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Flexible, Wearable Mechano-Acoustic Sensors for Body Sound 
monitoring applications  

Tran Bach Dang,a Thanh An Truong,a Chi Cong Nguyen,a Michael Listyawan,a Joshua Sam Sapers,a 
Sinuo Zhao,a Duc Phuc Truong,b Jin Zhang,a Thanh Nho Do,c,d Hoang-Phuong Phan*a,d 

Body sounds serve as a valuable source of health information, offering insights into systems such as the cardiovascular, 

pulmonary, and gastrointestinal systems. Additionally, body sound measurements are easily accessible, fast, and non-

invasive, which has led to their widespread use in clinical auscultation for diagnosing health conditions. However, 

conventional devices like stethoscopes are constrained by rigid and bulky designs, limiting their potential for long-term 

monitoring and often leading to subjective diagnoses. Recently, flexible, wearable mechano-acoustic sensors have emerged 

as an innovative alternative for body sound auscultation, offering significant advantages over conventional rigid devices. 

This review explores these advanced sensors, delving into their sensing mechanisms, materials, configurations, and 

fabrication techniques. Furthermore, it highlights various health monitoring applications of flexible, wearable mechano-

acoustic sensors based on body sound auscultation. Finally, the existing challenges and promising opportunities are 

addressed, providing a snapshot of the current picture and the strategies of future approaches in this rapidly evolving field.

1. Introduction 

The human body functions through the operating and 

coordinated interaction of its organs. The activities of several 

organs such as the heart, lung, and bowel involve mechanical 

motions, producing vibrations and contractions that are 

transduced through body tissues and the skin, manifesting as 

body sounds. In the broad sense, body sounds are all the 

rhythmic signals emitted by the body, whether audible or 

inaudible. For example, the activity of the heart causes audible 

sounds that can be heard from the chest wall, and it also causes 

the pulse wave to expand through blood vessels that can be felt 

at points like the wrist or throat1. Body sounds are a valuable 

source of health information, providing insights into systems 

such as the cardiovascular, pulmonary, and gastrointestinal 

systems2. Even small structural changes in organs can be 

detected and recorded through these sound patterns. 

Moreover, body sound measurements are easily accessible, 

fast, and non-invasive, which has led to their widespread use in 

clinical auscultation for diagnosing health conditions.  

Stethoscopes are among the most common medical 

instruments used for body sound measurement. Developed 

based on a concept invented more than 200 years ago with key 

components including a small disc-shaped resonator that is 

placed against the skin and tubes connected to two earpieces3, 

stethoscopes are available worldwide and are one of the first 

medical tools used by clinicians to assess the symptoms and 

physical status of patients, besides temperature sensors. 

Despite their low cost and effectiveness in assessing body 

sounds, analog stethoscope still poses several limitations. In 

particular, their rigid and bucky housing prevents them from 

being able to monitor continuously for long periods of time. 

These devices highly depend on doctors’ expert knowledge and 

experience to diagnose diseases, and the measured heart 

sounds cannot be shared among doctors or between healthcare 

providers and patients. In some cases, the human ear is less 

sensitive to low-frequency signals4, including heart sounds and 

lung sounds. This makes the assessment highly subjective. 

Furthermore, auscultation performed in clinical settings may be 

associated with some abnormal physical signals in patients that 

are not seen in their routine activities due to changes in the 

environment. For example, white coat hypertension, also 

known as white coat syndrome, is a form of labile hypertension 

in which people exhibit a blood pressure level above the normal 

range in a clinical setting but do not exhibit it under other 

conditions. Those signals do not accurately reflect the true 

physical status of the patients outside the clinic. The demand 

for reducing the subjectivity of auscultation and minimizing the 

need for frequent hospital visits has driven research and 

development of digital stethoscopes and acoustic sensing 

devices, such as Inertial Sensing Units. These devices enable 

measurements in ambulatory environments, offering wireless 

platforms that address the limitations of traditional 

auscultation by facilitating data sharing and post-measurement 

analysis through machine learning algorithms. However, these 

devices are often rigid and bulky, limiting their suitability for 

continuous monitoring. 
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Flexible, wearable mechano-acoustic sensors have emerged as 

an innovative solution for body sound auscultation, providing 

several advantages over conventional rigid devices. Advances in 

micromachining have enabled the development of miniature 

mechano-acoustic sensors, such as MEMS microphones and 

accelerometers, with footprints as small as a few square 

millimeters. These sensors can be integrated into flexible 

printed circuit boards (fPCB) to create compact wearable 

devices1,5–9. The introduction of fully flexible sensors has further 

improved skin contact and enhanced sensitivity. Some flexible 

sensors are permeable10, self-adhesive11, and transparent12, 

making them more suitable for long-term wear by reducing 

discomfort and skin irritation. These attributes allow such 

devices to be comfortably attached to the skin for prolonged 

monitoring, reducing artifacts and improving the overall user 

experience. With those advantages, acoustic sensors in soft, 

wearable form factors have demonstrated their capability to 

continuously capture distinct soundwaves from the human 

body. Advances in material engineering, soft lithography 

fabrication, wireless communication, and data processing 

techniques (e.g., machine learning) have further supported the 

translation of these devices toward practical applications. 

Several flexible acoustic sensors have undergone clinical 

validation, underscoring their potential for real-world 

healthcare monitoring and diagnostics. 

Considering the significant progress and high activity of this 

research area, this review highlights recent advances in flexible, 

wearable mechano-acoustic sensors for monitoring body 

sounds in healthcare applications (Fig. 1a). Firstly, it introduces 

a range of body sounds, including heart sounds, breath sounds, 

Fig. 1 Mechano-acoustic sensing for body sound monitoring. Created with BioRender.com. a) Flexible, wearable mechano-acoustic devices 
attached to human skin to capture several body sounds. b) Typical sensing mechanisms of flexible, wearable mechano-acoustic sensors, 
including, left to right, piezoresistive, capacitive, and piezoelectric. 
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bowel sounds, and cough and swallow sounds, along with their 

importance in auscultation (Section 2). Secondly, the paper 

continues with emerging sensing mechanisms including 

piezoresistive, capacitive, piezoelectric, and triboelectric with a 

focus on their working principle and materials (Section 3). 

Sensory configurations, including acoustic sensors, 

accelerometers, and pressure/strain sensors, are then 

presented (Section 4), together with advances in fabrication 

techniques (Section 5). The detailed applications of the 

mechano-acoustic sensors in health monitoring applications are 

subsequently discussed (Section 6). Finally, the paper concludes 

with a perspective on the future directions and potential of this 

rapidly growing research field.   

2. Body sounds – a valuable source of health 
information 

The pattern of body sounds serves as a valuable source of health 

information and is widely used for early disease diagnosis and 

monitoring. Non-speech body sounds, such as those produced 

by the heart, lungs, or gastrointestinal system, predominantly 

occupy the lower frequency spectrum, ranging from 20 Hz to 

1300 Hz, compared to speech sounds and environmental 

sounds, which are typically found in the higher frequency 

spectrum of 300 Hz to 3500 Hz2. Most body sounds exhibit 

greater intensity within the band from 20 Hz to 200 Hz yet 

experience significant attenuation as frequency increases. The 

concentration of body sounds in low-frequency ranges 

necessitates a focus on subtle changes in these frequencies, in 

other words, higher frequency resolution in the low 

frequencies. Body sounds auscultation therefore requires the 

use of specialized acoustic sensors with high sensitivity to low-

frequency variations to effectively detect and differentiate 

between the acoustic patterns of body sounds. Each type of 

body sound, such as those originating from the heart (e.g., 

murmurs or rhythm abnormalities) or lungs (e.g., wheezing or 

crackles), exhibits distinct characteristics, associated with 

specific anatomical locations, aligning with the function and 

position of the underlying organs. The body sounds heard 

through the skin are often complex sounds and consist of 

multiple components. For instance, heart sounds can be picked 

up clearly from the chest wall yet often mixed with lung sounds. 

The separation of these sounds for effective auscultation 

requires a thorough understanding of their distinct 

characteristics mainly including frequency, amplitude, and 

duration. This section summarizes the clinical information of 

various body sounds from the heart, breath, cough, swallowing, 

and bowel, as well as their mechanisms and distinctive 

characteristics. 

Heart sound 

The heart sound is one of the most critical physiological signals 

in clinical auscultation. For decades, it has been extensively 

investigated for the diagnosis of heart diseases, as it provides 

essential information that aids in identifying various 

pathological conditions of the heart, such as heart failure, 

valvular disease, and cardiomyopathy. 

Heart sounds are generated by the flow of blood during cardiac 

activity as the heart valves open and close3. The sudden opening 

and closing of cardiac valves generate pulse waves that 

propagate throughout the cardiovascular system, leading to the 

dilation and contraction of blood vessels. Audible sounds 

caused by these mechanisms are typically auscultated at four 

specific sites on the chest wall: the aortic area, pulmonic area, 

tricuspid area, and mitral area13. Moreover, these vibrations 

generate blood pulse waves that propagate through the 

cardiovascular system, expressed as skin vibrations that can be 

detected from various locations in the human body, including 

the fingertips, wrists, throat, and chest. A typical heart sound 

signal consists of four primary components. The first heart 

sound (S1) occurs during ventricular systole, typically lasting 

between 0.1 and 0.12 seconds, within a frequency range of 

40Hz to 60Hz. The second heart sound (S2) occurs during 

ventricular diastole, lasting approximately 0.08 seconds, with a 

frequency range of 60Hz to 100Hz14,15. The third and fourth 

heart sounds (S3 -S4) are relatively faint, occurring within a 

frequency range of 15Hz to 75 Hz. S3 is produced at the 

beginning of diastole, while S4 occurs during late diastole16. 

Abnormalities in these sounds have been shown to be 

indicators of heart failure during the diastolic phase. The 

auscultation of S3 and S4 is crucial for noninvasive diagnosis and 

early detection of myocardial ischemia17. 

Abnormal heart sounds have been shown to correlate with 

various cardiovascular diseases. For example, researchers have 

observed differences in heart sound patterns between healthy 

individuals and patients with valvular heart disease. Healthy 

heart sounds consist solely of the fundamental S1 and S2 

patterns, which result from the contraction and relaxation of 

the heart. In contrast, unhealthy heart sounds display additional 

noisy patterns alongside S1 and S2, such as systolic or diastolic 

murmurs18,19. The systolic murmurs of the mitral and tricuspid 

valve regurgitation during systole have acoustic signatures of 

constant intensity and high frequency. In contrast, diastolic 

murmurs are often detected in patients with aortic or pulmonic 

valve regurgitation7. Congenital heart disease (CHD) is the most 

prevalent type of birth defect. It presents at birth and 

potentially affects the structure of the heart and its normal 

functioning. Patients with CHD exhibit additional sounds, such 

as S3 and S4 sounds, murmurs, and clicks. Variations in the heart 

structures associated with different categories of CHD produce 

differences in the heart sounds, which finally manifest as 

additional pathological heart sounds at various stages of the 

cardiac cycle20.  

Besides the appearance of abnormal sounds, the spectrum 

pattern of heart sounds holds significant clinical value in 

differentiating among various types of heart valve diseases. For 

instance, coronary artery disease (CAD), caused by the 

deposition of materials within or beneath the intima of the 

arteries, alters the frequency patterns of heart sounds. Several 

studies on analyzing diastolic function have shown that CAD is 

associated with an increase of energy occurring in the frequency 

range below 200Hz21,22. 
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Table 1 Acoustic characteristics of adventitious sounds and possible lung diseases 

Adventitious breath 

sounds 
Location best heard23 Acoustics24 Characteristics23 Possible lung diseases25 

Crackles Peripheral lung 

Rapidly dampened wave 

deflection 

Frequency 100-2000Hz 

Duration <20ms 

Discontinuous 

High-pitched in fine 

crackles and low-pitched 

in coarse crackles 

Inspiratory 

Alveolitis, pulmonary 

fibrosis, atelectasis, 

congestive heart failure 

Wheezes 

 
Bronchi 

Sinusoid 

Frequency 100-1000Hz 

Duration >80ms 

Continuous 

High-pitched 

Expiratory > Inspiratory 

 

Obstructive lung diseases 

(e.g. asthma), cystic 

fibrosis 

Rhonchi 

 
Bronchi 

Series of sinusoid 

Frequency <300Hz 

Duration >100ms 

 

Continuous 

Low-pitched 

Expiratory > Inspiratory 

 

Chronic bronchitis, 

tumors, pneumonia, 

obstructive pulmonary 

diseases 

Stridor Larynx, Trachea 
Sinusoid 

Frequency >500Hz 

Continuous 

High-pitched 

Inspiratory 

 

Laryngitis, 

laryngomalacia, anatomic 

hypothesis 

Pleural friction rub Chest wall 

Rhythmic succession of 

short sounds 

Frequency < 350Hz 

Duration >15ms 

Continuous 

Low-pitched 

Inspiratory and 

expiratory 

 

Inflammation causes 

roughness of the surfaces 

of the visceral and 

parietal pleura. 

Breath sound 

Breath sounds serve as a valuable source of data on respiratory 

patterns. The distinction between normal breath sounds and 

those accompanied by adventitious sounds, such as wheezing 

and crackles, provides critical information regarding the 

physiology and pathology of respiration, including lung 

condition, airway obstruction, and airway dimensions26. These 

sounds are generated by turbulent and vorticose airflow moving 

through the tracheobronchial tree of the lungs. They are 

typically recorded from over the trachea or lungs using acoustic 

sensors. The characteristics of the respiratory sound signals are 

highly dependent on the capturing locations26. The frequency of 

breath sounds ranges from 100Hz to 4000Hz, depending on the 

positions they are recorded from. Since the chest acts as a 

reducer and low-pass filter, breath sounds recorded over the 

lung area typically fall within the range of 100Hz to 1000Hz. In 

contrast, breath sounds recorded at the trachea are usually 

accompanied by noise with resonances, primarily within the 

100Hz to 3000Hz range24. For the purpose of acoustic flow 

estimation, the tracheal respiratory sound signal is preferred 

due to its high intensity and sensitivity to changes in respiratory 

flow, compared to lung sounds27.  

Breath sound analysis provides valuable insights into pulmonary 

conditions and heart failure, offering important diagnostic 

information for both respiratory and cardiovascular diseases. 

Malmberg et al.28 demonstrated that spectral analysis of breath 

sounds can effectively indicate airway obstruction during 

bronchial challenge tests in children. Through experiments, 

they observed an increase in the frequency content of breath 

sounds in children with asthma, likely caused by inhaled airflow 

limitation. Alshaer et al.29 demonstrated a strong correlation 

between the breath sound envelope and the detection of 

apneas and hypopneas, which are the primary causes of sleep-

disordered breathing. Furthermore, the identification of 

continuous adventitious breath sounds, such as wheezing and 

crackles during the respiratory cycle, is important in diagnosing 

obstructive airway pathologies30. Table 1 summarizes the 

acoustic characteristics of adventitious sounds and possible 

lung diseases. 

