Nanophotonic Biosensors for COVID-19 Detection: Advances in Mechanisms, Methods, and Design

Abstract

The growing societal impact of coronavirus disease 2019 (COVID-19) has underscored the urgent need for innovative strategies to address the ongoing challenges posed by the pandemic. While rapid therapeutic interventions remain critical for short-term mitigation, equally vital is the development of accessible and efficient diagnostic tools to curb viral transmission. In this context, optical sensing technologies have emerged as foundational tools for detection and diagnosis, owing to their rapid response, user-friendliness, and adaptability. These attributes solidify their indispensable role in identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. This review systematically outlines the structural components of SARS-CoV-2 virions and their respective biological functions, classifies optical biosensors according to their underlying principles and evaluates the advantages and limitations of each methodology in real-world diagnostic applications. By addressing current detection challenges, these optical platforms not only enhance our capacity to manage SARS-CoV-2 but also establish a framework for deploying optical sensing technologies in future pandemic scenarios.

Article information

Article type
Review Article
Submitted
25 Oct 2024
Accepted
11 Feb 2025
First published
15 Feb 2025

Nanoscale, 2025, Accepted Manuscript

Nanophotonic Biosensors for COVID-19 Detection: Advances in Mechanisms, Methods, and Design

J. Li, L. Zhou, Y. Hao and C. xing, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D4NR04423A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements