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Universal scaling laws on the rotational energy landscape for
twisted van der Waals bilayers

This work establishes universal scaling laws governing
rotational energy landscapes of twisted 2D materials, resolving
the critical challenge of predicting stable twist angles through
analytical modeling of moiré geometry evolution. The
theoretical scaling laws quantitatively determine energetically
favorable angles and the scaling relations of interlayer
rotational torque, in agreement with atomistic simulations
across diverse material systems. The findings provide new
perspectives on the rational design of nanoscale rotation-
tunable electronic devices.
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The emerging field of twistronics utilizes the interfacial twist angle between two-dimensional materials to
design and explore unconventional electronic properties. However, recent investigations revealed that not
every twist angle is stable. Understanding and predicting preferred twist angles are therefore of vital
importance and have received considerable attention; however, general analytical theories that can feasi-
bly address the stability of twist angles have not yet been developed. In this work, we reveal the existence
of universal analytical scaling laws that delineate the interface rotational energy landscape, enabling the
determination of both stable angles and interlayer rotational torque. The universality of our theoretical
results is fundamentally based on the evolution of moiré geometry, which is applicable across many
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material interface systems. Our results not only unify experimental observations and literature atomistic
simulations, but also provide new perspectives for the rational design of nanoscale rotation-tunable elec-
tronic devices. Our theories can potentially inspire a deeper understanding of moiré-correlated interface
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Introduction

The field of twistronics, focusing on the utilization of van der
Waals layers of two-dimensional (2D) materials, has garnered
significant attention in recent years."™* The rotational twist
angle between these layers plays a crucial role in governing the
interlayer coupling, which in turn determines the desirable
electronic and other physical properties.”” However, recent
experimental evidence has highlighted that not all twist angles
are inherently advantageous. Investigations utilizing atomic
force microscopy have unveiled specific discrete twist angles
that exhibit enhanced stability and resistance to interlayer
rotation.> These angles correspond to local minima in the
interface energy.® In the context of magic-angle bilayer gra-
phene, on-tip scanning with a superconducting quantum
interference device has detected instances of local twist-angle
disorder.” Furthermore, preferred twist angles often manifest
during the growth process of 2D materials through chemical
vapor deposition.'® These findings provide strong indications
that the instability of twist angles is a prevalent phenomenon
within the emerging field of twistronics. This instability may
lead to difficulties in achieving the desired targeted twist
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angles, ultimately resulting in failure to attain the intended
state. Therefore, it is important to comprehend and predict
the preferred twist angles. Recent investigations'®™"” into the
instability of twist angles have unveiled a strong correlation
between them and moiré patterns. However, general analytical
theories that can feasibly address the stability of twist angles
have not yet been developed.

To address the above challenge, in this work, we show that
there are universal analytical scaling laws to account for the
interface rotational energy landscape, which lead to a unified
understanding of stable twist angles for twisted van der Waals
bilayers. Fundamentally based on the evolution of moiré geo-
metry, our theoretical approaches are universally applicable
across many material interface systems. To extract general
physical insights, we begin with molecular simulations'® for
three representative material systems, including twisted bilayer
graphene (TBG),"”'® bilayer MoS,,">"'*?° and graphene/h-BN
heterobilayers.>"** Our theories focus on equilateral triangles
and hexagons as these shapes are frequently observed in
chemical vapor deposition (CVD) growth processes.'*** Our
theoretical approach could also accommodate other shapes
(e.g., see results for square shapes in the ESIT). In principle,
any initial twisted configurations can be fabricated using the
dry-transfer method.>*** With the understanding of simu-
lation observations, we develop moiré-geometry-based the-
ories, which are capable of analytically accounting for the
rotational energy landscape and determining both stable
angles and interlayer rotational torque. Such straightforward
analytical approaches have clear advantages over atomistic
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simulations, which may suffer from large model sizes. Our
results not only show strong agreement with simulation and
literature results, but also can potentially guide the design and
deepen the understanding of twistronics.

Results and discussion

Fig. 1 illustrates simulation results on twist angle instability
for triangular flakes of TBG, bilayer MoS,, and graphene/h-BN
heterobilayers. We study flakes of different sizes in order to
show general observations. For each material flake, geometric
relaxation is performed after imposing an initial twist angle 6,
(with the rotation axis passing through the flake’s symmetric
center), from which the final stable angle ¢’ is determined.
Since our simulation is performed on different materials, it is
essential to identify material-specific high-energy (AA/BA) and
low-energy AB(3R) stacking configurations.'®***® Detailed
stacking classifications and simulation methods are provided
in the ESL In the case of TBG (Fig. 1(b and e)), the flake side
length is about 7.3 nm, while the bottom layer is considered
infinitely large (Fig. 1(a)). The initially imposed twist angles
before relaxation are applied incrementally on two different
initial stacking patterns. The initial AA stacking triangles are
referred to as “AA triangle” for brevity (similar notation rules
apply to other shapes or stacking configurations). The sub-
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View Article Online

Nanoscale

sequent geometric relaxation reveals three final stable twist
angles within the simulated twist angle range. Note that for
tiny initial angles imposed on the initial AB(3R) stacking, the
final stable angle is always 0° (physically, the flake rotates
back to its initial AB(3R) stacking). These discretized final
stable angles suggest the presence of rotational energy bar-
riers, with the interface rotational torque driving the flake to
rotate towards different final states. On the other hand, the
bilayer MoS, with a side length of 8 nm (Fig. 1(c and f)) and
graphene/h-BN heterobilayers (Fig. 1(d and g)) with a side
length of 12.4 nm exhibit similar features in discretized final
stable angles. We emphasize that these preferred twisted states
are also translationally stable (see the ESIt), in agreement with
an earlier report.™

To understand the twist angle instability, we identify the
correlation between moiré patterns and the interface stacking
energy landscape (Fig. 2). Despite differences in flake size,
TBG and MoS, exhibit similar moiré patterns at different
stable twist angles. For example, the left column in Fig. 2(a
and d) shows the top views of the atomistic structure for three
stable angles of TBG as shown in Fig. 1(b and e). The lighter
region corresponds to the high-energy AA stacking domain,
where atoms visually overlap, whereas the darker region rep-
resents the low-energy AB stacking.'” The distribution of these
domains in MoS, (Fig. 2(b and e)) is similar, although the
stacking definition (i.e., AA and 3R) is different (see the ESI

— —
Top layer
p lay 0, o
Initial State Imposed Angle 6, Stable Angle 6’
(b) it TBG (c) i MoS, (@) , Graphene/h-BN
® 1
8| AAtriangle AA triangle ® AA triangle ®
® 10 5
9's K] 0 4
0 ® ®
6 3
4
@ 4 @ 2 @
2 2 1
0 2 4 6 8 10 0 5 10 15 0 2 4 6 8
0o 6o 0o
(e) () MoS (9) i
15 TBG 20 2 10 Graphene/h-BN
15 .
10} AB triangle ® 3R triangle AB triangle ®
® 6
o’ 0’10 0 ®
® ) i
5
@ 5 ® " @
0 0 —_ 0-
0 5 6o 10 15 0 5 9, 10 15 0 2 49,6 8 10

Fig. 1 Simulated interlayer twist angle instability for different material flakes at certain sizes. (a) Mechanism of interlayer twist angle instability,
where the states of an initially imposed angle 6, relax to the states of a final stable angle ¢'. (b—g) Simulated stable angles ¢’ for triangular flakes of (b
and e) TBG, (c and f) bilayer MoS,, and (d and g) graphene/h-BN, over a range of initially imposed angles 6,. The angle unit is degrees.
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Fig. 2 The moiré patterns corresponding to the three stable angles from Fig. 1. The local stacking energies of the visual moiré patterns (left
column) of different material flakes can be captured by the moiré periodic potential (right column). (a and d) TBG, (b and e) bilayer MoS,, and (c and
f) graphene/h-BN heterostructure with initial AA and AB(3R) stacking configurations, where the actual stacking domains are labeled. In the left

column of each panel, colors are selected to distinguish different layers.

11). A more intricate moiré pattern is observed in the gra-
phene/h-BN system (Fig. 2(c and f)), because both AA stacking
and BA stacking possess the highest interface energy, with
almost equal magnitudes, while the AB stacking still has the
lowest interface energy.>® This intricacy can be ascribed to the
existence of lattice mismatch.>” Given such complex obser-
vations of similarities and discrepancies across different
materials, is there a unified theoretical framework to account
for stable twist angles?

This work answers the above question. We find that the
left-column moiré patterns can be universally described by a
moiré periodic potential (the right column of Fig. 2), from
which an analytical energy landscape can be elegantly derived.

We utilized a general form of p = 3 cos(G - F) to characterize
G

the moiré potential of TBG and MoS,,?* where G represents
the reciprocal lattice vector that accounts for the planar period-
icity of the moiré pattern. However, for graphene/h-BN,
because AA and BA stackings are considered energetically equi-
valent,”® the low-energy domains form triangular arrays and
each low-energy domain is surrounded by six high-energy

domains.*"**»?%?°31 guch an energy distribution can be con-
veniently represented by p' = — 3 cos(G - 7).>*** The essence
G

of this theoretical treatment is that the symmetric, geometric

This journal is © The Royal Society of Chemistry 2025

and energetic characteristics of the moiré pattern in twisted
van der Waals bilayers are satisfied.

