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The increasing prevalence of antibiotic resistance presents a significant challenge to public health, under-
mining the efficacy of conventional antibiotic treatments. Given the scarcity of new antibiotics and
efficient preventive strategies, the exploration of alternative treatments has become imperative. For many
years, vancomycin, a glycopeptide antibiotic, has been considered a last resort for treating severe Gram-
positive bacterial infections. However, the emergence of vancomycin-resistant bacteria has raised signifi-
cant concerns. The expanding use of nanomaterials in healthcare settings has shifted the spotlight
towards innovative antibacterial nanomaterials, potentially offering solutions to the resistance crisis. One
of the promising approaches to combat resistance involves employing metal nanoparticles to enhance
antibiotic efficacy. Silver nanoparticles (AgNPs) have garnered particular interest due to their extensively
documented broad-spectrum and robust antimicrobial properties, especially against bacterial biofilms,
making them useful against multidrug-resistant pathogens. Recent evidence suggests synergistic antibac-
terial activity when AgNPs are combined with vancomycin. This innovative approach offers the potential
to mitigate associated side effects and improve susceptibility to resistant strains. Consequently, the com-
bination of vancomycin and AgNPs presents a compelling strategy for addressing bacterial infections. This
review delves into the interactions between AgNPs and vancomycin, providing valuable insights into com-
bating antibiotic resistance. Current research efforts continue to investigate and underscore the advance-
ment of formulation strategies and their performance evaluation in a wide array of infection paradigms.
This continuing work aims to enhance our understanding of drug delivery systems and their therapeutic
potential across various infectious diseases.

2022, predominantly affecting the aging population.* The
prevalence of multidrug-resistant (MDR) bacteria, which

Antimicrobial resistance refers to the ability of microorgan-
isms to resist or endure the effects of antimicrobial drugs,
including commonly used antibiotics. Bacteria can develop
drug resistance through intrinsic traits or acquired mecha-
nisms, rendering antibiotics less effective."”” In the United
States, it is estimated that annually, more than 2.8 million
individuals acquire antimicrobial-resistant infections, leading
to over 35000 fatalities.> Future projections suggest that
deaths due to antimicrobial resistance will increase over the
next few decades, with a nearly 70% rise by 2050 compared to
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exhibit resistance to at least one agent in three or more anti-
microbial classes, has become increasingly common, particu-
larly in healthcare settings.” In July 2024, the Centers for
Disease Control and Prevention (CDC) reported a 20% increase
in six bacterial antimicrobial-resistant hospital-onset infec-
tions during the COVID-19 pandemic. These infections peaked
in 2021 and remained above pre-pandemic levels in 2022.°
Concerns have been raised about the ‘post-antibiotic era’,
where common infections may become life-threatening due to
ineffective treatments. Many experts, including those at the
CDC, believe we are already experiencing this era.® In 2017, the
World Health Organization (WHO) released its first-ever list of
“priority pathogens” in light of increasing antibiotic resis-
tance. It identified 12 families of bacteria associated with
increased disease burden and treatment failures.”® Bacteria
can develop resistance through several mechanisms, including
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the destruction or modification of antibiotics, prevention of
access to the target, mutations in target genes or acquisition of
genes encoding drug resistance, alteration of the antibiotic
target site, and resistance due to global cellular adaptive pro-
cesses, rendering antibiotics ineffective (Fig. 1).>

Many strategies have been devised to combat drug-resistant
bacteria, including bacteriophage therapy, antimicrobial pep-
tides, phytochemicals, metallo-antibiotics, and combination
therapies.” Metal nanoparticles have emerged as a promising
avenue for research, demonstrating significant antibacterial
activity against resistant strains.'® Among them, silver nano-
particles (AgNPs) offer the potential to address these chal-

Alteration of Drug Target
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lenges due to their broad-spectrum and robust antimicrobial
properties, especially against bacterial biofilms.'>'*> While
planktonic bacteria are susceptible, biofilms, which are far
more resistant to antibiotics, account for nearly 80% of all
microbial infections in the body.'* Some reports suggest
biofilm formation can prevent the penetration of drugs,
increasing the effective doses up to 1000-fold compared to
planktonic bacteria.'* Therefore, combining conventional anti-
biotics with AgNPs offers an effective strategy for enhancing
antibacterial efficacy."> AgNPs influence, induce, and modu-
late different inflammatory, metabolic, biochemical, and cellu-
lar processes, contributing to their multifaceted antimicrobial
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Fig. 1 Schematic representation depicting the mechanisms by which bacteria develop antibiotic resistance, shown with specific examples. The
primary mechanisms of resistance include (i) active efflux pump, where transmembrane efflux pumps works to remove the antibiotic from the bac-
teria, decreasing antibiotic concentration to sub-toxic levels; (ii) alteration of the drug target such as a bacterial mutation that changes the structure
of the target molecule to which the antibiotic usually binds, resulting in the loss of antibiotic ability to bind; (iii) enzymatic degradation, for example
the production of beta-lactamase enzymes can render beta-lactam antibiotics such as penicillin, carbapenems, and cephalosporins ineffective by
hydrolyzing their beta-lactam ring; (iv) gene acquisition, for example horizontal gene transfer (HGT) by transduction, conjugation and transformation
of antibiotic resistance genes from one species to another; (v) antibiotic inactivation/modification, for example chloramphenicol acetyltransferases
that acetylate chloramphenicol, preventing it from binding to the 50S ribosomal subunit; (vi) target protection, entails the physical association of a
target protection protein with the antibiotic target, (vii) target bypass, involves overproduction of the target enzyme or developing a bypass for the
target enzyme; (viii) modified cell envelope composition, such as alterations in peptidoglycan biosynthesis and membrane proteins like porins, chan-
ging the membrane permeability or lipo- and exopolysaccharides, rendering antibiotic resistance in bacteria. Created with BioRender.com.

456 | RSC Pharm., 2025, 2, 455-479 © 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4pm00314d

Open Access Article. Published on 20 February 2025. Downloaded on 7/28/2025 7:59:53 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Pharmaceutics

action in addressing multidrug resistance in bacteria. Their
direct antimicrobial activity is linked to adhesion to cell sur-
faces, penetration, intracellular damage, induction of oxidative
stress by reactive oxygen species (ROS) generation, and modu-
lation of signal transduction pathways."®

This review explores the potential of AgNPs in combi-
nation with vancomycin, the first discovered glycopeptide
antibiotic. Despite its effectiveness against a wide range of
Gram-positive bacteria, vancomycin has notable limitations.
These include its poor stability, short half-life in vivo, sub-
stantial first-pass effect, slow bactericidal activity, poor tissue
penetration (especially in the lungs), and the risk of severe
side effects like nephrotoxicity and ototoxicity."”'® Its high
molecular weight and hydrophilic nature result in poor gas-
trointestinal absorption, limiting its administration to intra-
venous routes, which are associated with patient compliance
issues and systemic toxicity.'® While nanocarrier systems,
such as polymeric micelles and surface-modified liposomes,
improve drug delivery, they face challenges in stability during
storage, scalable production, and regulatory concerns over
long-term safety and immunogenicity.”® Furthermore, varia-
bility in patient responses, driven by immune status and
comorbidities, further complicates treatment outcomes, high-
lighting the urgent need for novel and effective therapeutic
strategies.

Investigating the combination of AgNPs and vancomycin
presents a promising approach to tackle the growing challenge
of vancomycin-resistant Gram-positive bacteria. The conju-
gation of vancomycin with AgNPs has demonstrated enhanced
antibacterial activity against Gram-positive bacteria, including
Vancomycin-resistant Enterococci (VRE) and methicillin-resist-

Table 1 Antibacterial activity of silver nanoparticles
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ant Staphylococcus epidermidis (MRSE).>* This synergistic effect
not only expands the range of treatable infections but also
improves vancomycin’s ability to penetrate biofilms, thereby
enhancing its bactericidal action. Such combination therapy
may offer a more effective solution for managing infections
that are increasingly difficult to treat with traditional anti-
biotics alone.

2. Silver nanoparticles

The bactericidal activity of silver has been documented since
ancient times. It is effective against over 650 microorganisms
and provides a means to control vector-borne infections.**??
In the early 17™ century, Angelus Sola utilized systemic silver
nitrate to treat epilepsy and cholera. Subsequently, during the
19th century, German obstetrician Carl Crede and Austrian
surgeon Johann Nepomuk Rust used a diluted solution of
silver nitrate to prevent microbial infections.>® Given the
increasing decline in antibiotic effectiveness, AgNPs have
regained prominence, with the Food and Drug Administration
(FDA) approving numerous silver-infused wound dressings
and topical agents for marketing.”>*® In wound management,
for example, a clinical trial by Pathi et al. demonstrated that
Kadermin, a silver nanoparticle-based cream, outperformed
Mupirocin in promoting faster wound healing and bacterial
clearance. This highlights the potential for AgNPs to serve as
antibiotic-sparing agents in treating infections.>” While AgNPs
are capable of killing both Gram-positive and Gram-negative
bacteria, they demonstrate higher efficacy against Gram-nega-
tive bacteria,'® as shown in Table 1.

Bacteria Size (nm) MIC (ug mL™) Type of strain Ref.
Acinetobacter baumannii 10-50 4-25 Gram-negative 28
Burkholderia pseudomallei 10-20 32-48 Gram-negative 29
Campylobacter jejuni 10-50 4.92-39.4 Gram-negative 30
Escherichia coli 5 10 Gram-negative 31
Enterobacter hormaechei 5-15 4 Gram-negative 32
Helicobacter pylori 10-40 5 Gram-negative 33
Klebsiella pneumonia 50-65 62.5-125 Gram-negative 34
Neisseria gonorrhoeae 120 12.5 Gram-negative 35
Pseudomonas aeruginosa 45-53 2 Gram-negative 36
Proteus mirabilis 54 10 Gram-negative 37
Salmonella typhus 5-45 16 Gram-negative 38
Shigella flexneri 40-170 20 Gram-negative 39
Vibrio cholera 20-30 10 Gram-negative 40
Yersinia enterocolitica 16.56 50 Gram-negative 41
Bacillus subtilis 5-55 0.8-6 Gram-positive 42
Clostridium difficile 25-35 — Gram-positive 43
Enterococcus faecalis — 5 Gram-positive 44
Listeria monocytogenes 2-35 8 Gram-positive 45
Micrococcus luteus 62.09 60 Gram-positive 46
Mycobacterium tuberculosis 3-20 12.5 Gram-positive 47
Staphylococcus epidermidis 10-100 1-6 Gram-positive 48
Staphylococcus aureus 11.02-17.92 4-64 Gram-positive 49
Streptococcus mutans 10-78 4-16 Gram-positive 50

Abbreviation: minimum inhibitory concentration (MIC).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Recent studies have explored the application of AgNPs in
dental materials such as adhesives, root canal fillers, implant
surfaces, and denture resins due to their ability to inhibit bac-
terial growth and biofilm formation. Ongoing research is
investigating their potential as nano-vectors for gene transfer
and drug delivery, highlighting the expanding role of AgNPs in
advancing oral health treatments.”" Moreover, AgNPs are being
investigated for therapeutic applications beyond antimicrobial
uses. Rehman et al. demonstrated that AgNPs synthesized
from plant extracts exhibit notable antidiabetic properties.’* In
another study, Khajeh et al. showed that AgNPs derived from
the extracts of Moringa oleifera could upregulate the MLH1
(Mult homolog1) gene, which plays a crucial role in promoting
DNA repair and apoptosis in colorectal cancer cells.>> AgNPs
are also being explored for their antiviral activity against a
wide range of viruses, including hepatitis B virus, human
immunodeficiency virus, herpes simplex virus, and monkey-
pox virus, indicating their ability to inhibit viral attachment
and entry into host cells.”® This multifunctionality paves the
way for AgNP applications beyond healthcare, making it a
highly sought-after material across multiple industries. The
antibacterial potential of AgNPs has led to their incorporation
into a variety of consumer and medical products, including

View Article Online
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textiles,> agriculture,®® packaging,”” optoelectronics,”® and
environmental remediation.>®

Despite significant progress, the widespread clinical and
industrial adoption of AgNPs remains restricted by challenges
such as cytotoxicity, environmental concerns, scalability, man-
ufacturing uniformity, and regulatory constraints.®®°"
Additionally, achieving precise control over nanoparticle size,
morphology, and dispersion is a persistent hurdle.®?
Addressing these factors will be crucial in ensuring the safe
and effective utilization of AgNPs in biomedical applications
and expanding their commercial viability.

2.1. Synthesis of AgNPs

AgNPs can be synthesized through a variety of methods, which
include both modern biochemical techniques and traditional
approaches. These methods provide the flexibility to control
the size and structural properties of the nanoparticles.
Researchers employ diverse techniques, broadly categorized
into top-down and bottom-up approaches, as illustrated in
Fig. 2, to produce AgNPs that meet specific requirements.®?
The top-down approach involves breaking down bulk material
into nanoparticles, utilizing techniques such as laser ablation,
evaporation—condensation, and mechanical milling. This
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Fig. 2 Schematic representation of various nanoparticle synthesis methods, categorized into top-down and bottom-up approaches. The top-down
approach starts with bulk materials and breaks them down into nanoparticles, primarily using physical methods. The bottom-up approach builds
nanoparticles from atoms or molecules, employing chemical and biological methods. Created with BioRender.com.
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approach offers the advantage of producing pure and unconta-
minated AgNPs without relying on hazardous chemicals, ensur-
ing the production of high-quality nanoparticles. However, it is
energy-intensive and requires advanced machinery, significant
space, and long processing times, often resulting in relatively
low yields. Conversely, bottom-up approaches are cost-effective,
simple, and produce high yields with controllable particle sizes.
However, they often involve the use of toxic reducing agents and
stabilizers, leading to harmful waste, residual contaminants,
and potential aggregation of nanoparticles.®*®> This approach
involves building nanoparticles from individual atoms or mole-
cules in solution, encompassing methods like sol-gel processes
and chemical reduction. The latter typically requires a silver salt
precursor, reducing agents, and stabilizing chemicals.®®
Notably, the use of stabilizing or capping agents is crucial in
this process. These agents are often employed to enhance stabi-
lity and prevent coagulation.®® This is particularly important
because nanoparticles, due to their significantly reduced size
compared to bulk materials, possess higher surface energy,
which can lead to instability.”® These agents work through
various mechanisms, commonly categorized into five types:
steric stabilization, electrostatic stabilization, depletion stabiliz-
ation, stabilization by hydration forces, and stabilization by Van
der Waals forces.>*

Biological synthesis methods, a subset of bottom-up
approaches, present a more eco-friendly and cost-effective
alternative, utilizing plant extracts or microorganisms as redu-
cing agents. This method leverages the reducing and stabilizing
power of natural compounds, including flavonoids, alkaloids,
and enzymes from plants or microorganisms, to control nano-
particle formation and enhance stability without introducing
harsh chemicals.”* Recent studies have demonstrated their effec-
tiveness against various pathogens, including Candida albicans,
E. coli, and S. aureus, often surpassing traditional antibiotics in
efficacy. For instance, AgNPs synthesized using Bacillus methyl-
otrophicus exhibited superior inhibition of microbial growth
compared to conventional antibiotics.”> Another study utilized
Aspergillus sydowii to produce AgNPs with a spherical shape and
sizes varying between 1 to 24 nm. These nanoparticles demon-
strated significant antiproliferative and antifungal activities
against clinical fungal pathogens, suggesting their potential use
in biomedical applications.”® Additionally, plant-based synthesis
methods, such as those using Prunus yedoensis, have shown
promise in producing AgNPs with enhanced -effectiveness
against skin bacteria compared to commercial alternatives.”
Palanisamy et al. reviewed marine biomolecule-assisted syn-
thesis using compounds such as polysaccharides, enzymes, vita-
mins, and proteins derived from a wide range of marine organ-
isms, including but not limited to seaweed, seagrass, and micro-
algae.” This growing interest in biological synthesis is driven
not only by its reduced environmental impact but also by its
cost-effectiveness and reliability, positioning it as an attractive
method for producing AgNPs to combat antibiotic resistance.®®
However, challenges remain, such as ensuring reproducibility,
optimizing large-scale production, and understanding the long-
term effects of AgNPs in vivo.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.2. Physicochemical properties of AgNPs

The physicochemical properties of AgNPs, such as size, shape,
surface charge, and surface functionalization, play a critical
role in their antimicrobial efficacy and interactions with both
bacteria and host tissues. Zaman et al. highlighted the crucial
influence of AgNP size on photocatalytic and antibacterial
applications. Smaller nanoparticles exhibit enhanced efficacy
against bacterial strains due to their higher surface-area-to-
volume ratio and ability to penetrate bacterial cell barriers.
Additionally, they demonstrated greater activity against Gram-
negative bacterial strains.”® Previous research has shown chal-
lenges in synthesizing highly monodisperse and stable AgNPs
below 10 nm or above 50 nm using single reducing agents.
Strong reducers like sodium borohydride (NaBH,) produce
small, uniform particles but struggle with larger sizes, while
weaker reducers like trisodium citrate (TSC) yield larger par-
ticles with wider size distributions and varied shapes. A co-
reduction method using both NaBH, and TSC may offer better
control over nucleation and growth, potentially addressing
these limitations.””

In addition to size, the shape of AgNPs significantly influ-
ences their antibacterial effectiveness. AgNPs can be syn-
thesized in various shapes, including spherical, triangular,
cubic, rod-shaped, platelet, hexagonal, pyramidal, flower-
shaped, octahedral, tetrahedral, cylindrical, and irregular
configurations, each exhibiting unique physicochemical
properties.”®’® In a study, truncated-triangular nanoparticles
appeared to be more effective for microbial killing. However,
spherical nanoparticles are still considered to be the best-
suited for practical applications in either colloidal form or
immobilized state.””®® However, it’s important to note that
other factors also play crucial roles in determining antibacter-
ial efficacy. Pokhrel et al. investigated the antibacterial
efficacy of 5 nm positively charged amine (NH,)-functiona-
lized AgNPs and 45 nm negatively charged citrate-AgNPs
against E. coli. Positively charged AgNPs demonstrate greater
antibacterial activity due to electrostatic attraction with nega-
tively charged bacterial cell membranes.?! Functionalization
can prevent AgNP aggregation, enhancing their stability
in various solvents. For example, poly(pentafluorostyrene)
(PPFS)-modified AgNPs showed improved dispersion in
organic solvents, while glycosylated PPFS-modified AgNPs
were more easily dispersed in aqueous medium.** Surface
modifications enable the targeted delivery of AgNPs to
specific tissues or organs while potentially reducing toxicity
concerns. Functionalizing AgNPs with biomolecules such as
antibiotics, polymers, glycolipids, amino acids, and peptides
enhances their stability, biocompatibility, and functionality
for diverse applications.®

Depending on the desired local or systemic effect, AgNPs
can be administered through topical applications or via intra-
venous injection.®*®> He et al. developed an Ag-functionalized
chitosan hydrogel dressing with sustained silver release and
enhanced antibacterial capabilities. The hydrogel demon-
strated significant wound healing acceleration, achieving a
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99% healing rate in a mouse model, with improved re-epithe-
lialization and reduced inflammation.®® While -effective
against various conditions, AgNP cytotoxicity remains a
concern for widespread use in medical applications. Studies
are focusing on addressing safety concerns, optimizing
efficacy, and developing novel applications to harness the full
potential of AgNPs in biomedicine while ensuring their safe
use.

2.3. Mechanism of antibacterial activity of AgNPs

While the broad-spectrum antibacterial properties of AgNPs
are well-known, the precise mechanisms behind their anti-
microbial effects remain unclear. The antibacterial effective-
ness of AgNPs mainly arises from the release of Ag" ions.
These positively charged ions engage in electrostatic inter-
actions with the negatively charged functional groups con-
taining phosphorous and sulfur, such as phosphates
(-PO,*7) or sulfates (-SO,>7) in cellular membranes, pro-
teins, and DNA bases.®”” The presence of Ag® ions can
enhance the permeability of the cytoplasmic membrane,
potentially causing the bacterial envelope to rupture. Once
the free Ag" ions are internalized, they can inhibit respirat-
ory enzymes within the electron transport chain (ETC) and
leading to the generation of ROS.®® This oxidative stress
can damage DNA and interrupt the metabolic activities of
enzymes containing iron-sulfur clusters, such as aconitase
in the tricarboxylic acid cycle (TCA), through Fenton
chemistry.?>°® Furthermore, Ag* ions can compromise the
DNA’s ability to replicate and disrupt protein synthesis by
denaturing ribosomes in the cytoplasm.’’ It has also been
noticed that AgNPs have antibacterial properties without
the release of ions. AgNPs tend to accumulate in the pits
that form on the cell wall. Subsequently, they attach to the
cell membrane surface, altering its permeability by chan-
ging the cell potential and hindering cellular respiration.’?
The ability of AgNPs to interfere with bacterial signal trans-
duction by dephosphorylating tyrosine residues on peptide
substrates can induce apoptosis and halt cell multipli-
cation.”® AgNPs can also alter the morphology of bacteria
by obstructing the synthesis of cell wall peptidoglycan and
inhibiting bacterial growth by disrupting the functions of
the cell division protein FtsZ and the chromosomal replica-
tion initiator protein DnaA.’* Nevertheless, the potential
mutagenic effects of AgNPs and the resistance mechanisms
of target cells remain a subject of debate. Also, AgNPs have
demonstrated the ability to disrupt biofilm formation by
interfering with critical bacterial metabolic processes. They
can hinder bacterial motility, impair iron uptake, induce
oxidative stress, and disrupt respiration, which are crucial
for bacterial survival.”® Additionally, AgNPs can interfere
with quorum sensing systems, which bacteria use to com-
municate and coordinate biofilm development.”® Their
small size also allows them to penetrate the exopolysacchar-
ide layer via water channels, establishing direct contact
with bacterial cells and inhibiting biofilm progression. This
interaction leads to a reduction in membrane components,
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including proteins, polysaccharides, lipids, and nucleic
acids, gradually compromising membrane stability.”” AgNPs
exhibit potent antibacterial activity against a wide spectrum
of bacterial species through multiple mechanisms. Fig. 3
illustrates key modes of action by which AgNPs combat
bacterial pathogens, including disruption of cellular pro-
cesses, membrane damage, and interference with biofilm
formation.

2.4. Resistance mechanisms of AgNPs

Silver-resistant bacteria were initially identified following their
emergence from a burn wound subjected to silver nitrate
treatment.’®® Since then, these bacteria have been consist-
ently detected in various environments, including clinical set-
tings like hospitals and non-clinical environments such as
mines and coastal waters.'°>'°* The mechanism of silver resis-
tance was best described in S. typhimurium carrying the multi-
drug-resistant plasmid pMG101.%° This plasmid contains the
sil operon, which plays a vital role in exogenous silver resis-
tance due to horizontal gene transfer. The sil operon encodes
a sophisticated resistance mechanism involving multiple
genes, notably silCFBA, silE, and silRS. The SilCBA complex
forms an efflux pump that facilitates the transfer of silver ions
out of the bacterial cell, while SilE acts as a periplasmic silver-
binding protein, and SilRS functions as a two-component regu-
latory system.'®>7'%* The homolog sequences to the sil determi-
nants have also been identified in numerous E. coli strains.
The cusCFBA gene cluster, a component of the resistance-nodu-
lation-division (RND) efflux system, is pivotal in the resistance
mechanism against copper and silver.'® Lok et al. demon-
strated that disrupting the cus locus in the silver-resistant
strain led to a substantial reduction in the MIC of Ag" from
over 1000 uM to 12 pM.'°® Concerning the outer membrane, it
has been documented that E. coli mutants lacking outer mem-
brane porins exhibit more resistance to Ag" ions.*°”'°® The re-
sistance mechanisms can also involve a phenotypic change
rather than a genetic alteration. Panacek et al. found that
Gram-negative bacteria can generate flagellin, an adhesive
protein found in flagella, which induces the aggregation of
AgNPs.'” The study proposed that suppressing flagellin pro-
duction using pomegranate rind extract holds promise for
overcoming resistance to AgNPs. Therefore, non-motile strains
may exhibit increased susceptibility to AgNPs as the resistance
mechanism is influenced by bacterial motility, particularly by
the presence of the flagellum."'® Numerous studies have docu-
mented the response of bacterial biofilms to silver-induced
stress."™ Gram-negative bacteria, particularly members of the
Enterobacteriaceae family, appear more prone to developing
silver resistance. Bacterial species exhibiting resistance to
silver include Enterobacter spp.,''> Pseudomonas spp.,'"’
E.  coli,""*'*® Kilebsiella spp.,''® Acinetobacter spp.,""”
Citrobacter spp.,"'® Morganella spp.,"*° Proteus spp.,"*° and
Cupriavidus spp.,">* among others. More recently, silver resis-
tance has also been reported in some strains of S. aureus.'”?
The prevalence and mechanisms of silver resistance can vary
among different strains and species.
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Fig. 3 Mechanism of antibacterial activity of AgQNPs. The primary antibacterial mechanisms of AgNPs include (i) inhibition of the ETC: AgNPs inter-
fere with the components of ETC, impairing ATP production and cellular respiration; (ii) inhibition of peptidoglycan synthesis: AgNPs disrupt the syn-
thesis of peptidoglycan, a vital component of the bacterial cell wall, thereby compromising its structural integrity; (iii) membrane damage: silver ions
(Ag*) released from AgNPs attach to or penetrate the bacterial cell membranes, resulting in the leakage of cellular contents and causing structural
damage; (iv) enzyme inactivation: AgNPs can shut down crucial bacterial enzymes, such as aconitase and succinyl coenzyme A synthetase, of the
TCA cycle, thereby altering cellular metabolic status; (v) disassembled ribosomes: Ag* ions binding to the 30S ribosome subunit can disassemble
ribosomes, leading to alterations or abruption of protein synthesis; (vi) protein denaturation: AQNPs can interact with proteins and enzymes, resulting
in conformational changes in their tertiary structure, leading to loss of function and eventual cell death; (vii) ROS production: AgNPs can facilitate
the production of ROS, such as superoxide radicals and hydrogen peroxide, leading to oxidative damage of proteins, lipids, and DNA in bacterial
cells; (viii) DNA damage: AgNPs can enter bacterial cells and interact directly with DNA, leading to its denaturation or damage such as double-strand
breaks, condensation, and mutations in crucial DNA repair genes. This interaction inhibits replication and results in cell death; (ix) inhibition of mMRNA
synthesis: AgNPs can inhibit mRNA synthesis, preventing the biosynthesis of proteins necessary for bacterial survival and growth. Created with
BioRender.com.
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3. Vancomycin hydrochloride

Vancomycin, an amphoteric glycopeptide antibiotic, is fre-
quently designated as the “drug of last resort”, typically admi-
nistered after other antibiotics have failed.'**'** During the
1950s, researchers at Eli Lilly and Company, including Dr E.C.
Kornfeld, isolated vancomycin (compound 05865) from
Bornean soil samples. Produced by Streptomyces orientalis
(now Amycolatopsis orientalis), it proved effective against Gram-
positive bacteria, including antibiotic-resistant S. aureus. Its
name, derived from “vanquish”, reflects its potency against
resistant strains.'?>'?® Approved by the FDA in 1958, vancomy-
cin’s early use was limited by impurities and toxicity concerns,
including ototoxicity and nephrotoxicity.'*” Vancomycin is
proven effective against S. aureus (MRSA), S. epidermidis,
C. difficile, and it also has activity against other bacterial
species, including Streptococcus spp., Enterococcus spp.,
L. monocytogenes, Actinomyces spp., Lactobacillus spp., and
diphtheroids.’*®'*° Nonetheless, following the emergence of
vancomycin-resistant enterococci strains in the late 1980s, the
incidence of resistance in both enterococci and staphylococci
has continued to rise."*°

3.1. Mechanism of antibacterial activity of vancomycin

Each class of antibiotics targets specific components or pro-
cesses essential for bacterial survival and growth. They
disrupt these processes through various mechanisms, includ-
ing inhibiting cell wall and protein biosynthesis, disrupting
cell membranes, and interfering with nucleic acid metab-
olism."" The reported antibacterial mechanism for vancomy-
cin is based on inhibiting the cross-linking of peptidoglycan
chains, a vital structural element within the cell walls
of bacteria.'®* Peptidoglycan is a polysaccharide consisting
of sugars and amino acids, with repeating units of
N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM)
in its sugar backbone crosslinked by oligopeptides attached
to the NAM subunits."®® It is reported that vancomycin forms
hydrogen bonds with the p-alanyl-p-alanine terminal (p-Ala-p-
Ala) in the nascent peptidoglycan, thereby disrupting the syn-
thesis of the bacterial cell wall.****3® Due to steric hindrance,
this binding inhibits the activity of enzymes such as trans-
peptidases which are crucial for cell wall synthesis.’*® The
lack of transpeptidation directly reduces the crosslinking
density in the peptidoglycan matrix, resulting in decreased
strength and stiffness in the cell, impairing the resistance to
osmotic pressure, and leading to bacterial lysis."*”"**® n vitro
evidence indicates that vancomycin also inhibits transglycosy-
lation via binding to p-Ala-p-Ala moieties in peptidoglycan
precursors such as lipid II, impeding the elongation of the
peptidoglycan backbone.'****° Besides inhibiting peptidogly-
can biosynthesis, vancomycin has been found to affect genes
involved in autolysis and peptidoglycan hydrolase (SagB),
accelerating cell death."*! In addition, there are reports focus-
ing on the effect of vancomycin on bacterial cell membranes,
leading to alterations in membrane permeability and RNA
synthesis.'?®
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3.2. Resistance mechanisms of vancomycin

Despite its effectiveness against Gram-positive bacteria, impro-
per administration and excessive use of vancomycin can
induce genetic alterations such as mutations or the acquisition
of resistance genes. This culminates in the emergence of van-
comycin-resistant strains like VRE, vancomycin-resistant
S. aureus (VRSA), and vancomycin-intermediate S. aureus
(VISA), characterized by higher MICs than non-mutated
strains.'** It has been found that vancomycin resistance is
directly attributed to the expression of gene clusters named
van operons. Several established van operons (such as vanA,
vanB, and vanD) encode enzymes that alter the biosynthesis of
peptidoglycan precursors.'*® This alteration produces substi-
tuted terminated precursors with less binding affinity to vanco-
mycin, such as p-alanyl-p-lactate (p-Ala-p-Lac) and p-alanine-p-
serine (p-Ala-p-Ser)."** One representative van operon, van4, is
shown in Fig. 4. It is found in both VRE and VRSA and contrib-
utes to the formation of bp-Ala-p-Lac residue for
transpeptidation."**'*® Upon activation, three enzymes, VanH,
VanA, and VanX, are expressed from the vanA operon, which
possess respective functions. The VanH reductase catalyzes the
reduction of pyruvate to p-Lac, while the VanA ligase catalyzes
the formation of a crucial bond between p-Lac and p-Ala
through a covalent linkage.'*” The VanX dipeptidase hydro-
lyzes the peptide bond in p-Ala-p-Ala residue.'*® Additionally,
the expression of the vanA cassette is controlled by a two-com-
ponent regulatory system, VanR-VanS."**"*° 1t is also reported
that the structure of peptide residue correlates with the level of
vancomycin resistance, in which p-Ala-p-Lac rather than p-Ala-
p-Ser is present in highly resistant genotypes of VRE, as the
former structure shows less binding affinity."”"'>*> Besides van
operons, there are also other reported genes associated with
vancomycin resistance, such as cls and mprf, expressing
enzymes to prevent vancomycin penetration via structural
modifications of bacterial cell membranes."**

4. Combination approaches for
vancomycin and silver nanoparticles

Several studies have reported enhanced bactericidal effects
when the combination of vancomycin and AgNPs is adminis-
tered, surpassing the efficacy observed with either agent alone.
This enhanced activity is valuable in overcoming bacterial anti-
biotic resistance mechanisms, thereby rejuvenating the effec-
tiveness of vancomycin against resistant strains. The suscepti-
bility of S. aureus biofilms to AgNPs and vancomycin was
examined individually and in combination. Hair et al. used ten
distinct S. aureus isolates, each representing a range of
biofilm-forming abilities, and employed a crystal violet assay
to quantify the mass of the biofilms."*® Treatment with 2 pg
mL ™" vancomycin reduced the biofilm formation in 7 out of 10
isolates, encompassing 4 out of 5 methicillin-susceptible and
3 out of 5 methicillin-resistant S. aqureus isolates. The AgNPs
treatment demonstrated a decrease in 6 out of 10 isolates,
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Fig. 4 Mechanism of vancomycin activity and resistance. Vancomycin primarily inhibits peptidoglycan synthesis by binding to the p-Ala-p-Ala ter-
minus of cell wall precursors. In response to vancomycin exposure, the sensor kinase VanS undergoes autophosphorylation and activates the
response regulator VanR. This activation triggers the transcription of the vanHAX genes. VanH facilitates the reduction of pyruvate to p-lactate,
serving as a substrate for the ATP-dependent p-Ala-p-lactate ligase VanA. VanX carries out the hydrolysis of the existing p-Ala-p-Ala peptide pool.
Consequently, peptidoglycan precursors ending in p-Ala-p-Lac are incorporated into the growing cell wall instead of b-Ala-p-Ala, resulting in a sub-
stantial reduction in vancomycin binding and ultimately conferring resistance. (A) The VanA gene cluster responsible for vancomycin resistance, (B)
mechanisms by which S. aureus develops resistance to vancomycin. Created with BioRender.com.

including 4 out of 5 MSSA and 2 out of 5 MRSA strains,
whereas the combinatorial treatment had a substantial
reduction in biofilm formation in 9 out of 10 isolates. In
another study, the combination of AgNPs with vancomycin
demonstrated enhanced efficacy in inhibiting MRSA biofilms,
showcasing a synergistic approach to combat antibiotic-resist-
ant pathogens."” AgNPs and vancomycin demonstrated prom-
ising synergistic antibiofilm activity with AgNP concentrations
ranging from 2-4 pg mL~', permitting non-cytotoxic appli-
cation of the combination.

4.1. Vancomycin conjugated to AgNPs

AgNP surface can be easily modified to increase its stability
while offering an opportunity for drug conjugation. Thus, van-
comycin can be conjugated to AgNPs based on the type of
functional groups. Direct functionalization of AgNPs with van-

© 2025 The Author(s). Published by the Royal Society of Chemistry

comycin demonstrates the potential for developing novel anti-
bacterial agents with enhanced efficacy. Esmaeillou et al. uti-
lized N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydro-
chloride (EDC) and N-hydroxysuccinimide (NHS) to conjugate
vancomycin to the terminal carboxy group of thioglycolic acid-
stabilized AgNPs.>' The resulting conjugate showed potent
antibacterial activity, with MIC of 0.1 pg mL™" against VRE and
0.05 pg mL™" against S. aureus. Another study explored the use
of polydopamine (pDA) coated AgNPs as a platform for vanco-
mycin conjugation.'® It was found that the size of pDa-AgNPs
formulation increased from 24 nm to 33 nm with vancomycin
concentration in the micromolar range, potentially enhancing
its efficacy against vancomycin-resistant E. faecalis and inhibit-
ing further resistance development. Wang et al. took a
different approach, designing vancomycin-modified magnetic-
based silver microflowers assembly with bactericidal ability."*®
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The microflowers were carboxy-capped and then conjugated
with vancomycin. The hybrid micro composite exhibited syner-
gistic effects of magnetic-based Ag microflower and vancomy-
cin for sterilization. The magnetic microflowers were designed
to offer magnetic responsiveness, featuring a flower-like Ag
shell to facilitate more release of Ag' ions and bacterial
contact, complemented by a vancomycin layer to enhance cell
membrane permeability. The assembly demonstrated recycl-
ability over five washing-and-reuse cycles and efficiently eradi-
cated both E. coli and MRSA at low concentrations. In another
study, poly(amidoamine) (PAMAM) dendrimers, conjugated
with vancomycin via amide bonds and incorporating AgNPs,
resulted in a 6-7 log reduction in colony-forming units (CFU)
of a vancomycin-resistant bacterial strain in vitro.’®® This treat-
ment did not induce resistance in vancomycin-susceptible
strains. Moreover, in vivo, bacterial killing was demonstrated
in an infected wound murine model with a low dose of Van-
PAMAM-AgNPs dendrimers upon its single topical
application.

A multifunctional platform capable of simultaneously
detecting, eliminating, and inactivating pathogenic bacteria
was constructed by Yang and coworkers.'®® The electro-
chemical platform was fabricated using vancomycin-functiona-
lized AgNPs/3D-ZnO nanorod array electrodes. AgNPs were
functionalized with vancomycin using mercaptoacetic acid as
a linker. This allowed for specific recognition and detection
through hydrogen bonds between the peptidoglycan in the
bacteria cell wall and the carbonyl and amine groups of vanco-
mycin. This approach achieved a low detection limit of
330 CFU mL™" and demonstrated effective bacterial elimin-
ation, with 50% efficiency at low concentrations
(1000-2000 CFU mL™"). The synergistic effect of the AgNPs
and vancomycin provided high antibacterial activity (99.99%)
against pathogenic bacteria. Building on this concept of multi-
functionality, Zhou et al. developed a nanocomplex that inte-
grates surface-enhanced Raman scattering (SERS) and anti-
microbial photodynamic therapy (aPDT) for theranostic appli-
cations against vancomycin-resistant bacterial infections.'®>
The nanocomplex was comprised of silver-coated gold nano-
particles encapsulated in silica functionalized with vancomy-
cin and a near-infrared photosensitizer, silicon 2,3-naphthalo-
cyanine dihydroxide. The SERS-active core facilitated sensitive
SERS imaging of VRE strains, while the integrated photosensi-
tizer generated ROS upon near-infrared light irradiation,
resulting in the effective photodynamic killing of VRE. In vitro
experiments demonstrated that the nano complex, when used
at nanomolar concentrations, can significantly reduce bac-
terial populations by 4-5 log units upon photodynamic
therapy."®* This finding indicates the nano complex’s potential
as an alternative method for bacterial detection and elimin-
ation. In another study, Zhang et al. synthesized vancomycin
functionalized TiO,/AgNPs using nanoparticle deposition and
chemical crosslinking reactions.'®® These nanoparticles
demonstrated remarkable efficacy in degrading methylene
blue under ultraviolet (UV) illumination. The photocatalytic
inactivation of sulfate-reducing bacteria Desulfotomaculum spp.
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was investigated under UV irradiation, and prepared nano-
particle assembly was able to prevent bacterial cell growth
under UV irradiation.

4.2. Vancomycin electrostatic binding to AgNPs

AgNPs synthesized using an ionic surfactant can achieve stabi-
lity through an electrostatic stabilization mechanism, where
the surfactant acts as a crucial intermediary between the drug
and the AgNPs.'® Notably, utilizing citrate capped AgNPs
alongside vancomycin has yielded promising results, revealing
a synergistic effect.'® In that study, the combination exhibited
enhanced efficacy compared to free vancomycin against Gram-
positive (S. aureus) and Gram-negative (E. coli) bacterial
species. Further investigations were carried out to explore the
possible mechanism of interaction of vancomycin functiona-
lized AgNPs complex with bacterial cell walls. Vancomycin
inhibits the synthesis of bacterial cell walls by binding to the
p-alanyl-p-alanine dipeptide within the peptidoglycan layer."®
However, when combined with AgNPs, vancomycin exhibits a
synergistic antibacterial effect through a four-step mechanism:
(i) vancomycin binding to AgNPs, (ii) AgNPs-vancomycin
complex interacting with bacteria, (iii) the release of Ag™ ions
or AgNPs, and (iv) AgNPs inducing toxicity by binding to bac-
terial DNA and proteins.'®® Another common approach
involves the use of polymers or non-ionic surfactants, which
interact with AgNPs through a steric repulsion
mechanism."®”'% For instance, polyvinylpyrrolidone (PVP), a
non-ionic polymer surfactant, has been used with citrate to
functionalize vancomycin to AgNPs.'® Interestingly, citrate—
AgNPs demonstrated better drug loading than PVP-AgNPs. Ma
et al. loaded vancomycin on pDa nanoparticles through n-n
stacking, electrostatic, and hydrogen-bonding interactions.'”°
AgNO; was subsequently reduced in situ and embedded by the
action of pDa from the pDa-vancomycin hybrid in a stable and
facile process. Due to the robust interaction between pDA and
vancomycin, the nanohybrid demonstrated sustained drug
release during extended incubation periods. The incorporation
of pDA helped stabilize the AgNPs, preventing their aggrega-
tion and thus maintaining their antibacterial effectiveness. In
vitro testing using a spread plate assay revealed the superior
antibacterial effect of the nanohybrid. While vancomycin and
pDA-vancomycin treatments reduced bacterial colony
numbers to 80.7% and 54.4%, respectively, the pDA-vancomy-
cin-Ag nanohybrid group showed almost no bacterial colonies.
This synergistic antibacterial effect was quantified by a low
Combination Index (CI) value of 0.328. Additionally, the nano-
hybrid achieved hyperthermia-assisted bacterial inactivation
due to the photothermal pDa. In S. aureus-infected mice, all
wounds decreased in size over time, with the combined anti-
biotic-Ag treatment showing the most effective wound healing
and significant reduction in wound area percentage. The
authors suggested a possible antibacterial synergistic mecha-
nism that disrupts the bacterial membrane and ROS gene-
ration.””® In another study, Veriato et al. investigated the for-
mation of a complex between vancomycin-cysteamine and
AgNPs.'”! The synthesized nano-antibiotic exhibited potent
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and infection sites. PLT/Ag-MOF-Van showed significantly
better anti-infective efficacy in vivo mouse MRSA pneumo-

MIC of free vancomycin was 2 pg mL™", and Ag-MOF-Van
nia model compared to free vancomycin

was 1 pg mL™" against MRSA, which was reduced to 0.5 pg
mL ™" for PLT/Ag-MOF-Van. Encapsulation in the platelet
membrane allowed it to bind effectively to MRSA bacteria

MBC values for vancomycin and IPV were quasi-identical,

highlighting the potential for use as biocompatible and

self-protective antibacterial implant coatings
infection mouse model following subcutaneous spine

Antibacterial effect were observed in an in vivo S. aureus
implantation, with minimal inflammatory response

Antibacterial activity

E. coli (ATCC 25922), P. aeruginosa (ATCC
27853), and S. aureus (ATCC 25923)

S. aureus 113, S. epidermidis 1457, and E. coli
10 clinical isolates of MSSA and MRSA, each

Abbreviations: silver nanoparticles (AgNPs), minimum inhibitory effect (MIC), zone of inhibition (ZOI), minimal bactericidal concentration (MBC), combination index (CI), methicillin-

resistant S. aureus (MRSA), methicillin-Sensitive S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), vancomycin-resistant enterococci (VRE).

g
<
-
B
1]
=
o
9]
]
Q
]
M
—
o E
° &
T e )
< N =3
A 31 e
£
s,
! g
S on
£< S
5.8 g
E‘A =] ]
5 & 9] >
ST )
[=IiY; = 2 =
S = O = 3
> O Em
o 2 g 3
o O =) st
2l $5 3
= & 2% o
=B O & L
g.& CE=2 -
3 & =E £
o
T >
) 9]
a0 g2 g B
< 5 =] =
2o > L Q el
Q v 2= =1
EE =L < S
=1 o . > =
3 S| g ue SSy &
B 5] < |E’§ D-g)_‘
S S| 5o > on =) Lz
(¢} =R ] < 0= a 17
o gl 8= Ioc LS &
~| BlE28¢ S5E B %
-
~ 7 AS> AR Ao <
9
Qo
© 0 | o =}
- a N

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Review

bacteriostatic activity against both S. aureus and E. faecalis,
achieving a MIC of <1 pug mL™". These findings indicate that
the antibiotic coating on AgNPs enhances both bacteriostatic
and bactericidal effects, suggesting this approach is a promis-
ing alternative for treating resistant strains.

Combining silver with other metals, such as gold, has been
explored to enhance its antibacterial effects. Lu et al. prepared
Au/Ag nanoparticles functionalized with vancomycin using a
one-pot method."””> They observed that the antibacterial
activity increased with Ag content, specifically when the Ag-Au
ratio remained below 2:1. Additionally, their study revealed
that vancomycin could effectively enhance the adhesion
between bacteria and the nanoparticles, effectively doubling it.
The composite application showed lower bacterial resistance,
with MIC values as low as 30 nmol mL~"."”> Hur and Park uti-
lized a one-step, one-pot process to functionalize Au and Ag
nanoparticles with vancomycin.'”® In this process, vancomycin
served dual roles as both a reducing agent and a capping
agent for the nanoparticles. The process employed a green syn-
thesis route to prepare spherically shaped particles with an
average diameter of around 12 nm. Their report indicated that
vancomycin-AgNPs (MIC 45.3-90.6 pg mL ") have more anti-
bacterial potential (2.4-4.8-fold increase) than vancomycin-
AuNPs (MIC 217.4 or >217.4 pg mL™").'73

In addition, silica nanoparticles have been used as carriers
to enhance antibacterial functions for the co-delivery of vanco-
mycin and AgNPs."”* The silica’s porous structure facilitates a
substantial loading capacity, whereas its spiky nano topogra-
phy encourages pathogen interactions that enhance surface
adhesion and localized delivery. A dual solvent method was
employed to prepare Ag-silica nanoparticles, resulting in the
uniform distribution of AgNPs measuring 10 to 25 nm on the
surface of silica particles (~200 nm) with a hollow core of
approximately 110 nm, exhibiting no evident aggregation.
Following this, vancomycin was loaded onto this composite, as
shown demonstrating sustained release over two days and a
synergistic bactericidal effect against both E. coli and
S. epidermidis. The enhanced antibacterial effect of co-deli-
vered nano-Ag and vancomycin using silica nanoparticles was
explored through their interaction with bacterial membranes.
Nano-Ag-decorated silica nanoparticles caused significant bac-
terial damage, effectively disrupting the membranes of E. coli
and S. epidermidis."”*

Hashimoto et al. explored the impact of a hydroxyapatite
coating infused with silver (Ag-HA) and vancomycin on the
MRSA biofilm formation.'”® The study demonstrated that the
Ag-HA coating effectively inhibited the formation of MRSA bio-
films and altered their architecture. The combination of Ag-
HA coating and vancomycin synergistically reduced the for-
mation of MRSA biofilms both in vitro and in vivo. Sun et al.
utilized layered double hydroxides (LDHSs) to capture and dis-
infect bacteria simultaneously.’”® The AgNPs were synthesized
on the LDH surface via the reduction of Ag' ions using
glucose, followed by vancomycin adsorption onto the LDH
sheets. The LDH nanocomposite demonstrated enhanced anti-
bacterial activity against both Gram-positive and Gram-nega-
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tive bacteria. In another study, Huang et al. developed pH-
responsive platelet membrane-camouflaged nanoparticles of
silver metal-organic framework (Ag-MOF) and vancomycin.'””
The Ag-MOF was synthesized with 2-methylimidazole as the
ligand and silver nitrate as the ion source. The vancomycin
encapsulation efficiency was 81%, while the loading efficiency
reached 64.7%. The Ag-MOF loaded with vancomycin exhibi-
ted significant antibacterial activity against standard clinical
isolates in vitro, surpassing the efficacy of free vancomycin.
The platelet membrane facilitates adhesion to the S. aureus
surface and targets MRSA infection sites. In a mouse-MRSA
pneumonia model, the nanocomposite demonstrated a
superior anti-infective effect compared to free vancomycin
without apparent toxicity."””

Biomaterials play a crucial role in modern medicine;
however, treating infections associated with these materials
remains challenging due to the increased antibiotic resistance
of bacterial biofilms. Varisco et al. developed a self-protective
antimicrobial and biocompatible coating utilizing Ag" ions
and a derivate of vancomycin, termed intelligent pyridinate
vancomycin (IPV).'”® Recently, Collatusso, et al. created a novel
biological membrane from bovine pericardium samples
impregnated with AgNPs or vancomycin to mitigate the draw-

Table 3 Some of the metallic nanoparticles with vancomycin
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backs associated with antimicrobial properties in existing
scaffold materials."””® The membrane successfully decreased
the S. aureus loads in murine infection model, while also
demonstrating good biocompatibility and osteoconductivity,
indicating its potential applications in various clinical set-
tings, particularly as an antimicrobial coating for implants in
orthopedic and spinal surgery. In another study, AgNPs and
vancomycin-loaded collagen nanofibers were synthesized
using the electrospinning method.'®® The synthesized nano-
fibers demonstrated antimicrobial activity against E. coli and
S. aureus, emphasizing their promise for biomedical appli-
cations. Table 2 summarizes the antibacterial activity of vanco-
mycin and AgNPs when used in combination.

AgNPs have been shown to enhance the efficacy of vanco-
mycin through various mechanisms. This integrated system
offers a powerful strategy to overcome antibiotic resistance, as
highlighted in multiple studies. Specifically, AgNPs have been
demonstrated to significantly reduce the MIC of vancomycin
by increasing oxidative stress, disrupting bacterial membranes,
and facilitating antibiotic uptake, thereby improving its effec-
tiveness against resistant bacterial strains. Morones-Ramirez
et al. demonstrated that AgNPs play an essential role in restor-
ing the bactericidal action of vancomycin against Gram-nega-

Size
Metal Formulation (nm) Bacterial strain Antibacterial activity Ref.
Silver Vancomycin-cysteamine 1.51to  S. aureus (ATCC 29213) and the For S. aureus ATCC 2913, both the MIC 171
complexed AgNPs (Van-Cys— 43.82 clinical strains (SA-1, SA-2, and (2.00 to 0.25) and MBC (8 to 1) exhibited
AgNPs) SA-3), E. faecalis (ATCC 29212) and an 8-fold reduction with Van-Cys-AgNPs
the clinical strains (EF-1, EF-2, and treatment. For E. faecalis ATCC 29212,
EF-3) the MIC demonstrated a 16-fold
reduction (2.0 to 0.12)
AgNPs
Gold Vancomycin-functionalized gold 24to 77 E. coli (ATCC 25923), K. oxytoca The observed antibacterial activities of 184
nanoparticles (V-GNPs) (ATCC 43165), P. aeruginosa (NCIM V-GNPs were 1.4-, 1.6-, 1.8-, and 1.6-fold
2036), S. aureus (ATCC 14222) higher against E. coli, K. oxytoca,
P. aeruginosa, and S. aureus, respectively,
compared to pure vancomycin
Copper  Vancomycin-modified copper 15+5 Van-resistant E. faecium (ATCC51559, CuS-Van with NIR irradiation 185
sulfide nanoparticles (CuS-Van) VanA), E. faecalis (ATCC 51299, demonstrated the highest antibacterial
VanB) efficacy and the fastest infection
regression in the in vivo study compared
to the control groups
Iron Vancomycin and nisin-modified 22-47 S. aureus ATCC 33591 (MRSA), Vancomycin-functionalized 186
magnetite (Fe;0,)-SiO, nano- S. aureus ATCC 25923 (MSSA) nanocomposites exhibited to be more
structures coated with chitosan efficient in eradicating bacterial cells
both in vitro and in vivo
Gallium Vancomycin and gallium nitrate — MSSA (ATCC 25 923) and MRSA The combination of vancomycin and Ga 187
(Ga (NO3)3) (ATCC 33 591) (NO3); reduced the MIC of vancomycin
in MRSA, exhibiting an additive effect
while also inhibiting biofilm formation
and enhancing biofilm destruction, par-
ticularly in the MRSA strain
Nickel Vancomycin-modified gold 193.08 MRSA (800 926) Combination therapy accelerated wound 188
nanoparticles combined with +1.61 healing in MRSA-infected mice by
magnetic nickel oxide promoting collagen coverage, reducing
nanoparticles (NiO NPs-AuNPs— IL-6 and TNF-«a cytokines, and
Van) upregulating VEGF expression
Zinc Vancomycin and zinc oxide 20-150  S. aureus clinical isolates Decrease in vancomycin MICs from 189

nanoparticles
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2500-5000 ug mL™" to 39-78.125
pg mL~" when mixed with ZnO NPs
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tive bacteria. The mechanism involved AgNPs increasing bac-
terial membrane permeability, allowing vancomycin to pene-
trate and become effective against Gram-negative pathogens.
The combination therapy demonstrated significant reductions
in bacterial cell counts. In vivo studies using mild and acute
peritonitis models revealed that the combination of Ag" and
vancomycin significantly reduced E. coli cell counts, while
individual treatments had limited effect."®" These findings
suggest that combining AgNPs with vancomycin is a promising
strategy to combat antibiotic-resistant infections and poten-
tially repurpose existing antibiotics for broader application.
While combining AgNPs and vancomycin shows promise in
enhancing antibacterial activity, there are several potential
challenges to consider. The intricate synthesis process
required to create a stable and effective AgNP vancomycin
system poses technical hurdles, while concerns regarding the
potential toxicity of these hybrid structures to human cells and
tissues remain at the forefront of safety considerations.
Moreover, the variable efficacy observed across different bac-
terial strains underscores the need for comprehensive testing
and optimization to ensure broad-spectrum applicability.
Long-term bacterial resistance development should also be
considered. Regulatory approval and clinical translation
present additional hurdles due to the novel nature of this
nanomedicine approach. Addressing these challenges are
essential to harness the full potential of combining AgNPs and
vancomycin in combating antibiotic-resistant bacteria.

4.3. Other metal nanoparticles in enhancing antibiotic
efficacy

The role of nanoparticles in combating bacterial resistance
extends beyond silver, encompassing various metal nano-
particles such as copper, gold, and zinc. These nanoparticles,
when combined with antibiotics, offer promising avenues for
addressing antimicrobial resistance. Copper nanoparticles, for
example, have shown strong antimicrobial activity against
biofilm-forming pathogens,'® while gold nanoparticles are
known for their ease of surface modification.'®® These pro-
perties position other metallic nanoparticles as an attractive
option for enhancing antibiotic delivery, similar to AgNPs.
Table 3 presents some of the combinations of metallic nano-
particles with vancomycin.

5. Conclusion and future outlook

By pairing specialized properties of metallic nanoparticles
with antibiotics, this method offers a dynamic approach to
counteracting the growing threat of bacterial resistance.
Metallic nanoparticles, including silver, copper, and gold,
possess intrinsic antimicrobial properties that can augment
the effectiveness of antibiotics. These nanoparticles work
through mechanisms such as disrupting bacterial cell mem-
branes, interfering with essential cellular processes, and indu-
cing oxidative stress. This review highlights the synergistic
potential of AgNPs combined with vancomycin as an effective

© 2025 The Author(s). Published by the Royal Society of Chemistry
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approach to combat antibiotic-resistant pathogens. Insights
gained from this combination can be applied more broadly to
other antibiotics, enhancing their efficacy against resistant
bacteria, particularly those residing in biofilms. Future
research should focus on unraveling the molecular mecha-
nisms behind how AgNPs boost antibiotic activity in resistant
strains. Understanding the interactions between AgNPs and
bacterial membranes, enzymes, and genetic pathways respon-
sible for resistance will provide critical insights into optimiz-
ing these combinations. Additionally, studies should explore
strategies to fine-tune nanoparticle size, surface charge, and
coating materials to improve targeted drug delivery, minimize
cytotoxicity, and ensure compatibility with specific antibiotics.
From a clinical standpoint, comprehensive preclinical and
clinical investigations are essential to assess the safety,
efficacy, and optimal dosing of AgNPs in antibiotic formu-
lations for both systemic and topical applications. Addressing
concerns such as nanoparticle toxicity, long-term tissue
accumulation, and environmental impact will be pivotal for
securing regulatory approval and ensuring successful clinical
translation. Collaborative efforts among researchers and clini-
cians are important to ensuring the stability, scalability, and
cost-effectiveness of these technologies for widespread clinical
adoption.

In summary, ongoing research and optimization of metal-
lic nanoparticle-antibiotic combinations have the potential
to transform the treatment of antibiotic-resistant infections.
By providing novel, effective therapeutic options, these strat-
egies have the potential to improve treatment outcomes,
alleviate healthcare burdens, and significantly enhance
patient care in the face of the growing threat of anti-
microbial resistance.

Abbreviations

AgNPs  Silver nanoparticles

aPDT Antimicrobial photodynamic therapy

CDC Disease control and prevention

CFU Colony-forming units

CI Combination index

EDC N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide
hydrochloride

ETC Electron transport chain

FDA Food and Drug Administration

GLASS  Global antimicrobial resistance and use surveillance
system

PV Intelligent pyridinate vancomycin

LDHs Layered double hydroxides

MDR Multidrug-resistant

MICs Minimum inhibitory concentrations

MRSA Methicillin-resistant Staphylococcus aureus

MRSE  Methicillin-resistant Staphylococcus epidermidis

NAM N-Acetylmuramic acid

NAG N-Acetylglucosamine

NHS N-Hydroxysuccinimide
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OECD  Organization for Economic Cooperation and
Development

PAMAM Poly(amidoamine)

PVP Polypyrrolidine

RND Resistance-nodulation-division

ROS Reactive oxygen species

SEM Scanning electron microscopy

SERS Surface-enhanced Raman scattering

TCA Tricarboxylic acid cycle

uv Ultraviolet

VISA vancomycin-intermediate S. aureus

VRE Vancomycin-resistant enterococci

VRSA Vancomycin-resistant S. aureus

WHO World Health Organization
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