Layered ion dynamics and enhanced energy storage: VS2/MXene heterostructure anodes revolutionizing Li-ion batteries

Abstract

Two-dimensional (2D) material-based anodes are pivotal for advancing next-generation ion batteries, showing remarkable ion loading capacity and mobility. In this intricate study, we employed first-principles calculations to delve into the five-layer lithium ion (Li-ion) loading on transition-metal dichalcogenide (TMD; specifically VS2) paired with MXene (Ti3C2O2 and V3C2O2) heterostructures. Our investigation meticulously assessed adsorption sites, binding energies, and charge transfers. Using sophisticated first-principles calculations, we probed into the Li-ion intercalation process, meticulously determining open-circuit voltages (OCV), which intriguingly ranged from 3.14 to 1.30 V for VS2/Ti3C2O2 and 2.60 to 0.73 V for VS2/V3C2O2. The adsorption energies (Ead) were equally fascinating, with values of −2.86 eV per Li-ion for VS2/Ti3C2O2 and −2.65 eV per Li-ion for VS2/V3C2O2. The optimized VS2/Ti3C2O2 heterostructure demonstrated a staggering Li storage capacity of 425.84 mA h g−1. Not far behind, the VS2/V3C2O2 heterostructure exhibited a notable Li storage capacity of 413.19 mA h g−1, surpassing previously reported 2D anode materials. Following this, ab initio molecular dynamics (AIMD) simulations exposed significant variations within the VS2/Ti3C2O2 and VS2/V3C2O2 heterostructures. These simulations suggest that both the VS2/Ti3C2O2 and VS2/V3C2O2 heterostructures are not only promising, but also highly efficient anode materials for the realization of sustainable Li-ion batteries.

Graphical abstract: Layered ion dynamics and enhanced energy storage: VS2/MXene heterostructure anodes revolutionizing Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2024
Accepted
27 Jan 2025
First published
28 Jan 2025

Nanoscale, 2025, Advance Article

Layered ion dynamics and enhanced energy storage: VS2/MXene heterostructure anodes revolutionizing Li-ion batteries

M. Ganesan and J. Y. Lee, Nanoscale, 2025, Advance Article , DOI: 10.1039/D4NR05451B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements