature,55 as shown in
Fig. 2(b). In the experiment, the materials used in the fuel cell
included Nafion 115 for the membrane and Pt–Ru with a
loading of 0.2 mg cm−2 for the anode CL. Methanol solution and
air flow were supplied to the anode and cathode at 80 °C,
respectively. Anode inlet flow rate Qa was set at 2 mL min−1, and
cathode inlet flow rate Qc was set at 100 sccm. The simulation
results are in good agreement with the experimental values of
the research group, which proves that the three-dimensional
multi-phase model is accurate, reliable and reasonable.

For a cell voltage of 0.25 V (voltage at maximum power
density), the distribution of methanol concentration, CO2 con-
centration, oxygen concentration and cathode water concen-
tration is shown in Fig. S2.† From the distribution of substance
concentrations in the figure, it can be seen that fluid flow has
been fully developed in the channel. In Fig. S2(a–d),† methanol
concentration decreases along the length direction (y positive
direction) and thickness direction (z positive direction) as
methanol is transmitted through the flow channel to CL, and
methanol just participates in the reaction at the entrance; thus,
less methanol is consumed and the current density is lower.
With the diffusion of methanol, the more intense the reaction,
the greater the reduction of methanol concentration. Methanol
concentration ranges from 1000 to 997.75 mol m−3. As a
product, the concentration distribution of CO2 is completely
opposite to that of methanol, increasing from 0.0001 to

Fig. 1 3D geometric model of DMFC.

Fig. 2 (a) Comparison of polarization curve with polarization curve
obtained from simulation literature parameters54 and (b) Comparison of
polarization curve with polarization curve obtained from experimental
literature parameters.55
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2.2485 mol m−3. This suggests that the more the methanol
diffuses, the more intense the reaction in the middle. The con-
centration distribution of oxygen and water corresponds to the
concentration distribution of methanol and CO2, respectively.
Oxygen and protons in the cathode CL generate water, oxygen
consumption, and liquid water. The distribution of water is
mainly concentrated in the cathode CL and GDL, which makes
it easy to accumulate water, and the phenomenon of “water-
flooding” occurs.56 The methanol permeated from the anode
reaches the cathode CL, where it is then completely consumed,
and the resulting current indicates the amount of methanol per-
meated. The unreacted methanol is transported to the cathode
by diffusion and electroosmosis driving forces. In Fig. S2(e),† it
can be seen that the methanol flux per unit time in the cathode
CL is very low, indicating a very low cross-current density. The
saturation distribution of the cathode liquid is shown in
Fig. S2(f).† There is a clear dividing line between the flow
channel and the cathode GDL interface. However, the amount of
change is small because the change in the saturation of liquid
water in the cathode can be considered negligible.

3.3 The polarization curve obtained by CL key parameter
screening

The polarization curve serves as a tool to describe the perform-
ance and performance losses of fuel cells under various operat-
ing conditions. The polarization curve can be divided into
three regions: activation polarization, ohmic polarization, and
mass transport polarization. Among them, activation polariz-
ation is caused by the slow reaction on the electrode surface.
Ohmic voltage drop arises from the resistance to ion transport
in the anode, cathode, electrolyte, and other interconnections.
Mass transport polarization results from the existence of
certain resistance in the mutual transport of fuel and oxygen
during electrode reactions. By optimizing the parameters to
improve these three polarization regions, the performance of
fuel cells can be enhanced.

Therefore, we selected temperature, anode/cathode CLs
thickness, porosity, Nafion content, anode inlet flow rate,
cathode inlet flow rate, anode catalytic layer permeability,
cathode catalytic layer permeability, anode methanol inlet con-
centration, anode specific surface area, cathode specific
surface area, reference pressure, anode/cathode electron con-
ductivity, anode/cathode proton conductivity, reference metha-
nol concentration, reference oxygen concentration, a total of
19 parameters that may affect the polarization phenomenon,
as input characteristics. For each parameter, we tried to
choose the one with the lowest correlation. The power density
is considered to be the output.57,58 Table 1 lists the input para-
meters and their value ranges. Then, we built a database of
fuel cells.

3.3.1 Active specific surface area. Electrochemistry has
become an important topic in nanomaterials because of its
applications in energy storage and conversion. A particularly
important parameter for the electrochemical applications of
nanomaterials is electrochemically active specific surface area
(ECSA). Therefore, the accurate estimation of ECSA is very
important for the determination of catalyst performance. The
electrochemical kinetics equation is related to the active
specific surface area (Av) (1 m−1) on the anode and cathode
sides. Av refers to the active area of the electrode–electrolyte
interface that is catalytically active for the catalytic layer reac-
tion. The relationship between Av and ECSA is as follows.

Av ¼ ECSA
vpt

ð15Þ

Therefore, the ECSA can be changed by controlling the Av
when the Pt loading volume is unchanged.

Fig. 3 shows Av changes for different anode and cathode
CLs. As can be seen from the polarization curve in Fig. 3(a),
anode Av can cause large ohmic polarization and concen-
tration polarization but has little effect on activation polariz-
ation. The cell performance increases as the Av range increases

Table 1 Input variables and corresponding variable ranges

Variables Expression Range

Temperature (K) T (K) 288.15–378.15
Thickness of anode CL (m) H_electrode_an (m) (5 × 10−7)–(7.5 × 10−5)
Thickness of cathode CL (m) H_electrode_ca (m) (5 × 10−7)–(7.5 × 10−5)
Porosity of anode CL (%) eps_CL_p_a (%) 10–90
Porosity of cathode CL (%) eps_CL_p_c (%) 10–90
Nafion content of anode CL (%) eps_CL_l_a (%) 5–60
Nafion content of cathode CL (%) eps_CL_l_c (%) 5–60
Anode inlet flow rate (m s−1) U_in_an (m s−1) 0.01–2
Cathode inlet flow rate (m s−1) U_in_ca (m s−1) 0.1–8
Permeability of anode CL (m2) kappa_CL_an (m2) (1 × 10−15)–(5 × 10−11)
Permeability of cathode CL (m2) kappa_CL_ca (m2) (1 × 10−15)–(5 × 10−11)
Anode methanol inlet concentration (M) CMeOH_in (M) 0.1–15
Anode specific surface area (1 m−1) Av_an (1 m−1) (1 × 104)–(1 × 107)
Cathode specific surface area (1 m−1) Av_ca (1 m−1) (1 × 104)–(1 × 107)
Reference pressure (atm) p_ref (atm) 0.1–8
Positive cathode electron conductivity (S m−1) sigma_CL_s (S m−1) 10–1000
Positive cathode proton conductivity (S m−1) sigma_CL_i (S m−1) 1–19
Reference methanol concentration (mol m−3) cMeOH_ref (mol m−3) 10–500
Reference oxygen concentration (mol m−3) cO2

_ref (mol m−3) 5–50

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2025 Nanoscale, 2025, 17, 864–876 | 869

Pu
bl

is
he

d 
on

 1
1 

N
ov

em
be

r 
20

24
. D

ow
nl

oa
de

d 
on

 7
/2

8/
20

25
 1

1:
59

:1
3 

A
M

. 
View Article Online

https://doi.org/10.1039/d4nr03026e


from 1 × 104 to 1 × 107, and the increase trend is more gradual
at 3 × 105. The final Av is 2.3 times larger than the previous
one, while the maximum power density is only 16% better. It
may be due to the failure of the reaction products to leave the
catalyst surface, which leads to the mass transfer obstruction,
thus limiting the performance improvement. As can be seen
from the polarization curve in Fig. 3(b), the change in Av has a
great influence on activation polarization and ohmic polariz-
ation. As the current density increases, the impact of Av on cell
performance gradually increases. More and more active sites
on the cathode are involved in the reaction, which is conducive
to the oxygen reduction reaction. In Fig. 3(c), when the Av of
the anode and cathode CLs is changed at the same time, the
cell performance improvement is not obvious when the anode
Av or cathode Av is increased separately because the anode Av
and cathode Av are increased at the same time; thus, the reac-
tion products of the cathode and anode cannot be transmitted
out in time, which affects the cell performance. Therefore,
when optimizing the electrochemical system, it is necessary to
comprehensively consider the synergistic effect of the anode
and cathode to ensure the effective transmission of reaction
products to achieve the best performance.

