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Revealing nanoscale slip within Taylor–Aris
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Mehul Bapat and Gerald J. Wang *

Hydrodynamic slip at fluid–solid interfaces plays an important role in a range of transport phenomena,

especially in fluids under small-scale confinement. Much work has studied the microscopic origins of slip.

In this work, we explore the connection between the microscopic slip velocity and the macroscopic (slip-

adjusted) Taylor–Aris dispersion in the fluid, which enables the former to be written in terms of the latter.

Through extensive molecular-dynamics simulations of simple and polymeric fluids under a wide range of

thermodynamic and geometric conditions, we show that the continuum treatment of Taylor–Aris dis-

persion can be readily extended to systems where the confining length-scale is comparable to the slip

length. We further demonstrate that slip velocity can be accurately inferred through measurements of

equilibrium and shear-augmented molecular self-diffusivities.

1 Introduction

The continuum treatment of fluids frequently presumes zero
hydrodynamic slip at a fluid–solid interface (the no-slip

boundary condition). However, non-zero slip at fluid–solid
interfaces can play an important role in transport phenomena
at interfaces1,2 and under confinement, especially in systems
where a confining length-scale is comparable to the slip
length.3

Owing to the fact that slip is intrinsically a microscopic
phenomenon, a significant body of work using both experi-
ments and molecular-dynamics (MD) simulations has sought
to characterize the microscopic mechanisms underlying slip,
as reviewed in previous work.4,5 Many studies have investigated
the microscopic kinetics of slip within the broad (and inter-
related) frameworks of thermally activated rate processes,6,7

molecular-kinetic theory,8–11 and biased Brownian motion.12

Slip has been studied in relation to microscopic friction at the
fluid–solid interface13–16 and also as a function of microscopic
roughness and surface texture.17,18 All of the aforementioned
work focuses on relating the slip phenomenon with micro-
scopic aspects of the system, with no explicit connection to
macroscopic fluid mechanics.

In contrast, a distinct body of work on slip explores its con-
nections with continuum-scale descriptions of a fluid. Several
studies have explored slip within the framework of continuum
fluid mechanics; these studies infuse microscopic details into
a fundamentally macroscopic picture via, e.g., a corrugated
potential energy landscape representative of the boundary.19,20

Hsu and Patankar21 demonstrated that the relationship
between slip and fluid shear rate (supported both by mole-
cular-scale simulations and experiments) can be qualitatively
recovered using a continuum treatment of a compressible fluid
in the presence of a wall that imposes a potential on the fluid.

The present work follows in the spirit of the latter by study-
ing the validity of (appropriately interpreted) continuum
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theory in the limit of small confining length-scales. In particu-
lar, we address the following question: “Does the continuum
theory of Taylor–Aris dispersion describe the relationship
between shear rate and shear-enhanced diffusivity in a nano-
scale channel with non-negligible hydrodynamic slip?” We
answer this question in the affirmative, and show as a conse-
quence that the classical theory can be inverted to infer details
about slip using only measurements of diffusivity. The closest
related work22 to that carried out here presents purely classical
results (both analytical and numerical, via finite volumes)
for the relationship between dispersion and slip; our focus
here is on seamlessly extending the classical theory to chan-
nels of nanoscale dimension, validated using molecular
simulations.

In the following section, we model slip velocity in terms of
equilibrium and shear-augmented diffusivities in plane-
Couette flow. We describe our numerical experiments in
section 3 (and Appendix A), with results discussed in section 4,
followed by concluding remarks and future directions in
section 5.