Cough sound 

Coughing is one of the body’s airway protection mechanisms, 

preventing the entry of noxious materials into the respiratory 

system31. Cough sound has been utilized for the auscultation of 

over 100 diseases related to respiration and other medically 

relevant conditions. Analyzing the spectral patterns of cough 

sounds can reveal changes in the structural properties of tissues 

during therapy32.  

Cough signals can be readily detected from tracheal sounds due 

to their distinct patterns compared to other body sounds33. 

However, their characteristics have been found to vary 

significantly based on gender, type of sputum, and body 

structure34. In 1996, Korpáš et al.32  demonstrated that the 

intensity of cough sounds in patients with airway inflammation 

is significantly higher than in healthy subjects. Additionally, a 

study by Singh et al.35 found that the fundamental frequency of 

cough sounds tends to decrease with the age of the speaker. For 
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example, the frequency for the 14- to 20-year-old age group 

was 400Hz to 600Hz, while that for speakers aged over 40 years 

was 200Hz to 400Hz. 

Depending on the condition of the airways, coughs can be 

classified into two categories: wet cough, which produces 

sputum, and dry cough, which does not. Wet coughs are widely 

considered to result from viral or bacterial infections and are 

often contagious, while dry coughs may result from conditions 

such as asthma, gastroesophageal reflux, postnasal drip, 

sinusitis, and viral infections of the upper respiratory tract. The 

detection of these types of coughs assists pulmonologists in the 

differential diagnosis of conditions such as pneumonia and 

bronchiolitis, particularly in children under the age of two36. In 

recent years, with advances in signal processing techniques, 

machine learning has been widely employed for wet cough and 

dry cough classification37–39 and detection of various types of 

diseases. In recent years, cough sounds, along with breath 

sounds, have emerged as two common physiological signals 

investigated and utilized for the diagnosis of COVID-1933,40–44. In 

addition, neuromuscular disorders, a disease affecting the 

peripheral nervous system, can be diagnosed through cough 

impairment. A study by Recasens et al.45 demonstrated a 

reliable estimation of cough peak flow in patients with 

neuromuscular disorders, indicating that a cough peak flow 

(CPF) of less than 270 l/min is considered abnormal. Another 

approach proposed by Infante et al.46 involved a machine 

learning model based on cough sound analysis, achieving an 

accuracy of 74% for distinguishing between healthy and 

unhealthy subjects, and 80% between obstructive and non-

obstructive conditions.  

Swallow sound 

Similar to coughing, swallowing is another airway protective 

behavior that involves the movement of substances from the 

oral cavity through the pharynx and into the esophagus. 

Monitoring swallowing sounds is a crucial method for the early 

diagnosis of swallowing disorders, including dysphagia – a 

health issue that can cause difficulty in swallowing and may lead 

to potentially fatal consequences47.  

Swallowing sounds are associated with pharyngeal 

reverberations resulting from the opening and closing of valves, 

as well as the vibrations of the vocal tract48. Acoustically, they 

are complex and influenced by various factors, including age, 

gender, bolus volume, and different swallowing efforts such as 

forceful, normal, or easy swallowing47. Eveline et al.49 

demonstrated that men exhibited lower frequencies and 

shorter durations for liquid swallowing compared to women. 

Additionally, they observed that in older age groups, swallowing 

time tended to decrease, and the peak frequency for liquid 

swallowing was higher than that for saliva. A frequency range of 

150 – 450Hz is demonstrated to yield the highest sensitivity for 

detecting spontaneous swallows50. The site over the lateral 

border of the trachea immediately inferior to the cricoid 

cartilage has been shown to be the optimal site for detecting 

swallowing sounds51,52.  

Swallow records reveal the eating habits and ingestive 

behaviors of patients suffering from eating disorders, which 

serve as a valuable source of data for obesity disease 

monitoring and treatment. Monitoring ingestive behavior (MIB) 

has been widely used in active weight control programs by 

providing objective feedback needed for diet management53. 

There have been several efforts on food type classification and 

volume estimating using swallowing patterns53–57. Furthermore, 

swallow sound patterns analysis provides valuable information 

on swallowing diseases. For instance, the mean swallow 

duration for neurological patients with dysphagia was found to 

be 1402.1ms for a liquid bolus of 10ml water, which is much 

longer compared to the mean swallow duration of 440ms in 

healthy individuals58. Additionally, in male and female subjects 

with Parkinson’s disease, swallow reflexes were triggered over 

three times more frequently than in age-matched controls. This 

increased frequency of swallowing in Parkinson’s disease 

patients is often due to laryngeal bobbing, a failed attempt to 

achieve full laryngeal elevation and open the cricopharyngeal 

sphincter59. In another approach to distinguish between healthy 

subjects and those with swallowing disorders, Dudik et al.60 

compared data from patients with dysphagia but without stroke 

to previous data collected from healthy individuals. They 

identified significant differences in center frequency, peak 

frequency, and bandwidth, highlighting the potential diagnostic 

value of these acoustic features in detecting swallowing 

abnormalities. 

Bowel sound 

Bowel sound is closely associated with vital processes that 

reflect health conditions and are influenced by a wide range of 

intrinsic and extrinsic factors61. It can be considered a vital sign, 

comparable to heart sounds, particularly when intestinal 

function is impaired or disrupted. Bowel sound monitoring is 

particularly important for the early resumption of oral feeding 

in patients after surgery to reduce the incidence of 

postoperative ileus (POI)62. Bowel sound can occur as an 

isolated single burst or as a consecutive pattern with a very 

short time interval between the occurrences, called multiple 

bursts63. Although bowel sounds are produced regularly, the 

knowledge about their mechanisms has been limited due to 

their random frequency and variability. Understanding the 

relationship between bowel movements, the movement of 

luminal contents, and bowel sounds remains challenging, 

primarily because of the absence of a comprehensive 

theoretical model.  

In recent studies, physiologists believe that bowel sounds are 

generated by peristaltic movements, which involve the 

contraction and relaxation of the gut walls, propelling 

intraluminal liquids and gases. This process creates audible 

sounds that are indicative of intestinal activity and can provide 

insight into the functioning of the digestive system64–66. The 

dominant frequency of bowel sounds ranged between 100 Hz 

and 300Hz, with none of the recordings exhibiting a dominant 

frequency above 1000Hz67. A study introduced by Craine et al.68 

indicated that the frequency of bowel sounds is predominantly 

centered around 300Hz, with an approximate Gaussian profile 

with a half-maximum width of about 150Hz.  
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Bowel sounds, produced by the movement of intestinal 
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contents and gas during peristalsis, are clinically recognized as 

useful indicators of intestinal function68,69. For instance, 

hyperactive bowel sounds, described as “loud,” “high-pitched,” 

or “tinkling,” are often associated with conditions such as 

diarrhea or early-stage intestinal obstruction. In contrast, 

hypoactive bowel sounds, characterized by significantly 

diminished or absent sound, are linked to conditions like bowel 

obstruction, paralytic ileus, bowel torsion, or peritonitis, all of 

which may result in reduced peristalsis70. Patients suffering 

from bowel diseases, such as colon cancer and irritable bowel 

syndrome (IBS), or medical and neurological conditions that 

affect the intestinal tract, often experience motility and 

functional bowel disorders that result in changes in bowel 

sound patterns. A significant difference in the sound-to-sound 

interval has been observed between patients with IBS and 

healthy individuals68. For healthy subjects, the interval is 

approximately 1931 ± 365ms, whereas for the IBS group, it is 

significantly shorter, around 452 ± 35ms. This difference 

highlights the altered bowel motility patterns associated with 

IBS. Bowel sounds dominant frequency and duration have been 

also proved to differ based on the condition of intestinal 

obstruction67. It was found that in acute large bowel 

obstruction, the sound duration was significantly longer, with a 

median of 0.81 seconds compared to 0.55 seconds in acute 

small bowel obstruction (P = 0.021). Additionally, the dominant 

frequency was notably higher in large bowel obstruction, at 

440Hz, compared to 288Hz in small bowel obstruction. These 

findings suggest that swallow sound analysis could serve as a 

useful non-invasive indicator for differentiating between types 

of bowel obstructions. 

3. Sensing mechanisms and materials 

Body sounds produce various types of mechanical stimuli on the 

skin surface, including strain, pressure, and vibration. 

Electromechanical transducers are crucial for detecting and 

analyzing the mechano-acoustic signals generated by the 

human body. This section provides an overview of common 

sensing mechanisms such as piezoresistive, capacitive, and 

piezoelectric effects that can be employed in the development 

of miniaturized, wearable sensors for measuring the 

aforementioned body sounds. 

Piezoresistive 

Piezoresistive sensors function based on the principle that a 

mechanical load deforms the sensing element, resulting in a 

change in its electrical resistance. This deformation occurs 

when a sensor is subjected to acoustic waves, allowing it to 

convert sound pressure into an electrical output. This signal can 

then be processed and analyzed to provide information on the 

acoustic characteristics. For isotropic electrical conductors, the 

relative change in resistance can be expressed in terms of strain 

as follows71:  
∆𝑅

𝑅
=
∆𝜌

𝜌
+ (1 + 2𝜈)

∆𝑙

𝑙
 (1) 

where 𝑙 is the length, 𝜈  is the Poisson’s ratio of the material and 

𝜌   is the resistivity. Generally, the change in resistance of a 

stressed metal is predominantly influenced by alterations in its 

geometry, whereas for a semiconductor, the change in 

resistance primarily relies on variations in the resistivity72. 

The piezoresistive effect has been employed in a diverse range 

of materials, including metals, semiconductors, graphene, and 

hydrogels. In metallic materials, electrical resistivity typically 

remains constant when subjected to mechanical loads, resulting 

in resistance changes that are primarily attributable to 

geometric modifications. This characteristic leads to a relatively 

low sensitivity compared to semiconductors. However, the 

fabrication of metallic materials – particularly on flexible 

substrates such as polyimide – is simpler and requires fewer 

patterning and transfer steps. Hence, metallic materials have 

been widely employed in a broad range of strain sensors, 

including acoustic sensors. Metals such as gold (Au), silver (Ag), 

platinum (Pt), copper (Cu), titanium (Ti), and aluminum (Al) are 

known for their excellent ductility, suitable for use in flexible 

electronic devices and systems. Ag, Au, and Al provide good 

conductivity but exhibit high chemical reactivity that may result 

in the release of metal ions subjected to prolonged contact with 

body tissues. To address these limitations, they are typically 

encapsulated within a biocompatible polymer to prevent 

exposure to skin chemicals such as sweat. For instance, Cu-on-

polyimide has been utilized as an industrial standard material 

for manufacturing fPCB circuits. These Cu-based circuitries are 

typically packaged within stretchable substrates such as 

SilbioneTM rubber or Ecoflex to enhance their attachment to the 

skin 6,8,9. Furthermore, matrices of Ag nanowires (NWs) mixed 

with PDMS for Ecoflex, offer exceptional mechanical and 

electrical properties, which have been widely employed in 

wearable thermotherapy patches and can be extended to 

mechano-acoustic sensing applications 73. On the other hand, 

biocompatible metals such as Pt, Au, and Ti can serve as both 

metallic contacts or sensing elements (or in some cases, ECG 

(electrocardiography) electrodes) in wearable sensors, without 

requiring sophisticated encapsulation layers. As such, a 

pressure sensor using 50nm thick Cr/Au was demonstrated that 

can pick up small skin vibrations caused by vessel expansion 

under blood pulse waves to capture heartbeat from the wrist1. 

Using a Wheatstone full-bridge for signal readout, the sensor 

achieved a sensitivity of 𝑉𝑝/𝑉𝑟𝑒𝑓 = 0.0031mmHg-1 (here 𝑉𝑟𝑒𝑓  

and 𝑉𝑝  are the input and output voltage of the Wheatstone 

bridge, respectively). 

Recent improvements in the sensitivity of metallic 

piezoresistive substrates involve nanowire and surface 

engineering techniques. Metallic nanowires exhibit a greater 

piezoresistive effect due to their high aspect ratio, enabling a 

higher sensitivity to small forces than traditional bulk 

materials72. The utilization of high-conductivity metallic 

nanowires, such as silver and gold, further contributes to 

reduced power consumption for wearable applications.1 

Another method that was recently introduced to enhance the 

sensitivity of metallic materials is the use of surface engineering 

techniques, such as microcracks. This class of sensors operates 

upon the increase of their dimensions resulting in the 

enlargement of cracks and creating disconnections in 

conductive paths, resulting in an increase in their resistance. 
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This mechanism offers microcrack sensors the ability to capture 

ultrasmall pressure caused by sound waves. For instance, the 

Chen research group72 developed hierarchically resistive 

wearable sensors (HR) designed for body sound monitoring 

from the throat (Fig. 2a).  The sensor includes a cracked 

platinum film engineered with 20nm cracks on its surface 

(cracked Pt), for acoustic signals detection, and two other layers 

based on gold nanowires (v-AuNWs and u-AuNWs), for larger 

signals detection such as finger touch or throat movement. The 

cracked Pt layer was demonstrated to obtain a low detection 

limit down to 0.01% with a sensitivity as high as 0.33Pa-1, 

enabling it to detect signals such as the human carotid artery 

pulse, respiration, and speech.  

While metallic sensing elements typically offer a gauge factor of 

below 10, several semiconductors exhibit a higher gauge factor 

of up to 20074, making them suitable for the development of 

wearable acoustic sensors. Furthermore, their electrical 

conductivity can be tuned by varying the carrier concentration, 

facilitating the miniaturization process and integration with 

external conditioning circuits. The unique mechanical 

properties (e.g., a high Young’s modulus of 169GPa in <110> Si) 

and chemical stability are some key characteristics that enable 

the development of free-standing microstructures such as 

cantilevers and diaphragms, which are critically important for 

acoustic sensors75,76. Examples of wearable acoustic sensors for 

the detection of low-frequency acoustic signals include the 

work reported by Nguyen et al.76 utilizing a silicon-based 

cantilever that can achieve a resolution of approximately 

0.2mPa, over the frequency range of 0.1 – 250Hz. The highly 

flexible structure allowed the cantilever to obtain a sensitivity 

of over 10-2Pa-1. The high sensitivity and low-frequency 

detection capability were achieved by employing narrow hinges 

(10µm in width) in the cantilever while retaining a small 

footprint of the sensing element (300 × 300µm square).  

Most recently, low-dimensional materials (e.g., 1D and 2D) such 

as graphene77–79, carbon nanotubes (CNTs)80–82, and 

MXene80,83–85 have emerged as a candidate for flexible sensors 

due to their outstanding properties (Fig. 2b). Mixing these 

highly conductive, low-dimensional materials with soft 

polymeric substrates offers much higher stretchability 

compared to traditional strain sensors based on metals or 

semiconductors, which usually exhibit narrow sensing ranges of 

below 5%86,87. One of the most commonly used materials is 

graphene, which is composed of a single layer of carbon atoms 

arranged in a hexagonal honeycomb lattice and demonstrates 

exceptional electrical conductivity and mechanical strength. 

Employing reduced graphene oxide (rGO) with a gauge factor 

ranging from 16.2 to 150, Liu et al.77 reported a fish-scale-like 

sensor for heart pulse capturing that offers an extensive sensing 

range of up to 82% strain and a detection limit of down to 0.1% 

strain. Another class of low-dimensional materials used in 

acoustic sensors is carbon nanotubes (CNTs), which exhibit 

cylindrical structures created by rolling up graphene sheets. 

Their high aspect ratio and nanoscale dimensions enhance their 

sensitivity to acoustic vibrations. Liu et al.88 developed a strain 

sensor utilizing a thickness-gradient film of single-wall carbon 

nanotubes (SWCNTs) on an elastic polydimethylsiloxane 

(PDMS) substrate through a self-pinning method. The resulting 

material exhibited a remarkable gauge factor of up to 161 for 

strains less than 2% and the capability to withstand uniaxial 

strains exceeding 150%. MXenes are a new class of two-

dimensional transition metal carbides and nitrides with 

exceptional electrical properties. Composites based on MXenes 

offer additional tunability and can significantly enhance the 

performance of piezoresistive acoustic sensors. By utilizing the 

layer-by-layer (LBL) spray coating technique, Cai et al.80 

developed sandwich-like Ti₃C₂Tx MXene/CNT sensing layers 

that were fabricated by using delaminated Ti₃C₂Tx MXene flakes 

incorporating with single-walled carbon nanotubes (SWNTs). 

The wearable sensor with a thickness of less than 2 µm can 

detect a large range of deformation with a detection limit of 

0.1% strain. It exhibited a high stretchability of 130%, with a 

gauge factor of up to 772.6, enabling real-time monitoring of 

large-scale motions and detecting several vocal sounds from 

human throats. Despite their unique characteristics, 2D 

materials still represent a number of limitations such as 

hysteresis, poor linearity, and instability under environmental 

variations. Additionally, adverse conditions, such as sweating 

and high humidity, can significantly impact the stability of 

sensing materials and compromise sensor performance. For 

instance, MXene can be oxidized under ambient conditions, 

reducing the lifetime of the sensors and causing consistency and 

reliability issues. To address these challenges, one promising 

approach involves surface modification techniques, such as 

functionalization or passivation, to shield the MXene surface 

from oxidative degradation. Recently, biomimetic 

superhydrophobic surfaces have been used which enhance 

material stability, significantly improve environmental 

adaptability, increase durability, and bolster resistance to 

corrosion and liquid exposure89. For example, He et al.90 

developed a cotton-based superhydrophobic polypyrrole 

(PPy)/MXene pressure sensor with outstanding sensing 

performance and excellent stability. The sensor, consisting of 

MXene entirely covered by PPy, demonstrated stability in wet 

and corrosive environments, with favorable long-term 

performance over 1,000 cycles. Additionally, with a wide 

detection range of 0–80 kPa and a high sensitivity of −20.1 kPa⁻¹ 

for the 0–2 kPa range, the sensor can be mounted on various 

body parts, such as fingers, elbows, and wrists, to monitor 

physiological signals. 

In addition to these piezoresistive materials, various filler 

compositions, such as polyurethane (PU) 91, 

polydimethylsiloxane (PDMS)82, and poly(3,4-ethylene 

dioxythiophene):poly(styrene sulfonate) (PEDOS:PSS)12,92 have 

been employed to tune both the electrical and mechanical 

properties of sensors. Among these conductive polymers, 

PEDOT:PSS has been one of the most widely utilized materials 

due to its excellent dispersibility in water and polar solvents, 

biocompatibility, high electrical conductivity, and remarkable 

stability93. The chemical stability of the polymers also enhances 

long-term reliable performance in wearable sensors under 

various biological environments, as well as under high 

temperatures and highly corrosive conditions94. Recently, 

hydrogels81 have emerged as promising candidates for long-
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term wearable devices due to their biocompatibility, 

exceptional stretchability exceeding 1200%, and self-healing 

capabilities95. However, due to their high water content, 

hydrogel-based sensors are relatively sensitive to ambient 

temperature, leading to reduced stability and limiting their 

utility in diverse monitoring applications96. This issue can be 

addressed by incorporating organic solvents into hydrogels, 

forming binary-solvent-based organic conductive hydrogels97. 

This crosslinking strategy disrupts the strong hydrogen bonding 

between water molecules, effectively decreasing water 

evaporation and freezing within the hydrogel. The solvent can 

strengthen the matrix, making the sensor highly suitable for 

prolonged and continuous monitoring of physical activities 

under environmental changes. 

Capacitive 

Capacitive sensors operate based on the change of the dielectric 

constant or geometrical dimensions of capacitors under 

acoustic pressure. These sensors consist of two conductive 

plates (electrodes) that are placed parallel to each other, 

separated by a dielectric material (an insulating layer). The 

simplest configuration is two parallel flat plates that form a 

capacitance of98: 

𝐶 =
𝜀0𝜀𝑟𝐴

𝑑
 (2) 

where 𝐴  is the overlapped area of the two plates, 𝜀0  is the 

permittivity of free space, 𝜀𝑟  is the dielectric constant of the 

material between the plates, and 𝑑  is the separation between 

the plates. Changes in capacitance primarily occur due to 

variations in the dielectric constant of the dielectric layer 𝜀𝑟, the 

distance between the electrode layers 𝑑 , and the area of 

overlap between them 𝐴 . The common mechanisms of 

capacitive sensors involve the variation of the first two 

parameters99, with the electrodes typically made from either 

thin film membranes or flexible patches.  

In the parallel thin film membrane configuration, diaphragm 

properties, such as Young’s modulus, Poisson’s ratio, thickness, 

density, and geometric shape are the key features deciding the 

performance of acoustic sensors72. A variety of membrane 

materials have been employed, including mylar100, metals101,102, 

p-doped silicon103, silicon nitride104–106, silicon carbide107, 

polysilicon108,109, polyimide110, and graphene111. Several 

research groups have utilized metals as diaphragm materials for 

sensors101,102. Although metals can be easily patterned, they 

typically exhibit lower mechanical sensitivity and are more likely 

to fail prematurely due to fatigue compared to other materials. 

The mylar diaphragm was first introduced by Hohm et al.104 

showed higher durability. However, as it was found to wrinkle 

under compressive stress, the authors proposed the use of 

silicon nitride (Si₃N₄) to enhance the robustness of sensors. 

Silicon nitride offers better tensile stress and advantages in 

process integration. However, it still exhibits relatively high 

intrinsic stress, affecting sensor performance. Additionally, as 

an insulating material, Si₃N₄ requires the deposition of metal 

electrodes on the membrane for electrical functionality, adding 

complexity to the sensor design112. Pedersen et al.110 developed 

polyimide diaphragms, featuring several key advantages such as 

reasonable stress values, and low processing temperature, 

typically below 300°C, suitable for integration with other 

components and materials without risking thermal damage. 

Similar to Si₃N₄, polyimide requires metal deposition and 

patterning on its top surface for sensing acoustic waves. 

Compared to these non-conductive membranes, Si (single 

crystal or polycrystal) can serve as both the mechanical 

supporting layer and the electrodes. Advancements in material 

engineering have enabled the development of ultrathin Si 

membranes with thicknesses in a range of a few hundred 

nanometers, enhancing the sensitivity of Si-based capacitive 

sensors. The use of polysilicon which can be formed under low-

temperature processing can reduce residual stress, further 

improving the performance of acoustic sensors108,113.  

The thin film capacitive sensors are composed of flexible 

electrodes and elastic dielectric layers. Increasing the dielectric 

constant is an effective strategy to enhance the sensitivity 

based on changing the dielectric properties. This method 

achieves both high initial capacitance and significant variations 

in capacitance. Commonly utilized dielectric layers include 

PDMS, Ecoflex, and PET films with the dielectric constants 2.3-

2.8113,  2.17114, and 3.5115, respectively. Geometric changes, 

such as a reduction in the separation distance 𝑑  between 

electrodes in response to pressure, depending on the stiffness 

of the dielectric layer. Therefore, reducing the elastic modulus 

of the dielectric layer can improve the sensitivity of capacitive 

sensors99. A common approach based on this concept involves 

engineering dielectric layer surfaces with microstructures. For 

instance, structuring the dielectric with air pockets can 

effectively increase permittivity as air is displaced during 

deformation. This approach also softens the dielectric layers, 

further increasing the deformability of the sensor. Several types 

of microstructures have been proposed, including electrode 

microarrays116, micropyramid structures116–118, abrasive 

papers119, human tissues inspired120, and plant leaves121–123 (Fig. 

2c,d). Micropyramids are a widely used architecture due to their 

simple fabrication and sensitivity. An 8×8 pixel pressure sensor 

pad employing microstructured PDMS film proposed by 

Mannsfeld et al.116 offers a sensitivity as high as 0.55kPa-1, much 

higher than that achieved in previous studies without 

microstructures at 0.048kPa-1 124. Yang et al. employed porous 

materials, incorporating air into the dielectric layer during 

deformation, effectively reducing the elastic modulus of 

dielectric layers 44.5kPa-1 in a low-pressure regime below 

100Pa125. The proposed sensor utilized a dielectric layer 

combining porous and micropattern structures, resulting in a 

significant improvement in sensing performance, enabling it to 

capture wrist pulses and gentle airflow and detect the landing 

of fruit flies with a small pressure of 0.14Pa. 

Piezoelectric 

Broad bandwidth, high sensitivity, and self-powered operation 

make piezoelectric materials a preferred option for vibration 

and sound detection126. Unlike capacitive and piezoresistive 

transducers which require power sources, piezoelectric devices 

offer a unique capability for self-sensing and self-powering 
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wearable systems. Piezoelectric transducers, while functioning 

as acoustic sensors, can also serve as actuators that propagate 

sound waves into the body for ultrasound scans. Piezoelectricity 

refers to the ability of certain materials to generate an electric 

charge in response to applied mechanical stress, which can be 

approximated by static linear relations between two electrical 

and mechanical variables127:  

𝐷 = 𝜀𝑇𝐸 + 𝑑𝑇    (Converse effect) (3) 

𝑆 = 𝑠𝐸𝑇 + 𝑑𝐸     (Direct effect) (4) 

where 𝑆 is a strain tensor, 𝑇 is a stress tensor, 𝐸 is an electric 

field vector, 𝐷 is an electric displacement vector, 𝑠𝐸  is an elastic 

compliance matrix when subject to a constant electric field, 𝑑 is 

a matrix of piezoelectric constants and 𝜀𝑇  is a permittivity 

measured at constant stress. The magnitude of the piezoelectric 

effect is typically quantified by the piezoelectric constants 𝑑 128, 

representing the ability of a material to convert mechanical 

stress into electrical charge. The larger the piezoelectric 

coefficient, the more effective the material is in converting 

mechanical energy into electrical energy, making it a key factor 

in evaluating piezoelectric performance for both sensing, 

actuation, and energy harvesting applications. To characterize 

piezoelectric materials, two key coefficients are typically 

considered: 𝑑33  and 𝑑31 . The 𝑑33  coefficient denotes that the 

force is applied along the polarization axis, and the charge is 

collected along the same axis, whereas for 𝑑31  the force is 

applied along the polarization axis, but the charge is collected 

along a perpendicular direction129.  

 These parameters in several natural materials have been 

explored, including quartz (SiO₂), topaz, and organic materials: 

silk, wood, rubber, bone, and hair130. Although natural crystal-

based materials show a high mechanical quality factor (𝑄𝑚 ), 

their manufacturing process is difficult and expensive. Advances 

in material science enable the development of a broad range of 

highly efficient piezoelectric materials including 

semiconductors (PZT, GAN, ZnO), ceramics (e.g. BaTiO₃, 

LiNbO₃), polymers (e.g. PVDF, PLLA), and composite materials.  

Ceramic materials with high piezoelectric constants are 

extensively used in medical applications and underwater 

communication due to their exceptional properties72. Ceramic 

materials have large piezoelectric and dielectric coefficients, 

high electromechanical coupling factors, and efficient energy 

conversion rates. For instance, Barium Titanate (BaTiO₃) has a 

piezoelectric constant 𝑑33 of 190, which is significantly greater 

than that of natural materials like quartz, which has a 𝑑33  of 2.3. 

However, piezoceramics are brittle and have low stretchability, 

making them easily damaged under large mechanical strains. As 

a potential solution for this limitation, the island-bridge 

structure, consisting of movable floating islands and flexible 

serpentine connections, significantly enhances the overall 

stretchability of the structure131 (Fig. 2e). Complex and 

expensive fabrication processes, along with their mechanical 

brittleness are some of the main challenges in ceramic 

piezoelectric materials for flexible, wearable acoustic sensors. 

 Despite having smaller piezoelectric effects, polymer materials 

with mechanical flexibility are highly conformable to human 

skin, enhancing their suitability for wearable sensor 

applications. Piezoelectric polyvinylidene fluoride (PVDF) 

sensors have attracted attention for wearable applications due 

to their numerous advantages, including flexibility, wide 

frequency response, low cost, ease of fabrication, 

biocompatibility, and air permeability132. These features make 

PVDF an ideal material for developing wearable sensors that can 

effectively detect and monitor physiological signals133–135. A 

belt-type device with PVDF-based 30µm thin film was 

introduced early by Choi et al.133 to capture cardiorespiratory 

signals from the chest wall. The PVDF sensor demonstrated the 

capability to detect low-frequency chest movements down to 

0.3Hz with an SNR of 18.06. The high stretchability of up to 30% 

stretching allows for integration with PDMS substrates, 

enabling conformal contact with human skin, and making it 

suitable for capturing subtle skin deformations on the human 

wrist. 

 
Table 2 Piezoelectric coefficients for different piezoelectric inorganic 
and organic materials136 

 

 Material Type 
Piezoelectric Constants 

𝑑33 (pC/N) 𝑑31 (pC/N) 

Inorganic 

PMN-PT Single 

Crystal 

2000-3000  

Quartz 2.3 -67 

ZnO 
Crystal 

6-13 -5 

GaN 2-4 -1.5 

AIN 

Ceramic 

3-6 -2 

PZT-5H 593 -274 

BaTiO₃ 190 -78 

LiNbO₃ 16 -1 

Organic 
PVDF 

Polymer 
-33 23 

PLLA 6-12  

Fig. 3 Typical configuration of wearable microphones. a) 
Configurations of diaphragm microphones based on different 
sensing mechanisms, left to right: piezoresistive, piezoelectric, and 
capacitive. b) Membrane modification strategies to reduce initial 
residual stress, left to right: membrane with surface cutting, 
membrane with spring supports, and membrane with corrugations. 
c) Configurations of cantilever microphones based on different 
sensing mechanisms, left to right: piezoresistive, piezoelectric.  
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The low piezoelectric coefficients of piezoelectric polymers can 

be addressed by utilizing piezoelectric composites that combine 

ceramics and polymers, offering advantages such as good 

flexibility, ease of processing, and a high piezoelectric constant, 

making them ideal for wearable applications137,138. For instance, 

incorporating graphene oxide into dissolved PVDF forms a 

PVDF/GO piezoelectric material137. This material achieves a high 

sensitivity of 4.3 mVPa⁻¹ and the ability to detect pressures as 

low as 10Pa, suitable for capturing vocal vibrations when 

attached to the throat. Furthermore, the sensor can function as 

a nanogenerator, generating up to 1.2 nW/m² of power 

harvested from respiration when employed on a face mask. 

BaTiO₃ particles can also be added to polymers to improve their 

piezoelectric effect. The addition of BaTiO₃ further enhances 

the piezoelectric constant d31 of P(VDF-TrFE) copolymer from 

8.3 to 46 pC/N138, maintaining high stretchability and providing 

high acoustic sensing capabilities. These sensors can be 

incorporated into woven fabrics and integrated into clothing, 

enabling the detection of heart sounds and human voice 

vibrations transduced through the chest wall.  

Advances in micromachining have improved piezoelectric 

performance with the development of nanofiber and 

microstructured materials. PVDF nanofibers exhibit significant 

enhancements over thin films, including smaller diameters, 

higher piezoelectric effects due to a higher length-to-diameter 

ratio, and higher surface-to-weight ratio. Nanofiber-based PVDF 

devices have achieved sensitivities as high as 266 mVPa⁻¹ 135, 

over five times greater than traditional PVDF film devices (Fig. 

2f). The sensitivity can be further extended by employing three-

dimensional topologies such as microstructures, greatly 

improving performance characteristics. Inspired by human skin, 

multimodal electronic skin (e-skin) has been developed, 

mimicking the diverse sensory structures and functions of 

human fingertips139. This e-skin employs flexible and 

microstructured ferroelectric films composed of PVDF and rGO, 

enabling the detection and differentiation of acoustic pulse 

waves and airflow pressures as low as 0.6 Pa. These innovations 

highlight the versatility and potential of advanced piezoelectric 

materials in wearable sensing technologies. 

4. Mechano-acoustic sensors configuration 

In addition to sensing mechanisms, the configuration of 

mechano-acoustic sensors plays a key role in determining the 

measurement bandwidth, range, and resolution. Depending on 

the application, these sensors are generally categorized as 

microphones, accelerometers, or flexible pressure/strain 

sensors. While soft polymeric materials can conformally attach 

to human skin due to their inherent flexibility, rigid MEMS 

microphones and accelerometers, with their small footprints, 

can be integrated into the fPCBs, allowing for stable contact 

with the skin and minimizing artifacts. This section discusses the 

mechano-acoustic sensors architecture and their 

characteristics. 

Microphones 

Microphones are transducers that convert sound pressure into 

electrical signals. Typical microphones can pick up frequencies 

ranging from 20Hz to 20kHz, including almost audible body 

sounds, such as cardiorespiratory and cough sounds9,75,140,141, 

and bowel sounds66,70,142.  

Most of the structural designs of microphones utilize either 

diaphragms or cantilever beams. When sound pressure impacts 

the microphones, it applies a force that causes the thin 

diaphragm or cantilever beam to vibrate at a frequency 

matching the sound wave. This vibration results in deflection or 

bending of the diaphragm or beam in response to the sound 

pressure. A sensing mechanism - mostly using piezoelectric, 

capacitive, or resistive sensors - detects this deflection and 

converts it into an electrical signal. This electrical signal 

corresponds to the intensity and frequency of the sound, 

enabling the acoustic sensors to capture audio or pressure 

variations. Each of the three primary sensing mechanisms – 

piezoresistive, capacitive, and piezoelectric – offers distinct 

advantages and limitations. The comparison of sensitivity 

and dynamic range between these mechanisms is shown in 

Table 3.  

 

Table 3 Comparative analysis of three different transduction 

schemes143 

Parameters Piezoresistive Capacitive Piezoelectric 

Input power Required Required None 

Sensitivity  

(𝜇𝑉/𝑃𝑎) 

Low 

0.1 to 100 

Good 

400 to 

1000 

Medium 

10 to 500 

Dynamic 

range 

Relatively 

wide 

Narrow Wide 

 

Figure 3 presents the typical structure designs of acoustic 

sensors, including diaphragm, cantilevers, and structured 

membranes. Diaphragm microphones suffer from residual 

stress after manufacturing, which is often caused by their fixed 

boundaries and various factors during fabrication (e.g., thermal 

expansion) that may induce unwanted tension across the 

diaphragm. Due to these stresses, buckling in the radial or 

circumferential direction can occur in the membrane144, limiting 

Fig. 4 Typical configurations of wearable accelerometers. a) 
Configuration of piezoresistive cantilever accelerometer. b) From left 
to right: piezoresistive cantilever accelerometers with single 
cantilever-beam,  dual cantilever-beam, and quad cantilever-beam 
structures. c) Configuration of differential capacitive accelerometer. 
d) Differential capacitive accelerometer with lateral comb structure: 
configuration (left) and schematic (right). 
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their mechanical properties and sensitivity. Several efforts have 

been made to address this issue. Membrane cuts can reduce 

buckling where buckling in the radial direction is addressed by 

making some cuts in the circumferential direction145 while 

buckling in the circumferential direction is addressed by 

creating cuts in the tangential direction, Fig. 3b. Corrugations in 

the diaphragms and spring-supported diaphragms are some of 

the other techniques used to reduce the initial stresses in the 

thin film diaphragms. Corrugations are usually incorporated 

along the edges of the membrane to maintain a flat central 

diaphragm area146–148, but the corrugation depth needs to be 

carefully considered, as an increase in corrugation depth can 

reduce effectively buckling but also impact the mechanical 

sensitivity106. Spring-supported diaphragms can be achieved by 

using a rigid diaphragm with flexible springs. Thus, the 

deformation caused by residual stress can be significantly 

reduced. This design was further improved to have better 

sensitivity (SNR) and bandwidth by using a flexible V-shaped 

spring, silicon nitride electrical isolation, and the ring-type 

oxide/polySi mesa, respectively149. 

Those structural modification strategies can significantly reduce 

the diaphragm buckling, however, are generally complex and 

usually require multiple steps of fabrication. Cantilever sensors 

can overcome these limitations owing to their unique structural 

design. The single-point anchoring configuration instead of 

clamped membrane minimizes the buildup of initial stress that 

commonly occurs in diaphragms. This structure also allows 

pressure to be released through the air gaps to avoid air trap 

that frequently occurs in the diaphragm design150. Compared to 

the fully clamped structure, the cantilever structure offers a 

higher sensitivity due to its lower mechanical stiffness151. 

Square and triangular cantilever diaphragm sensors have been 

introduced by Fang’s group by cutting a silicon membrane into 

four separate blades149,152,153. Each of these cantilevers is 

suspended by one edge with the cavity chamber. With the same 

diaphragm, the square cantilever was found to provide larger 

stress and wider stress distribution than the triangle shape, 

making a significant increase in the sensitivity149. To further 

enhance the sensing performance, serpentine support beams 

were employed to gain a higher aspect ratio, and thus increase 

the sensitivity. A piezoelectric MEMS resonant microphone 

array proposed by Liu et al.151 was demonstrated to gain an 

output voltage as high as 131.4 mV/Pa. This high sensitivity 

enables the device to capture respiration and detect wheezing 

in lung sounds.  

Despite those advantages, the air leakage from the gap acts like 

a high-pass filter150, making cantilever microphones less 

sensitive to low-frequency acoustic signals, typically below 

20Hz. This limitation prevents these sensors from capturing 

several important body sounds, such as the S3 and S4 heart 

sounds, which can go as low as 10Hz. These specific frequencies 

are critical in cardiovascular diagnostics, as they provide insights 

into heart valve activities and potential abnormalities. Reducing 

the gap surrounding the cantilever can slow the air leakage rate, 

maintain the chamber pressure, and thus allow the sensor to 

detect low-frequency acoustic signals. A four-triangular-slave 

piezoelectric sensor with 1.36um gaps was introduced by Tseng 

et al.154, maintaining a high sensitivity at 10Hz. By further 

reducing the gap to 1um, Nabeshima et al.150 demonstrated a 

low-frequency detection limit at 0.7Hz, capable of capturing 

vessel expansion caused by heart pulse waves from the throat. 

Accelerometers 

Accelerometers are widely utilized in measuring vibrations or 

acceleration, including health and medical monitoring 

applications, such as tracking heart rate, respiration, and body 

motions. Unlike acoustic sensors, which detect sound pressure, 

accelerometers have a unique element, namely proof mass that 

significantly influences the sensing performance of the 

accelerometer. The proof mass is typically suspended within the 

fixed frame using cantilever beam structures155, allowing it to 

Fig. 5 Typical configurations of flexible, wearable sensors, with a-

c) microstructured materials, d-e) hole patterns, and f-g) sensor 

array structures. a) Flexible sensor based on conductive composite 

elastomers with interlocked microdome-array structures. Scale bar: 

5um. Reproduced with permission. 165 2014, ACS Publications. b) 

Flexible pressure sensor based on PDMS with porous-pyramid 

microstructures. Reproduced with permission. 125 2019, ACS 

Publications. c) Flexible piezoresistive sensor based on metal thin 

films with microwire patterns. Reproduced with permission. 1 2024, 

Springer Nature. d) Flexible acoustic sensor with eight holes 

patterned around the rim of each diaphragm. Reproduced with 

permission. 166 2019, Springer Nature. e) Flexible acoustic sensor 

with holes patterned on the backplate. Reproduced with 

permission. 167 2022, Wiley-VCH. f) Active-matrix flexible pressure 

6×6 sensor array. Reproduced with permission. 172 2023, Wiley-VCH. 

g) Flexible sensor array based on integrated all-nanofiber 

networked electrodes. Reproduced with permission. 170 2022, 

Elsevier.
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move in response to inertia forces. When the sensor is 

accelerated, the proof mass displaces due to inertia, which can 

be detected using a sensing mechanism discussed above. 

Compared to thin cantilevers or diaphragm structures used in 

acoustic sensors, the addition of proof mass in accelerometers 

provides greater motion inertia. This makes accelerometers 

more sensitive to physical motion, such as movement or 

acceleration, rather than sound pressure. The higher inertia 

generally makes accelerometers a lower dynamic range 

compared to acoustic sensors. The advances in micromachining 

fabrication make MEMS-based accelerometers widely utilized 

due to their tiny footprint, high sensitivity, and low power 

consumption. Generally, piezoresistive and capacitive 

transduction are the most prominent sensing schemes used in 

MEMS accelerometers86.  

Piezoresistive accelerometers are among the first 

commercialized acceleration sensors. The design structures of 

piezoresistive accelerometers include single cantilever beams, 

dual cantilever-beam, and quad cantilever-beam structures, Fig. 

4a,b. MEMS-based piezoresistive accelerometers have several 

advantages such as simple design, robustness, and simple 

manufacturing process. They generally offer a wide bandwidth 

but are limited by their relatively low sensitivity, making them 

preferred for impulse/impact detection instead of wearable 

health monitoring sensors156. Capacitive accelerometers with a 

typical design shown in Fig. 4c, in contrast, are highly sensitive 

to small movements and can detect subtle changes in motion, 

for monitoring low-g forces and low-frequency vibrations. With 

those advantages, capacitive sensing-based MEMS 

accelerometers have been utilized in high-precision 

applications, including health monitoring. Despite those 

benefits, the nonlinear response is a limitation of the 

conventional capacitance accelerometers, making the signal 

readout process complex. To overcome the nonlinear response 

of capacitive mechanisms, differential capacitive pressure 

microsensors were introduced using the parallel comb structure, 

Fig. 4d. Under the inertial force, the movement of proof mass 

causes the capacitance to increase on one side of the lateral 

comb and decrease on the other side, resulting in good 

linearity157. Examples of this approach include the work 

reported by Lou et al.158, composed of a proof mass, suspending 

serpentine springs, and comb fingers. The device acts as a full-

bridge capacitor sensor, each half-capacitive bridge is split into 

two parts and located at two cross-axis corners. This differential 

layout helps cancel common-mode input noise such as 

substrate coupling, power supply coupling, and cross-axis 

excitation and features a linear range of ±13G. Lateral comb 

structures are also used widely in tri-axis accelerometers, 

capable of detecting motion along all three axes159–161. 

Commercial tri-axis accelerometers, such as the ADXL3357,162 

and the LSM6DSL9, have been adopted for body sound 

monitoring because of their low cost, convenience, and 

compact size. They are particularly effective for picking up low-

frequency body sounds (including heartbeats) and movements 

(such as chest movements and body motions), with a high 

sensitivity of 300 mV/g.  

Advances in nanoengineering have enabled the development of 

ultra-thin electrode separation capacitive accelerometers, 

which offer higher bandwidth and improved sensitivity. These 

innovations make it possible to place the sensor directly on the 

skin to detect body sounds transmitted through the skin. These 

specialized sensors are known as accelerometer contact 

microphones (ACM)163,164. For example, Gupta et al.163 

introduced a wearable ACM capable of capturing a wide range 

of mechano-acoustic physiological signals. This device is 

fabricated using the MEMS process on a silicon-on-insulator 

wafer with a 40μm thick device layer, and 270nm capacitive 

gaps. The ultra-thin gap features a sensitivity as high as 76 

mV/g, and a linear response in the range of ±16g. The 

accelerometer can pick up a broad frequency range from below 

1Hz to 12kHz, including heart and respiratory rate, heart 

sounds, lung sounds, and body motion and position of an 

individual.  

Flexible pressure sensors and strain sensors 

Flexible thin patch sensors represent a class of mechano-

acoustic sensors widely used for monitoring body signals. 

Compared to rigid MEMS acoustic sensors and accelerometers, 

these devices typically utilize soft substrates and offer higher 

conformable contact with human skin. Flexible pressure/strain 

sensors operate based on the deformation of the skin surface 

to which they are attached. Vibrations from the skin induce 

stresses into the sensor, which are converted into electrical 

signals through sensing mechanisms such as piezoresistive, 

piezoelectric, triboelectric, or capacitive effects129.  

Sensors with microstructured materials: Porous and 

microstructured materials have been used in various types of 

sensors, including piezoresistive, capacitive, and piezoelectric 

materials85,120,125,165 (Fig. 5a-c). Porous materials enhance both 

electric and mechanical properties, while microstructures 

improve the contact between electrodes and sensing layers. In 

one such example, Park et al.165 proposed a piezoresistive 

sensor using interlocked microdome arrays that increase the 

contact area between electrodes. The sensor was achieved by 

micromolding a composite of carbon nanotubes (CNTs) and 

PDMS prepolymer into films with 3 x 4μm microdome 

structures. These films, when combined face-to-face, form a 

piezoresistive sensor with a superior sensitivity of 15.1 kPa-1 and 

a minimum detectable pressure of 0.2Pa, enabling it to 

accurately monitor breathing patterns. The sensor sensitivity 

was further improved in another work reported by Ma et al.85, 

which introduced a piezoresistive sensor based on ultralight and 

super elastic aerogel. The sensor was fabricated by mixing 

reduced graphene oxide (rGO) with MXene. The MX/rGO 

aerogel not only combines the large specific surface area of rGO 

and the high conductivity of MXene (Ti3C2Tx)  but also exhibits a 

rich porous structure, which leads to significantly enhanced 

performance with respect to those using single-component rGO 

or MXene.  The piezoresistive sensor based on the MX/rGO 

aerogel shows extremely high sensitivity (22.56 kPa–1), fast 

response time (<200ms), and good stability over 10,000 cycles. 

With the ability to capture pressure below 10Pa, the sensor can 

pick up heart pulses in adults. While microstructured and 
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porous materials offer highly sensitive pressure sensing, their 

fabrication still involves many steps and is costly due to mold 

requirements. Thin metallic serpentine wires offer the 

advantages of simple and low-cost fabrication processes. By 

etching serpentine patterns with micro-scale widths (3µm) onto 

ultra-thin metal films (50nm), Park et al.1 developed 

temperature-independent strain gauge sensors with a 

Wheatstone full-bridge configuration that presented high 

sensitivity and a linear response to applied pressures within the 

range of 0–200mmHg. Arranging two strain gauges above and 

below the neutral axis of a polyimide film effectively cancels out 

the influence of temperature fluctuations. Furthermore, the 

full-bridge configuration exhibited significantly enhanced 

sensitivity, achieving a pressure-voltage slope of 0.0031, which 

is three times higher than that of a quarter-bridge configuration 

of 0.0009.  

Sensors with hole patterns: Capacitive flexible sensors based on 

hole-patterned structures can improve the frequency range and 

establish intimate contact with the skin. The sensors consist of 

a low-stress bending membrane and a high-stress perforated 

membrane. Holes added to the surface help improve the 

acoustic sensitivity and frequency response (Fig. 5d,e). An 

example of this approach is an ultrathin (<5 µm), conformable 

vibration sensor introduced by Lee et al.166, based on hole-

patterned diaphragm structures of polymer film. The holes 

around the rim reduced the stiffness of each diaphragm and the 

air damping underneath. The design not only offers high 

sensitivity (5.5 VPa−1) to sense with human voice but also 

enables noise-canceling functionality even in challenging 

acoustic environments. However, the sensor is limited by its 

poor frequency response and a narrow acoustic pressure range. 

The authors then employed SU8 for the capacitive diaphragm 

structure, owing to its advantages of high processability, 

relatively low Young’s modulus and dissipation factor, and low 

curing temperature167. The hole patterns are utilized to the 

backplate to form a perforated structure with an open fraction 

area (44%) significantly reducing the air damping. The SU8 

sensor with a small footprint of less than 9mm2 achieved high 

sound-sensing quality, featuring a flat frequency response (15–

10,000 Hz), and high sensitivity (22.4 mVPa−1).  

Sensor array configurations: The location of attachment is 

critically important for targeting the signal of interest and 

minimizing the influence of undesired acoustic sources. The 

location usually requires expert knowledge to optimize the 

sensor accuracy. Sensor arrays help improve the convenience of 

sensor locating and installation onto human skin (Fig. 5f,g). 

According to the readout method, matrix sensor arrays can be 

classified into passive and active matrix arrays. In passive arrays, 

electrodes are laid directly on the material, while in active 

arrays, active components (e.g., transistors) are tightly 

integrated with each pixel element168. Generally, passive arrays 

are easier to fabricate and can be used for wearable 

applications, such as tactile sensors169,170. However, electrical 

crosstalk may exist within the array, leading to inaccurate 

measurement of the resistance. For body sound monitoring, 

active arrays have been widely utilized including flexible thin 

film transistors (TFTs)168.  For example, Baek et al.171 introduced 

the spatiotemporal measurements of arterial pulse waves using 

wearable active-matrix pressure sensors. The proposed active-

matrix pressure sensor arrays consist of inkjet-printed organic 

TFT arrays in a 10 × 10 active-matrix integrated with 

piezoresistive sensor sheets. A high sensitivity of 16.8 kPa−1 

was achieved with a low power consumption at 101  nW. 

Another 6×6 capacitive sensor array based on the FEP-Air-FEP 

sandwich structure was proposed by Han et al.172 to record 

heart sounds at different locations of the chest area 

simultaneously, including the aortic, pulmonic, Erb’s point, 

tricuspid, and mitral regions. The device exhibits an excellent 

dynamic sensitivity of 591 pCkPa−1 in the range of 0–8kPa with 

600Hz bandwidth, allowing for the capturing of heart, breath, 

and Korotkoff sounds.  

5. Fabrication technologies for mechano-
acoustic sensors  

Fabrication techniques play a crucial role in determining the 

feasibility of acoustic sensors for real-world and clinical 

applications, as they affect factors such as cost, efficiency, and 

sensing performance. This section introduces the widely used 

fabrication methods for mechano-acoustic sensors. 

MEMS (Micro-Electro-Mechanical Systems) technique 

MEMS technology serves as the industrial standard in the 

fabrication of acoustic sensors due to its mature processes, high 

scalability, and ability to achieve small footprints, Fig. 6a. MEMS 

processes are compatible with various sensing mechanisms, 

including piezoresistive75,76,150, capacitive163,164, piezoelectric 

effects17,151. In wearable devices, where compactness is critical, 

MEMS offers significant advantages by minimizing the 

geometric mismatch between the rigid sensor platform and the 

soft, stretchable surfaces of human organs and skin. The 

fabrication of MEMS-based acoustic sensors typically begins 

with defining the sensing structure, followed by metallization to 

form electrical components, backside etching to open the air 

cavities, oxide removal to release the sensing structure, and 

finally bonding the microfabricated device to a rigid substrate, 

such as glass, to create an enclosed chamber.  

The materials commonly used in MEMS fabrication include zinc 

oxide (ZnO), lead zirconate titanate (PZT)152, and silicon 

(Si)75,76,150, with silicon being the most popular template due to 

its availability, low cost, and compatibility with well-established 

microfabrication processes. For instance, Nguyen et al. 75,76 

developed a silicon acoustic sensor on an SOI (Silicon-on-

Insulator) wafer. The cantilever-based sensing element was 

formed on a thin film Si (300nm x 100um x 100um) using ion 

implantation into <100> Si (Arsenic doped) with a carrier 

concentration of approximately 1019 cm−3, and diffusion depth 

of ~100nm. After that, metal layers (Au/Cr) were deposited on 

the piezoresistive layer to create metal contacts. The Si sensing 

element with electrodes was then formed by wet-etching and 

Reactive Ion Etching (RIE), respectively. The fabrication process 

continues with back-side lithography followed by Si dry etching 

using Deep Reactive Ion Etching (DRIE). Finally, the cantilever 
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diaphragm is released using vapor HF to remove the box oxide 

layer. The whole sensor, with a small footprint of 1.5 × 1.5mm, 

can be employed for printed circuit boards (PCB) or flexible PCB 

by wire-bonding technique for various applications of health 

monitoring75,150,173.  

While Si devices are a preferred choice for wearable acoustic 

sensors, they are often affected by temperature fluctuations 

and light exposure, which can compromise their sensing 

performance in extreme environments. To address these 

limitations, wide-bandgap materials such as silicon carbide (SiC) 

and gallium nitride (GaN) have been proposed, offering 

excellent thermal stability and high optical transparency, 

making them suitable for high-temperature applications and 

real-time optical observations.  

Mold casting technique 

The use of master molds offers several advantages for fabrication of 

soft substrates, especially for microstructured PDMS layers116,174–178, 

Fig. 6b. These benefits include ease of customization for tailored 

product development, large-scale fabrication, and a significant 

reduction in material waste. This method provides an efficient and 

sustainable pathway for producing advanced sensing devices while 

maintaining flexibility and adaptability in design. 

There are several approaches to manufacturing microstructures for 

mold casting. One such approach relies on conventional 

photolithography techniques to prepare a patterned silicon 

template, with typically used structures such as 

micropyramids116 and micropillars174. Despite its advantage of high 

accuracy, the manufacturing process of the technique is usually 

complicated and time-consuming. The other approach exploits 

natural existing biomaterials such as lotus leaves175–177 to directly 

fabricate the microstructure arrays. This approach is simple and cost-

effective, however, it has a significant limitation regarding the 

uniformity of the microstructures. In particular, their consistency in 

shape, dimensions, and spacing cannot be freely controlled, as they 

are dictated by the inherent properties of the natural biomaterial120.  

3D printing techniques have also been utilized for mold fabrication, 

offering numerous advantages including fast prototype production, 

ease of sensor structure customization, reduced fabrication costs, 

and simplified manufacturing processes178. For example, Zhang et 

al.179 introduced a capacitive soft pressure sensor with bonded 

microstructure interfaces. The PDMS microstructured dielectric 

layers were formed by mold casting technique using a 3D-printed 

mold. Specifically, a resin template with microcone arrays (50um in 

diameter and 40um in height) was fabricated using high-precision 3D 

printing (NanoArch S130, BMF Precision Tech, Inc.). A mixture of 

PDMS base and curing agent (mass ratio 5:1) was then cast onto the 

microcone array mold. The templated PDMS layer, after curing at 

80°C for 30 minutes, was peeled off, serving as a reverse template. 

This reverse template, again, can be used to develop dielectric layers 

by mold casting method, with the same micropatterns as the 

designed resin template. The mold casting structure enables a 

contact-separation behavior at the electrode-dielectric interface, 

resulting in an excellent detection limit of 0.007 Pa and a high-

frequency range of up to 10kHz.  

Thermal drawing technique 

Thermal drawing technique has emerged as a promising 

method for fabricating innovative flexible and wearable 

devices, Fig 6c. This technique involves thermally stretching a 

macroscale preform (where various functional materials are 

strategically arranged) into a microscale fiber device with 

intricate geometries and architectures. The process begins by 

feeding the multimaterial macroscopic preform into a furnace, 

where its constituent materials are heated to their softening or 

melting points. After sufficient heating, the fiber is drawn from 

the softened preform and undergoes controlled necking to 

achieve a consistent diameter. This is accomplished through the 

application of external forces, such as those exerted by turning 

capstans. The thermal drawing technique results in a down-

scale fiber substrate, retaining the geometry, composition, and 

cross-sectional structure of the original preform but on a 

significantly reduced diameter. The product, with a much higher 

aspect ratio, is tuned for both flexibility and sensing effect 

compared to input substrates.  

Among the materials employed in this process, PVDF-based 

piezoelectric polymers stand out due to their lower processing 

temperature and compatibility with the diverse materials used 

in fiber devices. A such example was introduced by Yan et al.138, 

beginning with the construction of a macroscopic preform 

consisting of P(VDF-TrFE) piezoelectric material (with a 

relatively low melting point of 150°C), loaded with BaTiO3 

ceramic particles. Carbon-loaded polyethylene (CPE) was then 

added as its high viscosity at the draw temperature delays the 

onset of capillary instability of the low-viscosity crystalline 

piezoelectric domain. The whole substrates are encapsulated in 

an elastic poly(styrene-b-(ethylene-co-butylene)-b-styrene) 

(SEBS) cladding. The preform was then thermally drawn into a 

fiber in a three-zone vertical tube furnace with a top-zone 

temperature of 120°C, a middle-zone temperature of 252°C, 

and a bottom-zone temperature of 80°C. During the drawing 

process, four copper wires are introduced into the hollow 

channels of the CPE, tuning conductivity across two length 

scales: the microscale cross-section and the meter-scale fiber 

length. Finally, tens of meters of sensing fiber were achieved 

with submillimeter features. 

Thermal drawing offers several advantages over traditional 

fabrication methods, making it increasingly popular for 

producing advanced fiber-shaped piezoelectric acoustic 

sensors. Notable benefits include single-step device fabrication, 

scalable manufacturing, and compatibility with other 

techniques72. Furthermore, these characteristics facilitate the 

creation of highly complex, functional fibers in a streamlined 

manner. However, the integration of diverse materials during 

thermal drawing poses challenges due to differences in thermal, 

mechanical, and chemical properties among the constituent 

materials. Such discrepancies can lead to structural 

deformations or failures during the drawing process. 

Addressing these issues requires careful selection and 

compatibility assessments of materials to ensure they maintain 

the intricate transverse structure and perform cohesively 

throughout the process180.  
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Inkjet printing technique 

In recent years, inkjet printing has garnered significant research 

attention due to its versatility as a mask-free, non-contact patterning 

technology, Fig 6d. This method enables the deposition of materials 

onto various substrates by programming the motion of the printing 

nozzle such as polymer, metal, carbon, and other 2D materials. 

Technically, the operation modes of inkjet printing can be classified 

into (1) drop-on-demand (DoD) printing, which delivers droplets 

induced by thermal bubbles or a piezoelectric actuator, and (2) 

continuous inkjet (CIJ) printing, which generates a continuous ink 

stream through a nozzle by the electrostatic or magnetic field181. In 

comparison, the DoD technique has been recognized with several 

advantages, that it reduces the consumption of costly ink materials 

owing to the micro-droplet deposition and precise programmable 

patterning, making it a promising method for flexible and wearable 

sensors fabrication. For instance, Baek et al.171 proposed Inkjet-

Printed thin-film transistor arrays integrated with piezoresistive 

sheets. Ag ink was used to form transistor bottom-gate and word 

lines by inkjet-printing technique, using a drop-on-demand inkjet 

printer (DMP 2850, Fujifilm Dimatix). Ag nanoparticle ink (55 wt % Ag 

nanoparticles) with an average diameter of 7nm in tetradecane was 

used to print using a single nozzle for a reliable printing process. 

During printing, the cartridge and platen temperatures were set at 

40°C and 50°C, respectively. The printed patterns were then sintered 

at 120°C for 30 minutes to form the sensor array layout.  

Inkjet printing offers high manufacturing throughput, scalability 

for large-area patterning, excellent biocompatibility, and 

precise deposition capabilities on a wide variety of 

substrates181. It allows the flexibility to create geometries using 

computer-aided design (CAD) digital patterns, and compatibility 

with a wide range of printable materials182, offering simpler and 

more innovative alternatives for producing flexible PCBs 

compared to conventional methods.  
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Fig. 7 Applications of flexible, wearable mechano-acoustic sensors in cardiovascular monitoring. a) Flexible, wearable mechano-acoustic 
sensors for real-time monitoring of blood pulse at human fingertip. Reproduced with permission. 75 2024, Wiley-VCH. b) Soft, full Wheatstone 
bridge 3D piezoresistive pressure sensors for blood pulse wave and blood pressure measurement at wrist and throat. Reproduced with 
permission. 1 2024, Springer Nature. c) Wearable piezoelectric sensor for continuous blood pressure monitoring at the wrist. Reproduced 
with permission. 184 2023, Wiley-VCH. d) Wearable piezoelectric sensor for cuffless blood pressure estimation at the wrist. Reproduced with 
permission. 222 2022, MDPI. e) Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic 
cardiopulmonary signals from the chest wall. Reproduced with permission. 163 2020, Springer Nature. f) Epidermal mechano-acoustic sensing 
electronics for cardiovascular diagnostics and human-machine interfaces. Reproduced with permission. 223 2016, Science.
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Table 4 Summary and comparison of wearable devices for cardiovascular monitoring 

Device description Sensors Detectable signals Performance References 

Cuffless Arterial 

Compliance Sensor 

Piezoelectric 

pressure sensor 

Optical sensor 

Blood pulse wave 

velocity 

PPG 

Blood pressure measurement error: 

SBP (0.75 ± 3.9 mmHg), DBP (1.1 ± 3.12 

mmHg), MAP (0.49 ± 2.82 mmHg) 

183 

 

Wearable 

Piezoelectric Blood-

Pressure Sensor 

Flexible piezoelectric 

pressure sensor 
Blood pulse wave 

Sensitivity: 0.062 kPa−1 

Blood pressure measurement error: 

SBP (−0.89 ± 6.19 mmHg), DBP (−0.32 ± 

5.28 mmHg) 

 

184 

Soft, full Wheatstone 

bridge 3D pressure 

sensors 

Piezoresistive 

pressure sensor 
Blood pulse wave 

Temperature-independent 

Sensitivity: 0.0031mmHg-1 

Heart rate measurement error: 1.779 ± 

1.96 bpm 

Blood pressure measurement error: 

MAP (2.153 ± 1.96 mmHg) 

1 

Single fiber enables 

acoustic fabrics via 

nanometer-scale 

vibrations 

Flexible piezoelectric 

fiber sensor 
Heart sound 

Minimum sound-detection capability: 

0.002 Pa (40 dB) 

Sensitivity: 19.6 mV measured at 94 dB 

and 1 kHz 

 

138 

 

Precision wearable 

accelerometer 

contact microphones 

Capacitive MEMS 

accelerometer 

Heart sound, SCG, 

Lung sound, Chest 

wall motion 

Bandwidth: <1Hz to 12kHz 

Sensitivity: 76 mV/g 

Capability of capturing S3 heart sounds. 

163 

Epidermal mechano-

acoustic sensing 

electronics 

Commercial MEMS 

accelerometer 

ECG, SCG 

 

Bandwidth: 0.5Hz to 550Hz 

Capability of capturing heart murmur 

sounds 

Speech recognition with 90% accuracy 

 

7 

Wearable 

Piezoelectret 

Patches 

Flexible piezoelectret 

pressure sensor 

Heart sound, 

Korotkoff sound 

Dynamic sensitivity of 591 pC/kPa in 

the pressure range 0–8 kPa and 290 

pC/kPa in the pressure range above 8 

kPa. 

Bandwidth: ~0Hz to 600 Hz with a 

frequency resolution <0.1 Hz 

172 

6. Health monitoring applications of mechano-
acoustic sensors 

Cardiovascular monitoring 

Blood flow measurements can be captured from several 

positions on the body, including fingertips75 (Fig. 7a), 

wrist77,85,125,185, and throat1 (Fig. 7b), providing vital information 

for diagnosing cardiovascular diseases. Blood pressure (BP) and 

flow velocity obtained from wearable acoustic transducers can 

reveal clinical insights into heart failure, carotid stenosis, and 

renal failure186. The most common technique to measure blood 

pressure is the use of pressure cuffs with a stethoscope. This 

technique, despite its high accuracy, is not always convenient 

for the user and is not suitable for long-term monitoring. 

Alternative approaches have been introduced to overcome the 

limitations of pressure cuffs. 

One of those methods is pulse wave velocity (PWV) 

measurement, which is closely related to BP, and can be used 

to estimate vascular stiffness and central arterial blood 

pressures through the Moens–Kortweg and Hughes 

equations187. PWV can be calculated from pulse transit time 

(PTT), which denotes the time for the carrying of pulse wave 

information by a pulse signal from one location to another in 

the cardiovascular system. Guo et al.183 developed a small 

cuffless BP measurement device using a piezoelectric sensor 

array to measure the PWV. An optical sensor was attached to 

the arm to measure the photoplethysmography (PPG) intensity 

ratio (PIR) signal to estimate the arterial parameters of patients. 

The proposed device showed a high BP estimation accuracy at 

systolic blood pressure (SBP) was 0.75 ± 3.9, DBP was 1.1 ± 3.12, 

and mean arterial pressure (MAP) was 0.49 ± 2.82.  

Another method employs a high correlation between the 

amplitude of vessel expansion caused by blood pulse and blood 

pressure. This approach simplifies the measurement method 
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and calculation procedure. For example, Min et al.184 proposed 

a wearable piezoelectric bracelet that can be attached to the 

wrist for continuous blood pressure measuring (Fig. 6c). To 

convert sensor output signals to BP values, the authors used a 

linear transfer function. The device achieved accuracy with a 

mean error and a standard deviation of -0.89 ± 6.19 for SBP and 

-0.32 ± 5.28mmHg for diastolic blood pressure (DBP), 

respectively. To enhance user comfort, the Rogers research 

group proposed a wireless, flexible device based on a strain 

gauge Integrated Smart Sensor (3MIS) for blood pressure 

estimation. A dimensionless factor k that depends on the 

mechanical properties of the phantom skin is introduced to 

convert the sensor output to BP values and is experimentally 

acquired with a reference system.  

As well as blood pressure and velocity, heart sounds are 

critically important signals for the assessment and monitoring 

of potential heart diseases. The stethoscope is the major tool 

used in clinical settings to obtain heart sounds. However, the 

main limitations of traditional stethoscopes include the high 

dependency on the clinical experience of doctors and the rigid 

and bulky form factor that hamper their utility for long-term 

and continuous medical assessments188,189. Wearable sensors 

worn on the chest wall offer long-term and convenient 

monitoring of heart sounds. S1 and S2 heart sounds with a 

frequency range from 30-100Hz14,15 can be detected clearly by 

acoustic sensors or accelerometers9,10,140,141,162–164. Wireless-

continuous auscultation using a soft wearable stethoscope 

system (SWS) was introduced by Lee et al.141. The device utilizes 

commercial MEMS acoustic sensors integrated with a Bluetooth 

circuit formed on a flexible PCB. The use of the flexible PCB with 

a stretchable serpentine interconnect structure minimizes the 

device thickness and facilitates conformal attachment to the 

chest wall to capture cardiac signals with an SNR of up to 

14.8dB. To further provide a more convenient and comfortable 

monitoring condition, a T-shirt woven fabric sensor capable of 

auscultating cardiac sound signals from the chest of humans 

was reported138. The information on the cardiovascular system 

and heart sounds from users was recorded by the acoustic shirt 

with an SNR as high as 30dB. 

 

 

 

Fig. 8 Applications of flexible, wearable mechano-acoustic sensors in pulmonary disease monitoring. a) Smart face mask based on an 

ultrathin pressure sensor for wireless monitoring of breath conditions. Reproduced with permission. 190 2022, Wiley-VCH. b) Biodegradable 

smart face masks based on PLA electret fabric for chronic respiratory disease diagnosis. Reproduced with permission. 191 2022, ACS 

Publications. c) Soft wearable stethoscope designed for automated pulmonary disease diagnosis. Reproduced with permission. 141 2022, 

Science. d) Precision accelerometer contact microphones for Detection of pathological mechano-acoustic signatures in patients with 

pulmonary disorders. Reproduced with permission. 163 2020, Springer Nature. e) Wireless broadband acousto-mechanical sensing system for 

continuous physiological monitoring. Reproduced with permission. 9 2023, Springer Nature.  
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Table 5 Summary and comparison of wearable devices for pulmonary monitoring. 

Device description Sensors Detectable signals Performance References 

Smart Face Mask 

Based on an Ultrathin 

Pressure Sensor 

Flexible piezoelectric 

pressure sensor 

Breath airflow signals 

 

Dynamic sensitivity of 0.19 V Pa–1 

in the pressure range 0–30 Pa and 

0.048 V Pa–1 in the pressure range 

above 30-145 Pa. 

190 

Biodegradable Smart 

Face Masks 

Flexible electret 

pressure sensor 

Breath airflow signals 

 

Sensitivity: linear response with 

applied pressure, from 0.12 V at 4 

Pa to 0.64 V at 166 Pa  

Distinguishing the healthy group 

and three groups of chronic 

respiratory diseases (asthma, 

bronchitis, and chronic 

obstructive pulmonary disease) 

with 95.5% accuracy 

 

191 

Precision 

accelerometer contact 

microphones 

Capacitive MEMS 

accelerometer 

Heart sound, SCG, Lung 

sound, Chest wall 

motion 

Ultra-low noise performance 

(< 10 μg/√Hz) 

Bandwidth: > 10 kHz 

Sensitivity:  271 mV/g with a 

linear response in acceleration 

range ± 4 g 

Capability of capturing wheeze, 

bronchial, and crackle from COPD 

patients 

164 

Soft wearable 

stethoscope 

Commercial MEMS 

microphone 

Heart/Lung sounds, 

Chest wall motion 

 

Automated diagnoses of four 

types of lung diseases: crackle, 

wheeze, stridor, and rhonchi, with 

a 95% accuracy 

Capability of detecting disordered 

breathing for home sleep 

141 

Wireless broadband 

acousto-mechanical 

sensing system 

Commercial MEMS 

microphone/ 

accelerometer 

Body movement/ 

angle, Lung 

/Intestinal/Heart 

sounds 

Heart rate measurement error: 

0.015 ± 0.85 bpm 

Respiratory rate measurement 

error: 0.44 ± 2.13 bpm 

9 

Auscultation of the S3 heart sound is critical for cardiovascular 

monitoring; however, detecting S3 is particularly challenging for 

most acoustic transducers due to its low frequency and weak 

amplitude. To address this, Gupta et al.163 developed a precision 

wearable accelerometer-based contact microphone capable of 

detecting pathological S3 heart sounds in patients with 

preexisting conditions (Fig. 7e). The device not only captures 

the subtle S3 heart sound, which typically occurs approximately 

150ms after the S2 sound but also simultaneously monitors 

shallow breathing patterns. This dual functionality provides 

valuable diagnostic insights, with the S3 sound serving as a key 

early marker for patients with reduced cardiac output 

associated with congestive heart failure. In patients with 

cardiovascular pathologies, murmurs are often present in 

addition to signatures associated with S1 and S2. An 

accelerometer-based epidermal mechano-acoustic sensor 

introduced by Liu et al.7 showed the ability to capture murmur 

sounds in cardiac valve closure and opening periods. The device 

can detect the constant intensity of the murmuring sound from 

an elderly female who was diagnosed with mild tricuspid and 

pulmonary regurgitation. By integrating the accelerometer with 

a pair of conformal capacitive electrodes laminated onto the 

sternum, the device enables simultaneous measurements of 

SCG (seismocardiography) and ECG. This dual functionality 

allows for the concurrent capture of electrophysiological and 

mechanical data for cardiac auscultation. The obtained data 

provides insights into the heart motions involving electrical 

signals followed by mechanical coupling and a sequence of 

mechano-acoustic signatures as the heart chambers contract 

and the valves close. Furthermore, the irregular beat rate was 

presented in patients with similar diseases. The mummers were 

absent at the aortic site, highlighting the importance of 

changing recording positions during auscultation to ensure a 

comprehensive diagnosis7. To minimize inaccurate 

measurements resulting from the location of wearable sensors, 

Han et al.172 developed a 6×6 sensor array capable of 

simultaneously mapping heart sounds over a broad area of the 
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chest. This innovative platform can detect pulse waveforms 

corresponding to the pressure of the right atrium, right 

ventricle, and pulmonary artery. The cardiac sound provides 

valuable information about the physiological activities of right 

atrial contraction and relaxation, as well as the opening and 

closing of the tricuspid valve. By allowing direct comparison of 

sound volume and frequency across different locations, the 

sensor array eliminates the need for frequent position changes 

during auscultation. Table 4 shows the aforementioned 

applications of mechano-acoustic sensors in cardiovascular 

monitoring and summarizes their key features and performance 

indicators. 

Pulmonary disease monitoring 

Wearable acoustic sensors have emerged as a popular solution 

for breath monitoring, providing real-time insights into 

respiratory health (Table 5). Breath analysis has been a 

cornerstone in clinical diagnostics, providing valuable 

information on an individual’s overall systemic health192,193. The 

prevalence of pulmonary and respiratory diseases, coupled with 

worsening air quality in industrialized areas, underscores the 

growing importance of advanced technologies for breath 

assessment. In this context, wearable acoustic sensors 

integrated into smart face masks and respirators have emerged 

as a popular solution for breath monitoring, providing real-time 

insights into respiratory health 190,191,194. For example, Zhong et 

al.190 introduced a wireless smart face mask that incorporates 

an ultrathin, self-powered pressure sensor to monitor breathing 

patterns (Fig. 8a). In this work, continuous wavelet transform 

(CWT) was utilized to analyze and extract frequency and 

magnitude parameters from various breathing conditions. The 

system effectively distinguished abnormal breathing 

conditions, such as coughing, fast breath, and holding breath. 

Further advancements in this domain include the application of 

machine learning for enhanced diagnostic capabilities. For 

instance, Zhang et al.191 employed a bagged decision tree 

algorithm with acoustic data from face mask sensors to classify 

respiratory health conditions (Fig. 8b). Their approach achieved 

a high accuracy of 95.5% in differentiating between healthy 

individuals and patients with chronic respiratory diseases, such 

as asthma, bronchitis, and chronic obstructive pulmonary 

disease (COPD).  

 

 

Fig. 9 Applications of flexible, wearable mechano-acoustic sensors in sleep monitoring. a) Mechano-acoustic sensors placed at the 
suprasternal notch for physiological processes and sleep stage estimation. Reproduced with permission. 5 2020, Springer Nature. b) Soft, 
wireless sternal patches for detection of sleep apnea and sleep stages. Reproduced with permission. 195 2021, Science.
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Table 6 Summary and comparison of wearable devices for sleep stage detection. 

Device description Sensors Detectable signals Sleep detection accuracy References 

Soft wireless device 

placed at the 

suprasternal notch 

 

MEMS accelerometer 

 

Mechano-acoustic 

signals 

 

Wake detection: 72.7% 

NREM detection: 65% 

REM detection: 56.3% 

Three-stage detection: 56% 

5 

Soft, wireless sternal 

patch 

Optical sensor, MEMS 

accelerometer, ECG 

sensor 

 

ECG, PPG, SCG, 

and ACC 

Wake detection: 100% 

NREM detection: 80.9% 

REM detection: 70.4% 

Three-stage detection: 82.4% 

195 

Rigid wristwatch 
Optical sensor, MEMS 

accelerometer 

ACC and PPG 

 

Wake detection: 91.5% 

NREM detection: 65.7% 

REM detection: 78.9% 

Three-stage detection: 72.9% 

196 

Wrist-worn device 
Optical sensor, MEMS 

accelerometer 
ACC and PPG 

Wake detection: 69.3% 

NREM detection: 83.4% 

REM detection: 71.6% 

Three-stage detection: 69% 

197 

Flexible, wireless 

patch 

 

MEMS accelerometer, 

ECG, and temperature 

sensor 

ACC, ECG, and 

TEMP 

Wake detection: 73.3% 

NREM detection: 59% 

REM detection: 56% 

Three-stage detection: 62.1% 

198 

Another form of face mask is the respirator which offers air 

filtering functionality to enhance breath quality. However, the 

mismatch between dynamic environmental conditions and the 

static design of nonadaptive respirators often results in 

physiological and psychological discomfort, limiting their 

widespread adoption. To address this limitation, Shin et al.199 

proposed an adaptive respiratory protection system featuring a 

dynamic air filter (DAF). This system integrates a digital 

barometer inside the face mask to capture the wearer’s 

breathing signals. These signals, combined with the expansion 

state of the DAF, are processed using a long short-term memory 

(LSTM) algorithm to predict changes in the wearer’s respiratory 

patterns. The inference result, along with ambient condition 

data recorded from a particulate matter (PM) sensor, is used to 

adjust a stretchable elastic fiber membrane (EFM) air filter to 

the desired state, optimizing filtration in real time. While 

several approaches have been developed to enhance the 

stability and comfort of wearing face masks193,199, it is 

sometimes inconvenient in routine activities and susceptible to 

noise for pulmonary monitoring purposes. For instance, the 

deformation of the masks, and vocal noise may impact sensing 

accuracy. The application of wearable electronic stethoscopes 

that can be comfortably attached to the chest serves as a novel 

approach for detecting and diagnosing respiratory disorders. 

For instance, the ACM platform reported by Gupta et al.163 

offers a broad measurement bandwidth from below 1Hz up to 

12kHz allowing the sensor to capture low-frequency chest wall 

motion and high-frequency lung sounds. The incorporation of 

these signals helps elucidate the respiratory rate and breathing 

patterns, that can potentially predict early onset of chronic 

cardiopulmonary conditions. In addition to breathing patterns, 

abnormal breath sounds such as wheezes, rhonchi, and crackles 

serve as useful indicators of pulmonary disorders. The same 

research group further utilized their ACM devices using a single 

integrated sensor for episodic and longitudinal assessment of 

lung sounds, breathing patterns, and respiratory rates164. The 

device demonstrated its capability to capture wheeze, 

bronchial, and crackle sounds with comparable results to an Eko 

stethoscope. In addition to data quality, the implementation of 

machine learning to the dataset obtained from wearable 

stethoscopes can support the interpretation of pulmonary 

disease diagnoses. Lee et al. proposed a soft wearable 

stethoscope (SWS) with CNN-based machine learning, 

embedded in the SWS for Chronic obstructive pulmonary 

disease (COPD) and cardiovascular disease (CVD) 

auscultation141 (Fig. 8c). A clinical study with multiple patients 

and control subjects demonstrates the unique advantage of the 

wearable auscultation method with embedded machine 

learning for automated diagnoses of four types of lung diseases: 

crackle, wheeze, stridor, and rhonchi, with 94.78% accuracy. 

Displaying the measured signals on a mobile app, combined 

with the abnormal signal detection algorithm suggests the 

feasibility of wearable stethoscopes for remote sensing 

applications.   

Airflow based on lung sound also provides valuable information 

on lung conditions. In this regard, the Rogers group9 conducted 

a pilot study involving 13 broadband acoustic-mechanical 

sensing (BAMS) devices mounted on the anterior and posterior 

chest of 20 healthy participants and 35 patients with chronic 

lung disease, creating a high-resolution, spatiotemporal 

mapping of the lung (Fig. 8e). The measurement indicated that 
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patients with a history of resection surgery of the right upper 

and lower lobes and left upper lobes, showed decreased 

pulmonary function in the removed lobes, resulting in reduced 

airflow rates and lower sound intensity. The study also reported 

differences in lung sound intensities and frequencies between 

healthy subjects and patients with chronic lung disease: 54dB 

compared with ~36dB and 219Hz compared with 256Hz, 

respectively.  

Sleep monitoring 

Sleep monitoring has been a highly active research area to 

improve the quality of life. Sleep quality can be evaluated by 

monitoring sleep breathing and sleep stage estimation. The 

cyclical pattern of sleep is composed of a rapid eye movement 

(REM) and a non-REM (NREM) phase. The NREM phase is 

generally divided into four different stages, namely, Stage 1, 

Stage 2, Stage 3, and Stage 4. Knowledge of these stages allows 

further inference of new variables. In a typical clinical setting, 

polysomnography (PSG) is considered the gold-standard device 

to characterize human sleep that infers the different sleep 

stages and represents an indirect measure of sleep. 

Unfortunately, this technique is expensive and requires 

supervision by a medical doctor during the measurement. 

The use of mechano-acoustic devices to quantify sleep patterns 

represents a promising solution in advanced clinical diagnostics 

(Table 6). Body sounds and movements play an important role 

and are widely used in sleep stage estimation5,195,197,198,200–202. A 

widely adopted method involves extracting cardiovascular and 

body motion signals using mechano-acoustic sensors placed on 

the skin. These sensors collect data that, when processed with 

machine learning algorithms, can be used to estimate sleep 

stages accurately. For example, Lee et al.5 proposed an 

approach in which a multiband z-axis signal from an 

accelerometer was utilized to extract and collect body signals 

from the human chest (Fig. 9a). Specifically, the frequency 

range 0.1–0.8Hz was extracted for chest motion during 

respiration, sub-bands between 0.8–20Hz captured body 

motions, and the 20–80Hz range represented cardiac signals. 

The study employed a hidden Markov model (HMM) to classify 

sleep stages, achieving an 82% accuracy for binary wake/asleep 

detection and 56% accuracy for three-stage classification. To 

enhance the accuracy of sleep stage estimation, mechano-

acoustic sensors have been incorporated with ECG and PPG 

systems. Typically, accelerometers are worn on the wrist to 

monitor body movements during sleep, while ECG and PPG are 

used to capture cardiovascular signals. This integration resulted 

in an enhancement in three-stage detection accuracy of 69% 

and 72.9% as reported by Beattie et al. 197 and Fonseca et al.196, 

respectively. A soft, wireless highly integrated device with ECG, 

PPG, and accelerometers was introduced by Zavanelli et al.195 

(Fig. 9b). To estimate the sleep stage, in addition to ECG and 

PPG signals, SCG vibrations are recorded from the y 

accelerometers. These signals were sampled at rates of 500 Hz, 

120Hz, and 200Hz and filtered using a third-order Butterworth 

band-pass filter set to 4–24Hz for SCG, 0.5–50Hz for ECG, and 

0.3–7Hz for PPG. A feedforward neural network (FFNN) was 

trained on the processed data, achieving a high three-stage 

classification accuracy of 82.4%. 

 

 

 

 

Fig. 10 Applications of flexible, wearable mechano-acoustic sensors in sleep monitoring. a)  Graphene-based strain sensor with sandwich 
structure for bowel sounds monitoring. 62 2022, RSC Publications. b) Wearable device for bowel sound recognition. Reproduced with 
permission. 204 2018, Springer Nature. c) Flexible skin-mounted wireless acoustic devices for bowel sounds monitoring and intestinal 
condition evaluation. Reproduced with permission. 70 2019, Springer Nature.
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Table 7 Summary and comparison of wearable devices for bowel monitoring. 

Device description Applications Performance References 

Wearable devices for 

long-term bowel sound 

monitoring 

Bowel sound recognition 
Bowel sound recognition with 97.0% sensitivity and 

91.7% accuracy 
203 

Wearable health 

monitoring system for 

bowel sound recognition 

Bowel sound recognition 
Bowel sound recognition with 86.8% sensitivity and 

90.1% accuracy 
204 

Smart shirt for digestion 

acoustics monitoring 
Bowel sound recognition 

Detection of the presence of four bowel sound types 

based on their spectral and temporal features, with 

Cohen’s Kappa of 0.7 

63 

Flexible skin-mounted 

wireless acoustic device 

Intestinal condition 

monitoring 

 

Bowel sound classification between the normal subject 

and patients with MIO or paralytic ileus with 76.89% 

accuracy 

70 

Flexible dual-channel 

digital auscultation patch 

Intestinal condition 

monitoring 

Evaluated the recovery of intestinal peristalsis function 

in patients with POI and provided guidelines for the 

feeding time for speeding recovery based on intestinal 

rate 

142 

Sleep apnea is a sleep disorder in which breathing stops and 

starts repeatedly during sleep, and is often related to snoring, 

which is linked with other respiratory symptoms, such as 

wheezing and chronic bronchitis. Those with asthma and sleep-

disordered breathing have impacted sleep quality and 

decreased nocturnal oxygen saturation. Wearable sensors have 

emerged as valuable tools for detecting these patterns and 

facilitating early screening and treatment9,141,164,195,201. For 

apnea and other abnormal sleep breathing situation detection, 

the sensor location at the suprasternal or the chest wall is 

preferred as it is convenient to capture both airflow, respiration 

sound, and chest movements, which are considered important 

signs of these sleep disorders. High-sensitivity accelerometers 

are particularly suitable for this application, as their low-

frequency signals can detect body motions, while their high-

frequency sensitivity captures sounds generated by airflow 

through the trachea. Gupta et al.164 introduced an approach 

utilizing an accelerometer contact microphone attached to the 

lung area to monitor breathing patterns. Their study identified 

the characteristic Cheyne-Stokes respiration pattern in patients 

with acute decompensated heart failure (ADHF), a condition 

commonly observed in advanced heart failure. This 

pathognomonic breathing pattern features cyclical periods of 

rapid breaths followed by an absence of respiratory signals, 

indicative of apnea. In another study, Lee et al.141 used a digital 

stethoscope to record lung sounds, visualized as spectrograms, 

to analyze apnea/hypopnea events and differentiate types of 

snoring. The frequency spectrum of lung sounds revealed 

distinct patterns of snoring, such as tongue snoring and palatal 

snoring. Tongue snoring during inhalation exhibited a frequency 

range with power concentrated between below 500Hz, 

accompanied by distinct peaks from 500Hz to 1kHz, with a 

noticeable reduction in signal power during exhalation. In 

contrast, tongue snoring during exhalation displayed a gradual 

increase in signal power up to 250Hz, with distinct signal peaks 

observed. Palatal snoring during inhalation presented a similar 

power distribution across the frequency spectrum, except for a 

unique pattern between 350 and 400Hz. These detailed 

analyses provide crucial insights into the respiratory dynamics 

associated with sleep-disordered breathing. 

Bowel monitoring 

Bowel sounds provide valuable physiological insights into 

intestinal function. However, despite their regular production, 

the random frequency and variability of these sounds pose 

challenges for continuous monitoring using conventional 

devices like stethoscopes due to their bulkiness.  Advanced 

wearable devices for bowel sound monitoring, on the other 

hand, can provide real-time information on abdominal and 

intestinal activities. Numerous studies have been conducted to 

capture bowel sound62,203–206 highlighting the significant 

advantages of wearable devices (Table 7). For example, Zhou et 

al.62 proposed a graphene-based strain sensor with a 

sandwiched structure, which is tailored to harvesting bowel 

sounds (Fig. 10a). To avoid interference from heart sounds and 

abdominal aortic pulsations and optimize bowel sounds, the 

ileocecal region was selected to be measured. By assuming that 

bowel sounds are typically characterized by a considerable 

variation in frequency sound and tone, this study provided a 

new way to determine the functional condition of the intestine. 

However, more data needs to be collected to continue to revise 

the reference ranges of the minimum and difference values of 

bowel sound amplitude. Machine learning offers an efficient 

solution for detecting and analyzing bowel sounds, enabling 

more effective data collection and interpretation. Examples of 

machine learning for bowel sound recognition include a CNN-

based segmentation approach reported by Zhao et al.203 and, 

SVM classification developed by Yin et al.204. Both methods 

demonstrated impressive performance, achieving accuracy 

rates exceeding 90% (Fig. 10b). In attempts to improve patient 

comfort, Baronetto et al.63 proposed the Gastro Digital Shirt, a 

smart T-shirt for capturing abdominal sounds produced during 
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digestion. The garment prototype featured an array of eight 

miniaturized microphones connected to a low-power wearable 

computer and was designed for long-term recording. Using a 

large dataset including 3046 bowel sound instances, which were 

individually annotated, and the Hierarchical Agglomerative 

Clustering algorithm, the analysis highlighted the presence of 

four bowel sound types based on their spectral and temporal 

features. The study showed that the most frequently occurring 

types belong to two clusters, containing both single and 

multiple bursts (SB and MB). A survey on people with different 

intestinal conditions70 was conducted on healthy male subjects 

together with patients with mechanical intestinal obstruction 

(MIO) and with paralytic ileus, Fig. 10c. A 5-hour measurement 

of bowel sounds after food intake in a silent room revealed that 

MIO patients exhibit the highest number of peaks (233 peaks), 

much higher than that of patients with the paralytic ileus traces 

(22 peaks). There are also significant differences in peak values 

and positions in their power envelope curves.  

One of the most important clinical applications of bowel sound 

monitoring is to capture the occurrence frequency of bowel 

from patients with postoperative ileus (POI). This assists the 

recovery of patients’ intestinal function, selects the right 

feeding time, and accelerates the recovery of patients. POI is a 

common physiological response to abdominal surgery, 

characterized by symptoms such as the cessation of intestinal 

peristalsis and the inability to move intestinal contents forward. 

During POI, patients are unable to consume food until the 

condition resolves. The traditional judgment of the time of POI 

relief relies on the doctor to observe when the patient begins to 

exhaust or defecate. This method is intermittent and depends 

on the subjective auscultation from physicians. Affected by the 

noisy environment in the ward, this evaluation can be 

considered inaccurate and hysteretic. This limitation can be 

addressed by the use of long-term wearable devices. As such, a 

dual-channel digital auscultation patch introduced by Wang et 

al. 142 was attached to the abdomen of patients with POI to 

capture bowel sounds after surgery. The ambient noise in the 

ward is eliminated using an active noise-reduction algorithm, 

while the other noise sources, such as frictional noise, are 

removed using multichannel cross-validation. Through this 

approach, the number of bowel sounds contained in the data 

collected daily is objectively and quantitatively identified.  

According to the daily change in occurrence frequency, the 

curve of the median intestinal rate with the postoperative days 

can be collected and analyzed. From one to three days after the 

operation, the intestines were in a state of paralysis, and the 

bowel almost disappeared, less than two times per minute on 

average, for long-term monitoring. On the fourth day after the 

operation, the occurrence frequency of bowel sounds began to 

increase, reaching five times per minute, which was more than 

the average level of two times per minute in the normal state. 

The results obtained from the wearable acoustic sensors 

indicated that the paralyzed state of the intestine is relieved, 

and the peristalsis function is restored. The study also 

suggested that timely feeding from the fourth day after the 

operation could speed up the patient’s recovery. 

Fig. 11 Applications of flexible, wearable mechano-acoustic sensors in swallowing monitoring. a) Stretchable sensor based on PEDOT:PSS, 
Graphene, Metallic Nanoparticles for measuring of swallowed volume during exercise. Reproduced with permission. 56 2023, Wiley-VCH. b) 
Epidermal graphene sensors for estimation of swallowed volume. Reproduced with permission. 55 2021, ACS Publications. c) Soft skin-
interfaced mechano-acoustic sensors for real-time monitoring and patient feedback on respiratory and swallowing biomechanics. 
Reproduced with permission. 6 2022, Springer Nature.
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Table 8 Summary and comparison of wearable devices for swallow monitoring. 

Device 

description 

Swallow 

monitoring 

applications 

Sensors 
Detectable 

signals 
Results References 

Stretchable 

derivatives of 

PEDOT:PSS, 

graphene, 

metallic 

nanoparticles 

 

External 

measurement of 

swallowed 

volume during 

exercise 

Flexible 

piezoresistive 

strain gauge 

sensor, sEMG 

sensor 

sEMG, Throat 

movement 

The prediction results for 

walking were significantly 

better than for biking, with 

the prediction error ranging 

from 30-50% compared to 25-

65%, respectively. 