3.3.2 Anode and cathode CLs thickness. The thickness of
the catalytic layer is a parameter closely related to the acti-
vation polarization, ohmic polarization and concentration
polarization of the cell. It not only affects the species and
charge transfer inside the catalytic layer but also affects the
size of the catalytic active area inside the catalytic layer.59,60

The thickness of anode CL and cathode CL is included in this
model. Fig. 4 shows the current density and power density
polarization curves of catalytic layers with thicknesses of
500 nm, 1 µm, 5 µm, 15 µm, 25 µm, 35 µm, 45 µm, 55 µm,
65 µm and 75 µm. It can be seen from Fig. 4 that the perform-
ance of DMFC increases with the increase in CL thickness
because the increase in the thickness of the catalytic layer is
accompanied by an increase in the catalytic active area. When
the thickness is greater than 25 µm, the performance improve-
ment of the cell slows down. As the thickness of the catalytic
layer increases, the mass transfer path increases and the mass
transfer resistance increases. In addition, the thick catalytic
layer may also cause an increase in the internal resistance,
which further affects the cell performance. Therefore, for the
selection of catalytic layer thickness, on the one hand, it is
necessary to ensure that the catalytic layer is thick enough to
provide enough catalytic active area. On the other hand, it is
necessary to avoid the increase in mass transfer resistance and
internal resistance caused by excessive thickness.

3.3.3 The ratio between porosity and Nafion in the CL.
Pores are conducive to the transport of substances, and Nafion
is conducive to the transport of protons. Fig. S3† shows the
polarization curves of the CL at different porosities and Nafion
ratio. Fig. S3(a)† shows the effect of porosity on the perform-
ance of the cell while the Nafion content remains unchanged.
In this model, the volume of the catalytic layer is fixed; thus,
the increase in the porosity is accompanied by the decrease in
the volume of the catalyst. On one hand, the presence of pores

Fig. 3 Polarization curve obtained by changing the active specific surface area (Av): (a) anode CL; (b) cathode CL; (c) the anode and cathode CLs.

Fig. 4 Polarization curve obtained by changing the CL thickness: (a) change of anode CL thickness; (b) change of cathode CL thickness; (c) change
of anode and cathode CLs thickness.
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provides a channel for the diffusion of gases as well as the
release of water, which is essential for reaction kinetics. On
the other hand, the decrease in the catalyst content also
reduces the performance of the cell, so there is little change in
Fig. S3(a). Fig. S3(b)† shows that the catalyst content remains
unchanged, while the porosity and Nafion content change. It
can be found that the performance of the cell increases with
the increase in the proportion of Nafion content. When the
ratio of Nafion exceeds 0.25, the improvement of cell perform-
ance slows down. This is because Nafion will promote the con-
duction of ions, but when the content of Nafion is too high, it
will lead to the reduction of the porosity of the catalytic layer
and thus hinder the gas conduction. Fig. S3(c)† shows the
polarization curve when the porosity is unchanged and the
catalyst changes at the same time. It can be seen that when the
porosity is consistent, the larger the proportion of Nafion, the
larger the cell power density. When the Nafion ratio is
unchanged, the increase in porosity has almost the same
effect on the performance of the cell. In summary, the effect of
Nafion ratio in CL is greater than that of porosity, and proton
transport may play a more important role than species
transport.

3.3.4 Inlet velocity of methanol at the anode and oxygen at
the cathode. When DMFC is running, the methanol solution
and oxygen are constantly transferred from outside the cell
to inside the cell, and the substances inside the cell are con-
stantly consumed by electrochemical reactions. In general,
the more rapid the replenishment of the external sub-
stances, the smaller the difference between the actual con-
centration and the supplied reactant concentration. Thus,
the magnitude of the reactant concentration is not only
related to the concentration provided but also to the flow
rate of the substance. As can be seen from Fig. S4(a),†
changes in the inlet velocity of the anode methanol solution
in the range of 0.01 m s−1 to 2 m s−1 have little impact on
the performance of the cell. This may be because within this
flow rate range, the transmission speed of methanol is
already fast enough to meet the requirements of the internal
electrochemical reactions of the fuel cell, or there may be
other factors (such as methanol permeation and proton
exchange membrane performance) that limit the improve-
ment of the fuel cell performance, making the impact of
flow rate changes on performance less obvious. As can be
seen from Fig. S4(b)†, the cell performance increases with
the increase in the cathode intake flow. When the flow rate
increases to a certain range, the cell performance gradually
improves. When the cathode air flow rate increases from
0.1 m s−1 to 0.5 m s−1, the cell performance is improved
with the increase in the cathode air flow rate, and the per-
formance is greatly improved. When the cathode air flow
rate increased from 0.5 m s−1 to 8 m s−1, the output perform-
ance of the cell did not change, the polarization curve did
not change at low current density, and the cell performance
was slightly improved at medium and high current density.
When the consumed reactants are replenished in time, the
increase in the cathode air flow rate reduces the concen-