2 Theory: Taylor–Aris dispersion in
the presence of hydrodynamic slip at
the fluid–solid interface

Consider the schematic for plane-Couette flow shown in
Fig. 1a, with fluid sheared by two solid walls moving opposite
to each other along the x-direction (the streamwise direction)
with equal speeds uw. The walls, separated by a gap height H
in the z-direction (the wall-normal direction) and of infinite
extent in the y-direction (the spanwise direction) and the
x-direction, are identical in microstructure, yielding equal slip

velocity us at both interfaces. The steady and fully-developed
streamwise fluid velocity with slip boundary conditions is:

uðzÞ ¼ ðuw � usÞ 2z
H

� 1
� �

: ð1Þ

Following the classic arguments by Aris and Taylor,23,24 and
assuming no slip, the ratio of the shear-augmented (effective)
diffusivity Deff to the equilibrium diffusivity Deq (diffusivity in
a non-sheared direction) is:

Deff

Deq
¼ 1þ uw2H2

30Deq
2 : ð2Þ

In the slip case, since the fluid velocity at the boundaries
has magnitude uw − us, this ratio is:

Deff

Deq
¼ 1þ ðuw � usÞ2H2

30Deq
2 : ð3Þ

An extended discussion of eqn (2) and (3) is presented in
the ESI.†

The core premise of this work is the observation that
eqn (3) establishes a connection between the slip velocity and
the extent to which the diffusivity is enhanced by shear. In par-
ticular, eqn (3) can be inverted to obtain slip velocity in terms
of the equilibrium and shear-augmented diffusivities:

us ¼ uw � uD; ð4Þ
where

uD ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30Deq

2ðDeff=Deq � 1Þ
H2

r
: ð5Þ

Here, uD can be physically interpreted as the interfacial
fluid velocity, i.e., uD = |u(z = 0)| = |u(z = H)|. It is worth empha-
sizing that eqn (5) constructs a velocity-scale using only diffu-

Fig. 1 (a) Schematic of simulated plane-Couette flow for a fluid (LJ chains with Nm = 5) confined by two identical graphene walls with nearest-
neighbor distance λ and gap height H and fluid self-diffusion coefficient in the streamwise direction Deff and spanwise direction Deq. Fluids with
different chain lengths simulated in this study are shown on the left. (b) Steady-state fluid velocity profiles at uw = 0.74 for LJ chains drawn from
dataset 4 (Table 1). Linear fits to velocity profiles are performed in the bulk region and are extrapolated to the wall locations to calculate slip velocity.
All quantities are non-dimensionalized as discussed in section 3.
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sivity-scales (and the length-scale H) and makes no reference
to any other velocities in the system. Any approach that yields
estimates of Deq and Deff can thus also be used to obtain an
estimate of us. Within a plane-Couette MD simulation, esti-
mates for both diffusion coefficients can be obtained via the
Einstein–Helfand relation,25–27 with Deq computed from kin-
ematics in the spanwise direction and Deff computed from kin-
ematics in the streamwise direction. In particular, for any col-
lection of particles viewed in a reference frame in which they
have no net center-of-mass motion, we can compute that col-
lection’s mean-squared displacement (MSD) in the Cartesian
direction k as:

hrk2ðtsampleÞi ¼ hjrkðtsampleÞ � rkð0Þj2i; ð6Þ
where rk is the k-direction coordinate of a particle, tsample

denotes the length of the measurement window, and the angle
brackets indicate an average computed over all particles in the
collection. Eqn (6) is computed in a reference frame in which
the system’s overall center of mass is stationary; we discuss the
limits of validity for this approach to measuring diffusivity in
Appendix B. From here, the Einstein–Helfand relation gives:

Deff ¼ hrx2ðtsampleÞi=ð2tsampleÞ ð7Þ

Deq ¼ hry2ðtsampleÞi=ð2tsampleÞ ð8Þ
In practice, these diffusion coefficients are computed by

collecting MSD data at numerous values of tsample and per-
forming least-squares regression to extract the slope from a
straight-line model.

3 Molecular-dynamics simulations

To validate eqn (4) and (5), we perform non-equilibrium MD
simulations of plane-Couette flow of a variety of fluids, includ-
ing Lennard-Jones (LJ) monomers and LJ chains of varying
length (Fig. 1a), using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS).28 In each simulation,
interactions between non-bonded particles i and j are
described by the Lennard-Jones potential:

ULJðrijÞ ¼ 4ε
σ

rij

� �12

� σ

rij

� �6� �
; ð9Þ

where rij is the distance between particles i and j. In all simu-
lations, the same length-scale σ applies for all LJ interactions
(whether fluid–fluid or fluid–solid) and the energy-scale ε is εff
for all fluid–fluid interactions. Values of this energy-scale for
fluid–solid interactions, εfs, are provided in Table 1.
Throughout all simulations, all monomers, whether standa-
lone or within a chain, have identical mass m. Each simulation
features a homogeneous fluid with a single value of Nm, the
number of monomers in each chain, with Nm ranging from 1
(monomers only) to 12 (the longest chains studied). Further
details on these MD simulations, including the specific para-

meters governing bonded interactions, are provided in
Appendix A.

In what follows, all quantities are non-dimensionalized
against the length-scale σ, the energy-scale εff, the mass-scale

m, the time-scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=εff

p
, the density-scale m/σ3, the diffu-

sivity-scale σ2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=εff

p
, and the temperature-scale kB/εff,

where kB is the Boltzmann constant. By varying thermo-
dynamic and geometric conditions – namely, the temperature
T, the fluid–solid interaction energy εfs, the gap height H, and
the nearest-neighbor distance λ for atoms in each wall – we gene-
rate a total of 9 datasets as shown in Table 1, each containing 12
distinct fluids (1 ≤ Nm ≤ 12) and 10 wall velocities (0.04 ≤ uw ≤
0.74). For the purpose of increasing statistical confidence, which
is especially critical for fluid transport properties under nano-
scale confinement,29 each of these 1080 simulations is repeated
10-fold using different initial particle velocities drawn from the
appropriate Maxwell–Boltzmann distribution at the prescribed
temperature, with the corresponding results averaged.

In each simulation, we obtain the steady-state fluid velocity
profile u(z) by creating uniform bins of width 0.8 along the
z-direction and then computing the time- and particle-aver-
aged velocity in each bin. Several steady-state fluid velocity pro-
files from dataset 4 (Table 1) at a wall velocity of uw = 0.74 are
shown in Fig. 1b. Slip velocity is measured by fitting a straight
line to each velocity profile in the bulk region (defined here to
be 1.5 away from each wall), extrapolating the fitted line to
each of the two walls, and averaging the difference between
the wall velocity and the extrapolated velocity obtained at each
of the two walls. For the purpose of computing each term in
eqn (5), in each simulation, we also measure the MSD (at the
level of individual monomers) for tsample � OðH2=DeqÞ, for
each unconfined direction, yielding MSDs in the spanwise
(Fig. 2a) and streamwise (Fig. 2b) directions.

4 Results and discussion

We find that the self-diffusion coefficient in the spanwise
direction Deq is independent of the wall velocity uw, as

Table 1 MD datasets classified according to various thermodynamic (T,
εfs) and geometric (H, λ) conditions. Symbols used in Fig. (2)–(4) are
shown with dataset number in parentheses. Each of the nine datasets
contains 1200 MD simulations, as described in section 3.

Dataset

Fluid
temperature,
T

Gap
height,
H

Fluid–solid
interaction
energy εfs

Nearest-
neighbor
distance λ

★ (1) 3.31 6.35 0.600 0.451
◀ (2) 3.31 15.9 0.533 0.451
▲ (3) 3.31 15.9 0.600 0.406
● (4) 3.31 15.9 0.600 0.451
▼ (5) 3.31 15.9 0.600 0.496
▶ (6) 3.31 15.9 0.733 0.451
+ (7) 3.97 15.9 0.600 0.451
■ (8) 4.31 12.7 0.667 0.451
× (9) 4.64 12.7 0.600 0.451
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expected (Fig. 3a). Deq decreases with increasing chain length
(Fig. 2a) and hence also decreases with increasing viscosity μ,
in a manner consistent with previous work30 (Fig. 2a). On the
other hand, the diffusion coefficient in the streamwise direc-
tion Deff increases with increasing wall velocity, a direct conse-
quence of Taylor–Aris dispersion (Fig. 3b).

We find clear evidence that the dependence of the stream-
wise diffusivity on the wall velocity is poorly described by the
no-slip model of dispersion (eqn (2)), which would predict
Deff/Deq to collapse to a single line, which is specifically linear
in uw

2H2/(30Deq
2) (Fig. 4a). The streamwise diffusivity is

however in excellent agreement with the slip-adjusted model
of dispersion (eqn (3)). As evidence of this, in Fig. 4b, we show
the slip velocity inferred using the equilibrium and shear-aug-
mented diffusivities (eqn (4)) as compared to the slip velocity
measured in each MD simulation through extrapolation of the

velocity profile to the wall location. We find agreement within
2.3% mean absolute error, with no systematic discrepancies as
a function of any of the parameters varied. These results
confirm the hypothesis that the slip velocity can in fact be
inferred from the streamwise-spanwise diffusivity difference
via inversion of (slip-adjusted) Taylor–Aris dispersion.

This is an intriguing result for several reasons. Despite
Taylor–Aris dispersion following from a continuum description
of a fluid, this theory – when applied to molecular self-diffusiv-
ities – extends seamlessly to channels of nanoscale dimension,
provided that the relevant shear rates are adjusted for slip; this
result follows a pattern of macroscopic fluid-mechanical
phenomena that can be observed in systems of nanoscale
dimension, despite the continuum laws not being obviously
applicable in such systems.4 Moreover, this result provides a
new route by which one can determine the boundary condition

Fig. 2 (a) Characteristic MSDs in the spanwise direction (drawn from dataset 4 and averaged over all wall velocities) as a function of sampling time
and polymer chain length, which are used to measure Deq; (b) characteristic MSDs in the streamwise direction for a monomeric fluid (Nm = 1) as a
function of sampling time and wall velocity, which are used to measure Deff.

Fig. 3 Viscosity and wall velocity dependence of (a) the spanwise coefficient of self-diffusion and (b) the streamwise coefficient of self-diffusion. In
both cases, models of the viscosity-dependent form discussed in Sukhishvili et al.30 are overlaid. Contours of constant pre-factor a are provided as a
guide to the eye in (b).
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(slip velocity) that is consistent with the bulk flow, which
makes exclusive use of measurements of fluid diffusivity.

5 Conclusions

In this work, we investigated the connection between hydro-
dynamic slip at a fluid–solid boundary and Taylor–Aris dis-
persion in a confined fluid, leading to the relationship in eqn
(4) and (5), between the slip velocity, the spanwise diffusivity,
and the streamwise diffusivity. We performed MD simulations
of plane-Couette flow for a wide range of fluids (simple fluids
and polymers of varying length) under a wide range of thermo-
dynamic and geometric conditions, and we observed that
(slip-adjusted) Taylor–Aris dispersion accurately captures
shear-augmented diffusivity in fluids under small-scale con-
finement. We further found excellent agreement between the
slip velocity inferred from dispersion (using the streamwise–
spanwise diffusivity difference) and the slip velocity measured
using an approach traditional in MD simulations (using the
fluid velocity profile extrapolated to the boundaries).

These results motivate several natural extensions. One such
extension would be to assess the accuracy of this theory for a
fluid mixture (comparing against, e.g., Zhou et al.31) or for
fluid bounded by rough or patchy walls.17 The smallest
channel studied in this work still has a majority of fluid in its
bulk region, in which interfacial effects – especially fluid
layering32,33 – are negligible. The question of whether the
present dispersion model can be adapted to yet-smaller chan-
nels, in which surface-driven effects play a significant role in
diffusion in all directions,34 remains open. Fig. 4b establishes
strong agreement between two distinct approaches for measur-
ing slip velocity, at the level of means; an intriguing direction
of further study would be comparison at higher moments and
for the full distributions of measured slip velocities (e.g., at the
level of variances in the slip velocity). Such work could have

important implications for the uncertainty quantification of
slip in small-scale channels within MD simulations. Finally,
we note that eqn (4) is but one example of using Taylor–Aris
dispersion to formulate a nanoscale hydrodynamic quantity in
terms of anisotropic diffusivities. It would be especially inter-
esting to see whether this treatment extends to other related
quantities (e.g., the fluid–solid friction coefficient).

Data availability

Data for this article, including scripts to generate the MD
simulations described in section 3, are available at https://
github.com/M5-Lab/NanoscaleTaylorAris.
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Appendix A: details of MD simulations

Each system consists of a homogeneous fluid with number
density ρ = 0.85 (based upon number of monomers), confined
by two identical graphene walls that are squares with a side
length of 9.52. A cutoff radius of 3.17 was used for all simu-
lations. Apart from the non-bonded LJ interactions in eqn (9),
intra-chain interactions in polymeric fluids are governed by:
(a) a harmonic potential Ubond(r) for particles directly bonded
to each other and separated by a distance r, given by Ubond(r) =
(kbond/2)(r − r0)

2, with bond constant kbond = 72.0 and equili-
brium bond length r0 = 21/6 (same as equilibrium distance
between two non-bonded fluid particles); (b) a harmonic
potential for two consecutive bonds forming an angle θ, given
by Uangle(θ) = (kangle/2)(θ − θ0)

2, with angle constant kangle =

Fig. 4 (a) Normalized shear-augmented coefficient of self-diffusion vs. linear term in eqn (2); (b) slip velocity inferred via Taylor–Aris dispersion eqn
(4) vs. slip velocity measured by extrapolation of fluid velocity profile to boundary (dashed line of parity overlaid).
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66.7 and equilibrium bond angle θ0 = 110°; and (c) CHARMM-
style dihedral interactions35 for sets of four contiguously
bonded particles in the same chain with dihedral angle ϕ,
given by Udihedral(ϕ) = kdh(1 + cos(ϕ + αdh)), with dihedral coeffi-
cients kdh = -18.67 and αdh = 7°. The structures of different
fluids and solids were generated using the software
Moltemplate36 and visualizations were rendered using the
Open Visualization Tool (OVITO).37 To counter the effects of
viscous heating due to shear, the temperature of the fluid was
maintained via a Nosé–Hoover (NH) thermostat;38,39 we veri-
fied that the core Taylor–Aris dispersion result (Fig. 4b) is
unaffected by choice of thermostat or choice of thermostat
damping timescale (see ESI†). We measure viscosity of the
fluid using μ ¼ τxz=γ̇, where τxz is the magnitude of the shear
stress imposed by the walls on the fluid in the streamwise
direction and γ̇ is the fluid shear rate. τxz is obtained by evalu-
ating the time-average of the difference of forces applied by
the top and bottom walls on the fluid in the streamwise direc-
tion, normalized by the wall area.

Appendix B: limits of validity for system-
center-of-mass-corrected diffusivity

For the purpose of evaluating eqn (6), mean-squared displace-
ments are computed in a single reference frame with no net
center-of-mass motion. In an MD simulation, this reference
frame can be established by computing the average velocity for
all particles in the system. For a plane-Couette flow (with the
origin of velocity at the channel midline, as shown in Fig. 1a),
this frame should simply be the laboratory frame, by symmetry.

It is worth emphasizing that there are limits of validity to
choosing a single reference frame. In particular, this choice is
only justified if particles are tracked over a sampling time
sufficiently long that all particles may sample velocities
throughout the channel ðtsample � OðH2=DeqÞÞ, a critical
assumption of the Taylor–Aris theory. On this timescale, for a
plane-Couette flow, each individual particle has an expected
velocity of the channel midline velocity, i.e., the velocity of the
single reference frame described above.

Since any fluid particle not at the channel midline locally
has a non-zero expected velocity (given by eqn (1)), it is impor-
tant to note that when tsample � OðH2=DeqÞ, many individual
particles will have only sampled a subset of velocities. If the
MSD of these particles is tracked with the single choice of
reference frame described above, then this MSD will grow
quadratically with time, as would be expected for ballistic
transport; indeed, a slight quadratic “knee” can be observed to
the far left of Fig. 2b. In all MD simulations reported,
sampling is performed through at least OðH2=DeqÞ.
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