Our theories use the following notations. The mismatch
parameter p represents the ratio of the lattice constants
between the top layer (R,) and the substrate layer (R). For gra-
phene/h-BN heterostructures, p = 0.98,>>” while for TBG and

. . . . R .
bilayer MoS,, p = 1. The dimensionless size parameter r = 4 1

used to denote the normalized flake size, where a is the lattice
constant of the top layer and R is the radius of the circumcircle
for an equilateral triangle or hexagon. For example, in Fig. 1,
the size parameter r is 10y/3 for TBG and 8v/3 for bilayer
MoS,, while for a graphene/h-BN heterostructure, r = 17+/3.
Our theories establish an analytical scaling mapping from
the dimensionless twist angle 6, size parameter r, and lattice
mismatch parameter p to interlayer rotational energy. The reci-
procal lattice vector G carries information about the
moiré wavelength 1 and the orientation of the moiré pattern.**
The key step is to describe the evolution of G as a function
of p, r, and 6. When the initial stacking configuration is
AA, the center stacking after twisting remains close to AA;
therefore, ~ the  moiré  potential  function®®  is
21y

(x,y,4) = cos (471|:x> +2cos (2—1“) cos (—) However, if
p 7y7 - \/gl \/g/,l /1 . ’

the initial stacking is in the AB(3R) configuration, the center

Nanoscale, 2025, 17, 8515-8523 | 8517
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stacking after twisting remains close to AB(3R), and the moiré

potential ~ function  should be  modified*®  to
4Tt<xfi 27 xfi
V3 V3 (Zny)
x,¥,4) = cos | ——=Y"2| +2cos |——=Y"2| cos| =7 | .
p(x,9,4) VT VT

In our methodology, it is important to ensure that the math-
ematical description of the initial orientation and the sub-
sequent rotation of moiré potential function are both consist-
ent with the observed moiré patterns in real materials. Then,

R
A6, p) should be substituted®® as A(f,p=1) = — 5
Zsini

and

Ry
moiré pattern rotates with the flake, it is necessary to impose a
rotation®* to the above moiré potential function. Finally, an
analytical expression can be obtained by integrating the moiré
energy function over the entire shape of the flake,***> denoted
as E(0,r,p) = Jj'g(xy’r)p(x,y,pﬁ)dA, where Q(x, y, r) represents

AO,p #1) = Furthermore, because the

the corresponding shape of the flake. After normalization
through division by the flake area, a dimensionless total
E(0,r,p)
J.[Q(xy,r) 1dA
The stable twist angles can then be readily extracted from its
energy local minima.
We first present the elegant and concise rotational total

energy landscape function S(0,r,p) = is obtained.

energy function for triangular identical (p = 1) bilayer
materials (based on p = 3 cos(G - ).
For initial AA stacking.é
3sin®(nrv/2 — 2 cos @
s@,rp=1)=— (m ) . (1)

212r2(—1 + cos 6)
For initial AB(3R) stacking:

3[—1 + cos(2xrv/2 — 2 cos 0)]

812r2(—1 + cos 0)

S@,r,p=1)=— (2)

Also, the total energy functions for initial AA and AB(3R)
stacking configurations of the hexagonal flake (based on
p = cos(G - 7)) are:

G
1
212r2(1 — cos 0)3/2

X {sin (nrm) {4\/Enr cos (nrm> sin? (g)
+ V1 —cos Qsin(nrm)] },

5(97r7P:1) =

(3)

S@,rp=1)=
1—cos (2nr\/2 —2cos 9) + 2mrv/2 — 2 cos Hsin(ZEr\/Z — 2cos 6)

8n2r2(—1+ cos 0)

(4)

Note that for p = 1, the angle®® between the moiré vector

n+0

and the lattice vector of the substrate is , so for a small

8518 | Nanoscale, 2025, 17, 8515-8523
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twist angle 6, we can assume that the moiré vector and the
lattice vector are perpendicular. Exact formulas that fully con-
sidering moiré pattern rotation are presented in the ESL}
along with a three-dimensional plot of the energy function S(6,
r, p = 1). The troughs on the surface correspond to energy local
minima for stable twist states.

The most general case (p # 1), which can arise from
inherent lattice mismatch or strain engineering,'®*® also has
an analytical expression.

The total energy function for a triangular flake with the
initial AA stacking (based on p’ = — 3" cos(G - ) as in the case

G

of the Gra/h-BN system®>*?) is:

9cscd A fd T
S0, r,p) =— X [Zcos<g+A—ZB)—Zcos(g—A—ZB>
T T T
7c0s<g+A+BfC) +cos<ng+BfC> fcos<g+A+B+C>

+cos(g—A+B+C) +\/§sin(g+A+B—C> +\/§sin<g—A+B—C)
. T . b1
- 3sm(g+A+B+C> - \/§sm(ng+B+C)].
(5)

The definitions of the symbols in the above equations are
listed as follows.

V/1+p*—2pcosd

2nry/1+ p* —2p cos 0 - cos A
B= ,
V3

C = 2ar\/1+ p? — 2p cos 0 - sin 4,

D = 8n*r*(1 +p* — 2p cos 6)(3 — 9cot? A).

— cos 6
A:()—arccos( Pt ),

The total energy function for a triangular flake with the
initial AB stacking (based on p’ = — 3 cos(G - 7)) is:
G

3

N - _=

O.rp)=—1

x { 2 cos(C cos A4) cos (C sin A) 5 cos (zc sin A) .

V3 /3
1 1 i ; . (Csin A

V3 ese[ =B ) sec( =B sin A sin(C cos A) sin )
> 2 \/§

(6)

The definitions of the symbols in the above equations are
listed as follows.

A_0+arcsin( P+ cos 0 >7

\/1+p? —2p cos 0

B_—0+arccos< —prcosd ),

1+ p?—2pcos @
C = 2nr\/1+ p? — 2p cos 6,

D =4n’r*>(1 + p> — 2p cos 0)(1 — 2 cos(24)).

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Agreement among stable twist angles from analytical theories and molecular simulations, for different materials, shapes, and sizes. (a) TBG,
(b) bilayer MoS,, and (c) graphene/h-BN heterostructures for triangular and hexagonal flakes with initial AA and AB stacking configurations are

illustrated.

The other forms of the analytical total energy function (i.e.,
based on p =Y cos(G - ), or hexagonal shapes) and results
for the moiré fnterface caused by lattice mismatch without
rotation can be found in the ESL.{

Over a wide range of normalized sizes, we demonstrate a
satisfactory agreement between the first three local energy
minima extracted from these analytical energy functions and
large-scale molecular simulations, as shown in Fig. 3. Results
for TBG and bilayer MoS, (p = 1) are illustrated in Fig. 3(a and
b), while results for Gra/h-BN (p # 1) are presented in Fig. 3(c).
We observe that for homobilayers (p = 1), the stable final
angles are the same for different materials given the same nor-
malized size r, and they differ from those of heterobilayers (p
# 1). Note that for small twist angles, local relaxation, which
shrinks the AA region and expands the AB region, would
appear. This effect is discussed in the ESI,;f with the con-
clusion that local relaxation does not practically affect the
angles of local energy extrema, in agreement with an earlier
report.*’

The interlayer rotational torque is a vital concept for inter-
face twist engineering using 2D nano materials.>*”*% In this
work, we show that there are universal scaling laws that
account for such interlayer rotational torque, which is the
driving force for spontaneous rotation. By using an appropri-
ate scaling factor, the interlayer rotational torque obtained
from real material simulations can be reconstructed.
Specifically, we demonstrate that the dimensionless theoretical

This journal is © The Royal Society of Chemistry 2025

torque Tineory multiplied by certain coefficient K can match the
0s(0,r,p)

00’
where S(0, r, p) is our dimensionless energy function for
specific twist angles and flake sizes. The value of K is deter-
mined by minimizing the sum of the absolute values of discre-
pancies between the MD results and the theoretical scaled
result (i.e., the L1 norm). In Fig. 4, we use TBG (r = 151/3) to
demonstrate the agreement across a continuous range of twist
angles. The simulated torque Ty is calculated by numerically
differentiating the simulated configuration energy with respect
to twist angles. Fig. 4 shows that there is excellent scaling
agreement for both triangular and hexagonal TBG flakes with
initial AA and AB stacking configurations at a fixed r.
Additional calculations in the ESIT indicate that the coefficient
K remains almost unchanged for the same geometric shape
with varying r. All these comparisons demonstrate satisfactory
scaling performance. The zero-torque points correspond to the
preferred twisted states or the saddle point on the rotational
energy landscape. Our theoretical approach thus not only pro-
vides accurate predictions of stable twist angles but also offers
significant convenience in interpreting interlayer torque in
twisted bilayer systems.

Finally, Fig. 5 illustrates certain aspects of the immediate
application of our theory. First, our theory can readily repro-
duce literature insights from extensive MD simulation results.
For example, the dynamic twisting of graphene/h-BN bilayers

simulated torque Typ. That is, Tmp = KTtheory = K

Nanoscale, 2025, 17, 8515-8523 | 8519
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Fig. 4 The evolution of simulated rotational torque Tmp can be reconstructed using an appropriate scaling factor K based on our theories, Tieory =
a5(6, r, p)/6, for triangular and hexagonal TBG with the flake size parameter r = 15/3 and different initial stackings. (a) Triangular flake with initial AA
stacking. (b) Triangular flake with intial AB stacking. (c) Hexagonal flake with initial AA stacking. (d) Hexagonal flake with initial AB stacking. The black
horizontal line indicates zero torque, corresponding to the stable point or the saddle point for twist angles.
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Fig. 5 Using our analytical theories to (a—c) interpret simulated energy landscape from ref. 23, (d) understand the occurrence of angles from
experiments,®® and (e) rationally design flake geometries intrinsically coupled to an array of magic angles of TBG (¢ = 1.1°, 0.5°, and 0.35°).
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has been studied in MD simulations by modulating hetero-
strain,”® where a hexagonal graphene flake with a width of
13.7 nm is placed on an h-BN monolayer, and then the energy-
angle curves for the initial AA stacking are simulated. In this

case, to apply our theory, the size parameter
13.7
r=—————— =232.15, and eqn (S5)f is directly used for pre-
V3 x 0.246 an (597 Y P

dictions. The satisfactory comparisons of the energy landscape
with the original ref. 23 are shown in Fig. 5(a) for zero biaxial
strain, Fig. 5(b) for 4% biaxial strain (e,), and Fig. 5(c) in the
space of rotation angle and biaxial strain. Second, our theory
can help interpret experimental measurements (Fig. 5(d)). For
example, the distribution of rotation angles is experimentally
measured for a triangular MoSe, layer grown on a graphene
surface,®® where the average size of the as-grown triangle
domains is found to be about 8 nm? so the averaged side
length of the equilateral triangle flake is 4.3 nm. Given that
the lattice constant for MoSe, is 0.33 nm*° while that for gra-

. 0.33
phene is 0.246 nm, we get p = —— = 1.34, and the normal-

0.246
. . R 43/V3
ized size r=—=
0.328

scape (eqn (S8)T) is then plotted as the red curve in Fig. 5(d),
while the bar graph replots the frequency count on rotation
angles in the experiment. It is anticipated that angles with
higher energy are unfavorable, resulting in a lower frequency
count. Notably, the use of the average flake size in our theory
already produces a satisfactory interpretation of why certain
angles have higher occurrence. The high energy barrier after
the third preferred angle (about 17°) may explain the low
count in the vicinity of the fourth preferred angle (about 21°).
Third, our theory can guide the design of twistronics struc-
tures, where certain angles of interest are intrinsically coupled
to certain flake sizes, alleviating the difficulty of experimental
synthesis. For example, theoretical investigations*' show that
there is actually a set of magic angles for TBG (i.e., 1.1°, 0.5°,
0.35°, and so on); however, the tiny magic angles of TBG
smaller than 1° are not easily accessible in experiments.*>
Nevertheless, our theory allows one to quickly scan the flake
sizes whose preferred twisted states coincide with these
peculiar angles. Fig. 5(e) shows a range of triangular flakes
whose sizes correspond to 6 = 1.1°, 0.5°, and 0.35°. Eqn (2) is
directly used for predictions. Given these large sizes, compu-
tational searching for these states using conventional atomistic
simulations is prohibitive, thus highlighting the advantages of
our scaling laws.

= 7.56. The analytical energy land-

Conclusions

In summary, we show that there are geometry-based universal
analytical scaling laws on the rotational energy landscape of
twisted van der Waals bilayers, the understanding of which is
crucial for twistronics. The universality of our theory is rooted
in the fact that the moiré geometry can be material-indepen-
dent and only couples to three primary dimensionless para-
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meters, namely lattice mismatch, twist angle, and normalized
flake size. More importantly, the integrated dimensionless
moiré energies possess elegant analytical forms, conveniently
revealing the preferred twisted states for triangular or hexag-
onal flakes. Furthermore, the entire evolution of the actual
rotational torque can be accurately reconstructed using an
appropriate scaling factor. Our results not only unify experi-
mental observations and literature atomistic simulations, but
also potentially inspire a deeper understanding of moiré-corre-
lated interface mechanics. Our findings provide new perspec-
tives for the rational design of nanoscale rotation-tunable elec-
tronic devices.
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