tration polarization loss of the cell. In real fuel cell oper-
ation, excessively high methanol and oxygen flow rates may
also result in additional pump power losses, reducing the
overall efficiency of the fuel cell system.

3.3.5 Temperature and pressure. Temperature and pressure
are two important factors that affect the performance of fuel
cells. It can be found from Fig. S5(a)† that in the region with
low current density, the power density in the temperature
range of 15–55 °C is basically the same. Within this tempera-
ture range, the electrochemical reaction rate and substance
diffusion rate inside the fuel cell remain relatively stable
without significant changes. When the temperature is located
in the range of 55–85 °C, in the region with high current
density, higher the temperature, higher the power density.
Because when the temperature increases, the electrochemical
reaction activity will increase. In addition, the diffusion rate of
methanol and oxygen will also increase, helping to enhance
the electrochemical reaction of the anode and cathode. On
continuously raising the temperature, and the cell’s perform-
ance will deteriorate. High temperature will lead to a large
amount of methanol and water vapor loss, thereby reducing
the efficiency of the cell. In the real operation of the cell, high
temperature will reduce the performance of the proton
exchange membrane and may also lead to catalyst de-
activation. Therefore, in practical operation, it is necessary to
find an optimal operating temperature range to ensure that
the fuel cell operates in an efficient and stable state.

Fig. S5(b)† shows the polarization curve under different
working pressures from 0.1 to 8 atm. In the small current
range, the effect of increasing pressure on the output perform-
ance of the fuel cell is not significant, while in the large
current range, the effect of increasing pressure on the output
performance is gradually improved. The higher the pressure,
the better the output performance of the fuel cell system.
However, the specific working pressure that can be achieved
depends on the maximum pressure that the stack and the
membrane electrode can withstand. In addition, in real situ-
ations, high pressure can lead to an increase in the parasitic
power of related equipment, which can offset some of the per-
formance improvements caused by increased pressure, thereby
reducing the net power density of fuel cells. When designing
and optimizing fuel cell systems, it is necessary to comprehen-
sively consider factors such as performance under different
pressures, system complexity, and cost to achieve optimal
power density and performance.

3.3.6 Electron conductivity and proton conductivity.
Charge consists mainly of two kinds of charged particles,
namely, electrons and ions. Therefore, there are two kinds of
losses in the charge transfer process of proton-exchange mem-
brane fuel cells, namely, the loss of electrons passing through
solid phase conductors such as catalytic layer and diffusion
layer and the loss of protons passing through the proton
exchange membrane. According to charge transport loss, con-
ductivity can be divided into solid phase conductivity (elec-
tronic conductivity) and membrane phase conductivity (ionic
conductivity).
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Fig. S6(a)† shows the polarization curves for different elec-
tron conductivities of the positive cathode catalytic layer. In
order to ensure that the catalytic layer and the diffusion layer
have good electrical conductivity and ensure electron trans-
mission, the electronic conductivity needs to be hundreds or
more. In this paper, the cell performance is calculated in the
range of 10–1000 S m−1, and it is found that the change in the
electronic conductivity has little effect on the cell performance.
This is because the electronic conduction path has been effec-
tively established at the three-phase interface. However, this
does not mean that electronic conductivity can be completely
ignored. In practical applications, if the electronic conductivity
is insufficient, it may lead to an increase in internal resistance
of the fuel cell, thereby affecting the output performance and
efficiency of the fuel cell.

Generally speaking, the conductivity of the membrane is
below 20 S m−1, and the main range of the effective proton con-
ductivity discussed here is 1–19 S m−1. The proton conductivity
is closely related to the water content of the Nafion membrane,
which is related to the proton transport process and mode. The
conductivity of the proton-exchange membrane plays an impor-
tant role in charge transport loss. As shown in Fig. S6(b),† in
the low current density region, the efficiency of the fuel cell is
mainly affected by activation loss; thus, it is insensitive to
effective proton conductivity and does not show significant
changes. At medium to high current densities, Ohmic loss
becomes the main component of fuel cell performance loss.
The improvement of proton conductivity helps to reduce
Ohmic losses. However, as proton conductivity increases, the
rate of improvement in fuel cell performance will gradually
slow down, and there may even be a convergence trend. This is
because when the proton conductivity reaches a certain level,
the efficiency of proton transport in the membrane is close to
its limit, and a further improvement of proton conductivity will
have limited impact on the fuel cell performance.

3.3.7 Anode reference concentration of methanol and
cathode reference concentration of oxygen. In the Butler–
Volmer equation, the exchange current density (i0) is a key
parameter that reflects the rate of electrochemical reaction at
equilibrium potential. According to this equation, the
exchange current density is inversely proportional to the refer-
ence concentration of the reactants. This means that when the
reference concentrations of methanol and oxygen are low, the
exchange current density will be relatively high. As shown in
Fig. S7,† the calculated results also show the same conclusion.

This conclusion can be explained from the perspective of
electrochemical kinetics. A smaller reference concentration
means that the concentration gradient of reactants on the elec-
trode surface is larger, thereby promoting the diffusion of reac-
tants and increasing the reaction rate. Therefore, in fuel cells,
optimizing the supply and concentration distribution of metha-
nol and oxygen can potentially improve the exchange current
density, thereby enhancing the performance of the cell.

3.3.8 Anode methanol inlet concentration. For DMFC, if
only DMFC specific power is considered, the higher the metha-
nol concentration, the more favorable it is for the cell.

However, at this stage, due to the material properties, the
proton-exchange membrane of DMFC has the problem of
methanol penetration, and its concentration directly affects
the degree of DMFC’s penetration of methanol.61 The reason-
able choice of methanol concentration is very important for
DMFC performance. This paper calculates the range of metha-
nol concentration from 0.1 M to 15 M. As shown in Fig. S8,†
with the increase in methanol concentration, the performance
of the fuel cell also improves but the degree of improvement
gradually decreases with the increase in concentration.
Especially below 3 M, the performance improvement of fuel
cells is particularly significant, and the concentration polariz-
ation effect is obvious. When the concentration exceeds 3 M,
the trend of changes in fuel cell performance tends to flatten
out, and the impact of concentration polarization on fuel cell
performance gradually decreases.

Finally, we organized the amplitude range of the maximum
power density of the direct methanol fuel cell simulation
model after adjusting each parameter to understand the
importance of each parameter on the maximum power
density. The results are shown in Fig. S9,† which displays the
top six parameters in terms of maximum power density ampli-
tude ranking.

3.4 Model- and data hybrid-driven prediction

3.4.1 Database establishment. In order to collect the train-
ing data, the ML model needs to be trained. A database is built
based on the data obtained from different ranges affecting the
different parameters of CL. CL different parameters are used
as input features and power density is considered as the
output. Table S3† lists the input elements and the corres-
ponding ranges of values.

3.4.2 Evaluation of different ML models. Seven algorithms
have been adopted to make predictions on the given input fea-
tures. To quantify accuracy, the training test segmentation was
retained. The predictions for the test set are plotted in Fig. 5
and Fig. S10.† The x-coordinate represents the predicted power
density, while the y coordinate represents the actual value of
the power density. Therefore, the closer the data point is to the
slash line “y = x”, the closer the predicted value is to the actual
value.

We chose root mean square error (RMSE) and standard
deviation (STD) to evaluate the prediction accuracy of the
algorithm. Table 2 shows the RMSE and STD of the data train-
ing test obtained by seven different algorithms. Nonlinear