56 

Metallic 

Nanoislands on 

Graphene 

 

Swallow 

monitoring in 

head and neck 

cancer patients 

Flexible 

piezoresistive 

strain gauge 

sensor 

Throat 

movement 

Bolus type identification 

(water bolus, yogurt bolus, 

and cracker bolus) with 86.4% 

accuracy 

Swallow classification 

between healthy subject and 

dysphagic patient with 94.7% 

accuracy 

57 

Soft skin-

interfaced 

mechano-

acoustic sensors  

 

Real-time 

monitoring and 

patient feedback 

on respiratory 

and swallowing 

biomechanics 

MEMS 

accelerometer 

Chest wall 

motion 

Throat 

movement 

Detection of swallow events 

while eating, drinking, and 

intermittent un-cued saliva 

swallowing with 89.6% 

sensitivity and 87.8% precision 

 

6 

Epidermal 

graphene sensors 

 

Estimating 

swallowed 

volume 

Flexible 

piezoresistive 

strain gauge 

sensor 

Throat 

movement 

Estimation of unknown 

swallowed volumes 

cumulatively between 5 and 

30 ml of water with 92% 

accuracy 

55 

Swallow monitoring 

Mechano-acoustic sensors have been utilized as non-invasive 

approaches for monitoring and capturing swallowing patterns 

(Table 8). Surface electromyography (sEMG) is a preferred 

noninvasive method for health assessment in clinical settings 

but still faces challenges. When used alone, sEMG is limited in 

the types of activities it can monitor. For example, sEMG 

monitors the electrical activity of muscles when they are 

actively contracting, but the relaxation of the swallowing 

muscles cannot be monitored57. To address these limitations, 

an alternative approach involves the use of sEMG and strain 

sensors. Continuous sensing of mechanical strain on the surface 

of the skin can capture the contractions and relaxations of the 

submental muscles during swallowing, helping improve the 

performance of wearable devices in swallowing assessments. 

Assessment of liquid intake is necessary and provides valuable 

information on an individual’s hydration status. In this regard, 

the swallowed volume can be estimated by recording 

swallowing signals at the throat 55–57. Polat et al.56, for instance, 

introduced an external measurement of swallowing volume 

during exercise using a wearable sensor based on piezoresistive 

Gr/AuNI/PEDOT:PSS “dough” strain gauge and sEMG attached 

to the throat (Fig. 11a). The study tested volumes between 10–

30ml in 5ml increments on participants walking or sitting on 

their exercise instruments while completing their exercises for 

swallow therapy. Machine learning was also applied to predict 

the liquid intake volume based on the sensor data. From the 

sEMG signals, summation, width, and low-frequency power 

were extracted while the peak-to-peak width and peak skew 

were derived from the strain signals. Meanwhile, the peak 

offset was taken between the sEMG and the strain. The 

prediction results for walking were significantly better than for 

biking, with the prediction error ranging from 30-50% compared 

to 25-65%, respectively. The data implies that the intensity of 

human routine activities has a marked impact on the 

estimation. Additionally, the results highlighted a larger error in 

predicting the smallest volume (10ml) compared to the volumes 

of inter-mediate size (15, 20, and 25ml), which was also 

witnessed in their previous study testing on participants sitting 

still55 (Fig. 11b). This error could be attributed to the premature 

and involuntary movement of the liquid bolus from the oral 

cavity into the pharynx that occurs before swallowing smaller 

volumes causing swallow disruptions.  

Furthermore, there are ongoing attempts to use strain sensors 

to identify and monitor Parkinson’s disease and dysphagia in 
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patients. Tracking swallowing activities in patients and their 

response to different types and volumes of food reveals 

valuable information for clinical treatment. For example, Kim et 

al.207 introduced a flexible submental sensor patch with remote 

monitoring controls for the management of oropharyngeal 

swallowing disorders. This sensor patch was optimally designed 

to enable the accurate recording of submental muscle activity, 

including burst duration and amplitude, during swallowing for 

dysphagia patients under treatment. Another study by Ramirez 

et al.57 developed a smart patch for monitoring swallowing 

activity in head and neck cancer patients. By employing 

machine learning, the system achieved a high accuracy at 86.4% 

by cross-validation in classifying three types of foods: water 

bolus, yogurt bolus, and cracker bolus. Moreover, the system 

presented an ability in early auscultation of dysphagia with a 

high level of accuracy of 94.7%.  

Besides detecting, advanced wearable sensors are also capable 

of assisting in therapeutic treatments for dysphagia. 

Technically, these treatments often include interventions by 

speech-language pathologists designed to improve the 

physiology of the swallowing mechanism by training patients to 

initiate swallowing with sufficient frequency and during the 

expiratory phase of the breathing cycle 

(exhale/swallow/exhale). These therapeutic treatments 

currently necessitate bulky, expensive equipment to 

synchronously record swallows and respirations, confined to 

use in clinical settings. In an attempt to overcome these 

challenges, Kang et al.6 introduced a wireless, wearable 

technology that enables continuous, mechano-acoustic tracking 

of respiratory activities and swallows through movements and 

vibratory processes monitored at the skin surface (Fig. 11c). 

Two separated accelerometers were attached to the 

suprasternal notch and laryngeal prominence to capture 

respiration and swallowing signals. The respiratory-swallow 

phase pattern was then recorded and compared with the 

optimal pattern, then alert patients via a haptic feedback patch 

attached to their arms.   

7. Conclusion and Perspectives 

Driven by the growing demand for comprehensive health 

assessments, flexible wearable mechano-acoustic sensors have 

seen significant advancements in addressing the limitations of 

traditional bulky equipment. These innovations offer a new 

approach for long-term, ambulatory monitoring and objective 

assessment of body sounds, enhancing both functionality and 

user comfort. The development of miniature MEMS acoustic 

sensors with footprints of a few milometers represents a 

significant breakthrough, enabling compact and powerful 

sensing capabilities for capturing body sounds. These sensors 

can be integrated into the flexible circuit boards, forming 

wearable devices with dimensions of just a few square 

centimeters. Such designs are lightweight and conformal, 

making them ideal for comfortable, unobtrusive wear. The 

introduction of fully flexible sensors has further improved 

wearing comfort and minimized motion artifacts, ensuring 

more accurate measurements. Some of them are tailored to be 

biodegradable208,  gas-permeable and transparent209, reducing 

skin irritation and discomfort associated with prolonged use. 

These features are particularly suitable for continuous health 

monitoring over extended periods. Liquid metals (LM), such as 

Eutectic Gallium-Indium (EGaIn), are highly promising materials 

for soft electronics due to their unique and versatile properties 

such as exceptional conformability, biocompatibility, 

permeability, self-healing capability, and recyclability210. Such 

properties enable the application of LM-based materials in 

various areas, including radio frequency electronics and soft 

circuit connections for flexible, wearable devices.  

Regarding materials and designs, silicon MEMS microphones 

and acceleration sensors exhibit a high technological readiness 

level (TRL) due to their mature manufacturing capabilities, 

worldwide availability, and well-established sensing 

mechanisms. The use of these MEMS microphones as surface-

mount devices (SMDs) facilitates integration with the fPCBs 

through automated pick-and-place tools and chip bonding 

processes. However, a limitation of MEMS microphones is their 

rigidity, which may compromise the mechanical flexibility of 

wearable acoustic devices and induce artifact signals due to 

differences in the mechanical properties of tissues and 

electronics. A potential solution to this issue is the 

implementation of a transfer-printing process to create flexible 

inorganic acoustic sensors on polymeric substrates, as 

demonstrated in recent work by Yang et al 211 This approach 

enhances device compliance and integration with human skin. 

Another drawback of existing MEMS sensors is their narrow 

measurement range. For instance, commercially available 

MEMS microphones typically have a cut-off frequency of 

35Hz141, which hinders the detection of low-frequency body 

sounds. A proposed solution involves combining MEMS 

microphones with acceleration sensors which are sensitive to 

low frequencies. However, this approach may increase the 

system footprint and cost due to the need for multiple devices, 

additional metal interconnects, and extra SMD components for 

associated amplification circuits. The development of 

monolithic sensors, such as cantilevers capable of detecting a 

broad range of frequencies, represents an exciting research 

direction to address this limitation. An alternative to inorganic 

semiconductor-based sensors is the use of conductive polymers 

for body sound detection. Their intrinsic mechanical 

stretchability, combined with the ability to engineer sensitivity 

and measurement range, is expected to enhance device 

performance. However, compared to Si-based devices, scalable 

manufacturing of polymeric sensors poses a significant 

challenge. High-yield fabrication processes such as inkjet or 3D 

printing are potential solutions to this problem. In addition to 

scalable manufacturing, another key technological issue is the 

development of stretchable circuits for polymeric sensors. In 

many cases, mechanical failure occurs at the interface between 

the soft sensor and the fPCBs due to significant differences in 

material properties. Developing fully stretchable devices using 

polymeric materials thus remains a critical research question to 

realize the unique potential of this class of materials. 

Power management is another critical aspect of wearable 

technology. Multi-modal sensing and long-term operation 
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demand higher energy capacities, which often result in 

increased battery size and weight. Larger batteries can 

compromise the overall device dimensions, reduce wearing 

comfort, and may influence the epidermal vibration under 

sound pressure and hence impact the measurement accuracy. 

Lithium-ion polymer (LiPo) batteries have been the mainstream 

power source for supporting intermittent sound measurements 

over several days. Despite advancements in battery technology, 

they remain one of the largest components in wearable acoustic 

systems, contributing to increased device size and weight. For 

applications such as sleep quality monitoring where acoustic 

sensors are directly attached to the nose or integrated into a 

facemask, minimizing device size and weight is crucial to 

enhance user comfort and prevent sleep interference. To 

address this challenge, wireless charging using NFC has 

emerged as a promising solution due to its biocompatibility and 

safety. In controlled environments such as hospitals, wireless 

power transmission systems can be installed beneath patient 

beds to continuously power wearable devices. This approach 

eliminates the need for bulky batteries, significantly reducing 

device size and weight while enabling long-term, uninterrupted 

use. However, the short communication range of NFC limits 

user mobility. Perhaps an ultimate solution could involve the 

development of energy-harvesting devices capable of collecting 

energy from the human body (e.g., using piezoelectric materials 

to harness body motion) or the surrounding environment (e.g., 

outdoor and indoor illumination). A recent study by the Gao 

group212 demonstrated the use of flexible solar panels to 

convert photoenergy from indoor illumination into electrical 

power for wearable chemical sensors. Similar concepts can be 

adapted to meet the power demands of wearable mechano-

acoustic sensors. Enzymatic biofuel cells (EBFCs), utilizing 

physiological glucose or lactate as fuels to convert chemical 

energy into electrical energy, represent a promising alternative 

power source. The chemical energy harnessed by EBFCs can be 

sourced from abundant biofuels found in human body fluids, 

such as sweat, tears, blood, and saliva213,214. These biofuels are 

renewable and can provide a power supply of up to 100 W, 

meeting the power demands of low-energy bioelectronics, 

which typically range from 200μW to 1W215,216. Compared to 

other energy harvesters that rely on solar or biomechanical 

energy, EBFCs offer distinct advantages. These include 

continuous power generation, biocompatible interfaces free 

from toxic materials, a simple configuration that eliminates the 

need for additional packaging, and biodegradability, making 

them a highly attractive solution for powering wearable and 

implantable bioelectronic devices. 

In addition to power management, data transmission presents 

a significant challenge in the system-level integration of 

wireless devices. Various wireless communication methods, 

including NFC, RFID, Wi-Fi, and Bluetooth, have been 

introduced, providing several advantages such as tether-free 

configuration, ease of use, and reduced motion artifacts. 

Among the techniques, NFC and RFID stand out as battery-free 

techniques, but their transmission rates are relatively low. NFC 

is known for its high security and convenient connection but is 

constrained by a limited range (≈5–20 cm) and low-sampling 

rate data transmission. As a result, NFC is better suited for on-

demand measurements rather than continuous monitoring of 

body sounds such as intermittent blood pressure measurement 
217. In contrast, RFID enables real-time wireless data exchange 

via electromagnetic waves, allowing real-time measurement of 

body signals. However, the operational range of RFID is limited, 

and its transmission stability is affected by geometry variations 

between the reader and devices, restricting its application in 

flexible wearable devices. To overcome these limitations, Wi-Fi 

and Bluetooth have been explored for data acquisition and 

transmission through RF (radio frequency) signals. Wi-Fi offers 

a long wireless transfer range of up to 70m, a high transmission 

rate, and has been used in applications like respiration and 

heart rate monitoring 218. However, due to the wireless 

transmission of data over relatively long distances, Wi-Fi 

communication typically requires high power consumption 219, 

limiting its suitability for long-term wearable devices. 

Conversely, Bluetooth, with a transfer range of about 30m, 

offers 30% less power consumption compared to Wi-Fi, while 

maintaining a stable connection between wearable devices to 

nearby user interfaces or processing centers, making it more 

practical for wearable applications. Bluetooth Low Energy (BLE), 

a power-efficient version of Bluetooth, has been introduced 

focusing on minimal energy consumption by sacrificing data 

rate. This allows BLE transmission on battery-operated devices 

that need to operate on minimal power and only send small sets 

of data. To address the data rate limitations in BLE, recent 

studies have incorporated external memory into wearable 

devices, enabling high sample-rate recording and data 

transmission periodically. The reduction of transfer frequency 

cuts power consumption by up to 60% 8 that can support 

continuous monitoring on a single device for over 24 hours with 

a small lithium-polymer battery 8,9,220, presenting a promising 

solution for data transmission for wireless, wearable mechano-

acoustic sensors. 

Acoustic sensors are sensitive not only to body sounds but also 

to acoustic noise from surrounding environments and human 

motion. Ensuring high-quality signals is imperative for precise 

and reliable diagnosis. Several devices, including acoustic and 

pressure patches, have demonstrated their capability for 

continuous measurement of heart pulse, blood pressure, and 

bowel sounds. However, most measurements require users to 

maintain a stable posture, and the influence of body movement 

on recorded data has not been fully addressed. Integrating 

multimodal sensors, such as acceleration and motion sensors, 

could help minimize or cancel artifact signals caused by body 

movement. This approach could also facilitate measurements 

during dynamic activities, including sports, thereby expanding 

the applications of acoustic sensors beyond healthcare to high-

performance sports. In addition, the application of machine 

learning to detect artifact signals and recognize distinctive 

sound patterns from different parts of the human body can 

underpin reliable measurement and diagnosis. The use of 

machine learning and artificial intelligence (AI) in wearable 

acoustic sensors to obtain and interpret meaningful body 

sounds is expected to be a highly active area of research in the 

coming years. Advancements in software development also 
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facilitate data sharing and access for home-based monitoring 

and telehealth but simultaneously raise concerns regarding 

security and privacy. Further efforts involving the development 

of wearable acoustic sensors, user education, and ethical 

considerations are critically important for deploying AI in 

wearable acoustic devices and other medical applications. 
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