Fig. 5 Data training test (10-fold cross-validation) error graph of three
algorithms based on the tree-integration method. (a) ETR; (b) RFR; (c)
XGB. Training data (blue), test data (red).
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methods (KRR, SVR, RFR, XGB, ETR) perform better than
linear methods (Lasso, Ridge), and in particular, tree-inte-
gration methods (RFR, XGB, and ETR) have smaller training
and test errors because they can capture nonlinear relation-
ships in data, have better robustness and generalization
ability, automatically evaluate feature importance and adapt to
different types of data distributions and feature sizes, and
have high computational efficiency and good scalability. It is
worth mentioning that the ETR algorithm has excellent per-
formance in the RMSE (0) and STD (0) evaluation criteria and
has advantages such as strong anti-overfitting ability, high
computational efficiency, and insensitivity to outliers.
Therefore, we decide to use ETR algorithm to predict the
optimal parameter combination. As for the computation time,
simulation models typically require tens of seconds to
minutes, while surrogate models typically only require a few
seconds. This will greatly improve the computational efficiency
of the model, making real-time interaction of key information
between physical and simulation models possible in digital
twin systems. The surrogate model based on ETR has better
application prospects in the state-monitoring system of direct
methanol fuel cells.

3.4.3 Feature importance ranking. The influence of CL
parameters on the power density in DMFC was evaluated, and
the input variables that most contributed were predicted. For
this purpose, the feature importance score is calculated from
the RFR, XGB, and ETR models optimized by the proposed ML
method. The feature importance score is a measure used to
assess the importance of features in a data set. It is calculated
by taking the average of the importance of each feature and
dividing by the total number of features. The higher the
feature importance score, the more important the feature is in
the data set. Feature importance score evaluates each hyper-

parameter, and the results are shown in Fig. 6. The larger the
feature importance score, the better the distinguishing ability
of the corresponding features. Therefore, the first three impor-
tant characteristics recognized by all the three algorithms are
the specific surface area of the cathode, the specific surface
area of the anode, and the thickness of the anode. The para-
meters with the highest importance in terms of their features
are highly consistent with the parameters that have the great-
est impact on the maximum power density amplitude of the
model, as previously determined. We can view this result as
intelligent confirmation that RFR, XGB, and ETR are indeed
capable of recognizing various parameters. It is worth noting
that under high voltage conditions, fuel cells will generate
parasitic power during actual operation, thereby reducing the
net power density of the fuel cell. In order to consider the
impact of high pressure on the power density as much as poss-
ible, we calculated the ratio of maximum power density to
different pressures and used the obtained data to reorder the
importance of parameters. As shown in Fig. S11,† the ranking
changes of different average feature importance are very small
compared to the data without considering the influence of
pressure. This, to some extent, indicates that it is acceptable to
temporarily disregard the impact of pressure on the results.

3.4.4 Polarization curve prediction. The EI score is a
measure used to evaluate the performance improvement of an
ML model over time.62–64 It is calculated by taking the average
of the model accuracy improvement over time and dividing it
by the total number of iterations. Over time, the higher the EI
score, the better the performance of the model. In this study,
SMAC and EI score were used for evaluation. Fig. 7 shows the
top ten parameter combinations sorted by EI score. The top
three parameter values for feature importance are shown on
the left side of the figure.

In order to test the learning results of SMAC, we brought
the 10 groups of parameters with the highest expected
improvement value into the model and performed numerical

Table 2 Training and testing root mean square error of data obtained from 7 different algorithms

Method Lasso Ridge KRR ETR RFR SVR XGB

RMSE_test (STD_test) 0.024 0.024 0.044 0.008 0.011 0.028 0.009
0.009 0.009 0.016 0.003 0.004 0.011 0.003

RMSE_train (STD_test) 0.019 0.017 0.025 0.003 0.005 0.013 0.003
0.001 0.001 0.001 0 0 0.001 0

Fig. 6 Average feature importance prediction plots based on the best
ETR models in ten-fold cross-validation (top 6). Fig. 7 The EI score of the top 10 combinations obtained through ML.
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simulation to obtain their I–V polarization curves and com-
pared them with the polarization curves of the first and
second power density in the original database. As shown in
Fig. 8, compared with the original database, more than half of
the polarization curves obtained by the top 10 parameter com-
binations with the EI score exceeded the maximum power
density of the original database.

The model we have established has the ability to capture
dynamic effects. As shown in the ESI Movie S1,† it illustrates
the concentration change process of methanol in the cathode
of a methanol fuel cell. It can be seen that methanol diffuses
in the flow field and reacts with GDL after coming into contact
with the catalytic layer. The concentration of methanol
decreases sequentially from the fuel inlet to the outlet, from
the middle to both sides. To explore the internal mechanism of
the performance improvement, we selected the optimal para-
meter combination to analyse the distribution of the reactants
and products. Compared with the initial parameters, the thick-
ness of the cathode catalytic layer, the flow rate of the channel,
the permeability and the specific surface area of the cathode
and anode all increase.65,66 Compared with the initial para-
meters, the thickness of the cathode catalytic layer, the channel
flow rate of the cathode anode, the permeability and specific
surface area of the catalytic layer, as well as the temperature
and pressure of the anode catalytic layer all increased, while
the thickness of the anode catalytic layer decreased, as shown
in Fig. 9. Due to the increase in the anode inlet velocity and the
increase in permeability, the distribution of methanol concen-
tration was more uniform than that in the initial model
(Fig. S1†). When the cell voltage is 0.35 V (maximum power
density voltage), the methanol concentration drops from
224.8 mol m−3 to 216.3 mol m−3, which is greater than 2.1 mol
m−3 of the initial model. The effect of height and high
pressure, as well as the increase in the specific surface area of
the anode, make methanol oxidation more thorough.67 The
thinner anode catalytic layer also helps reduce methanol
penetration. The distribution of CO2 is completely opposite to
that of methanol, which also proves that the methanol reaction

is sufficient. The same explanation applies to oxygen and water
concentrations. The above conclusions show that the parameter
combinations recommended by ML can significantly improve
methanol fuel cells, and the ideas provided in this paper also
provide new insights into the optimization direction of DMFC.

4 Conclusions

In this study, we combined numerical simulation and ML high
throughput to reveal the effects of different parameters of CL
on the DMFC performance. First, the optimized models were
obtained by training 7 ML algorithms on the database. Then, a
comprehensive tree-based regression model (XGB, ETR, and
RFR) was used to rank the importance of the 19 complex
eigenvalues, and the input eigenvariables with the greatest
influence were quantitatively determined. The results of these
three algorithms all show the same first three important
characteristic values: cathode specific surface area, anode
specific surface area and anode thickness. Then, SMAC was
used to get the expected improved values of different para-
meter combinations. The top ten parameter combinations
with EI score were selected and imported into the simulation
model for testing, and the entire output I–V polarization curve
of the DMFC was obtained and compared with the I–V polariz-
ation curve of the maximum power density in the original
database. The results show that a majority of the polarization
curves obtained from the top combinations exceed the
maximum power density of the original database.

We provide a method that leverages simulation models to
rapidly establish databases and integrates machine learning to
accelerate parameter optimization. However, to reduce compu-
tational complexity and enhance simulation efficiency, we sim-
plified the fuel cell system to a certain extent. Real fuel cell oper-
ating conditions are influenced by factors across multiple scales,
including the microscale (such as electrode material structure,
and catalyst layer activity), mesoscale (such as flow channel

Fig. 8 Comparison between the top 10 EI score data and the polariz-
ation curve of the original database.

Fig. 9 The concentration distribution of reactants and products (0.35
V) was predicted by the optimal parameter combination: (a) molar con-
centration of methanol at the anode, (b) molar concentration of CO2 at
the anode, (c) molar concentration of oxygen at the cathode, and (d)
molar concentration of water at the cathode.
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design and gas diffusion layer structure), and macroscale (such
as overall cell structure and thermal management design). Yet,
overly complex models can incur significant computational
costs. Additionally, there is often a contradiction between the
real-time performance and accuracy of models. To improve the
real-time performance, models may need to be simplified or
their precision reduced, whereas to enhance accuracy, model
complexity and computational load need to be increased.
Currently, the concept of digital twins is rapidly gaining popular-
ity, aiming to create virtual replicas of physical entities for data
interaction with the actual objects and utilizing machine learn-
ing to train data-driven surrogate models based on datasets. The
developed surrogate models are expected to offer accuracy com-
parable to multi-physics predictive physical models while posses-
sing response speeds much faster than those of simulation
models. Currently, digital twins have been widely applied in
complex systems of various scales, including cities, factories,
and airplanes.68–70 This technology, characterized by high inter-
activity and rapid optimization iteration,71,72 can address the
aforementioned issues. This work lays the foundation for the
establishment of a digital twin model for direct methanol fuel
cells. In the future, by training surrogate models, rapid inter-
action between fuel cell entities and digital models can be
achieved, effectively determining and monitoring their multi-
physics field states. This has significant implications for fuel cell
design and control operations.
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