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Abstract

One of the most interesting applications of artificial intelligence is in the design of drug 

delivery systems. Smart drug delivery systems can transfer drugs to specific tissues and cells, 

enhancing therapeutic effects while reducing undesirable side effects. The attention will be 

focused on the main concepts and techniques of AI such as machine learning, deep learning, and 

genetic algorithms. In addition to this, genetic algorithms can be used for the selection of the 

best numerical models, able to predict biological processes or optimize the activity of new drugs. 

Besides the powerful impact of AI on drug design, its combination with new biotechnologies for 

personalized medicine, sometimes called theragnostic, novel diagnostic tools together with 

targeted therapy could ensure quality and effectiveness during the clinical research of new drugs. 

Artificial intelligence (AI) techniques are finding their application in almost all disciplines, with 

special success in healthcare. AI-based algorithms can solve complex problems related to 

diagnosis, prediction, control, and prevention of diseases that are beyond the scope of human 

abilities. At the same time, the Internet of Things (IoT) revolution has added value to the 

healthcare sector. The resulting combination of IoT and AI platforms presents a promising fusion 

to provide healthcare delivery innovations like digital drug delivery, online healthcare 

consultancy platforms, and virtual healthcare assistants. 

In other hand personalized medicine is well-suited, regardless of potential disadvantages, for 

creating drug delivery systems that can respond to the exact needs and other special requirements 

of the patients. The development of smart drug delivery systems is a potential response to the 

unimodal properties of drugs and the discordance between patient requirements and the patient 
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outcomes achieved by currently prescribed medications. The potential and actual positive 

economic and health-related impacts of advanced drug delivery technologies have created a 

strong demand for new advanced delivery forms.

Key Words: Artificial Intelligence, Smart Drug Delivery Systems, Personalized Medicine, 

Tailored medicine, Machine learning, Deep learning, Natural language processing (NLP)

1. Introduction

Over the years, traditional drug delivery systems have been developed based on specific 

needs to deliver therapeutics in an effective and safe manner. A collection of such methods is 

already available as marketed products, which can be generally placed in one of the following 

groups: a) oral or transdermal delivery systems, b) injectable systems, c) inhalation or topical 

creams or ointments, d) partially or totally bio adhesive systems, e) nanoscale drug delivery 

systems, and f) controlled release systems 1. However, despite the clinical successes of the 

marketed products, traditional drug delivery methods possess several limitations that are 

particularly noteworthy for proteins and nucleic acids. Proteins have complex 3D structures that 

allow them to perform their specific functions, and these proteins must be administered as active 

agents to the patients because these molecules cannot be synthesized by human cells after 

administration. A variety of factors can compromise the activity of therapeutic proteins, such as 

proteolysis, aggregation, or denaturation.

1.1. Emergence of personalized medicine and its significance

The principle underlying personalized medicine is the capability to create therapies that are 

more precise and effective by identifying genetically distinct patients who can achieve improved 

efficacy 2. Genome-scale measurements of biological processes in patients can recognize 

differences in the structure of complex diseases and predict whether a disease will benefit from 

a particular treatment 3. As a result, genomic information can be utilized to better comprehend 

susceptibilities and strengths. This allows for early identification of those factors that provide 

higher probabilities of effective treatment 4. Furthermore, these factors can be employed to help 

patients determine the best courses of action. The effect can be greater efficacy and decreased 

adverse reactions in patient care. However, personalized medicine not only encompasses the 
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medical field but also multiple other fields, including diagnostics, pharmaceuticals, and the 

delivery of medicine. With the development of advanced technology, the prevention and even 

prediction of adverse drug-related health issues are possible 5. In contrast to one-size-fits-all 

therapeutic designs, personalized medicine can offer new medicines adaptable to the needs of 

distinct patient groups. The delivery of new drug products can range from changes in formulation 

to complementary diagnostic tools that could be part of the therapy of various physicians. With 

significant implications for medical practices and the healthcare system, this technology 

provides the potential for early implementation 6. 

AI is a transformative tool, and it can help modernize several aspects of the healthcare sector, 

from drug discovery to different aspects of clinical work7. The role of AI in personalized 

medicine is vital, since the advent of genomics and other omics has created a monstrous amount 

of data, which is way beyond the scope of traditional statistical methods to process8. The ability 

of AI to identify patterns in vast amounts of data makes it the most suitable for personalized 

medicine, which requires analyzing patients' genetic and clinical data to diagnose, treat, and even 

predict the risk of certain diseases 9. In general, AI can assist in the development and efficient 

operation of personalized medicine by integrating different data types, which include clinical 

data, medical imaging data, omic data, etc., and by providing patient stratification, diagnostics, 

and highly targeted treatment to bring about successful patient outcomes10. Data integration 

helps to provide insights for targeted therapies. AI models trained on large, diverse datasets are 

useful in providing treatment for all patients with different disease risks, as AI-driven tools can 

take into consideration all possible traits of a disease and the genetic makeup of an individual11. 

Also, AI-driven machine learning models can be trained on omics data to improve predictions 

of drug response and prognosis and will be superior in terms of reducing the number of patients 

required for clinical trials and for cost reductions 12. Requirements for data privacy are few in 

medical diagnostics, which can be shared for the development of public tools to diagnose rare 

diseases and conditions. Many believe that AI plays a decisive role in a multitude of fields. In 

medicine, AI finds areas of complex problem-solving where expert decision-making is 

combined with diagnosis in areas such as radiology and pathology, where findings are from 

representations like images, sounds, or texts 13. Analysis of radiological images of several 

different body parts highly benefits from deep learning models, which learn features and 

diagnose diseases automatically. The design and development of decision support systems to 
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assist in radiology is a major force behind AI research 14. The advantages of using AI in the 

healthcare sector are widely accepted, and opportunities and challenges for researchers are 

identified. AI methods have shown enormous capacities to improve healthcare areas, ranging 

from planning treatments for chronic diseases, psychiatric disorders, modeling and predicting 

diseases, fighting against rare diseases 15. Its potential to revolutionize medicine and greatly 

improve human health should be widely recognized, and researchers should carefully examine 

which techniques of AI merit further exploitation and serious consideration for widespread 

clinical use. 

2. Overview of AI Technologies

2.1. Tools for AI Technologies: 

2.1.1. Machine learning (ML)

Machine learning (ML) is a subset of artificial intelligence (AI), associated with models 

that can be trained to make predictions or decisions without being specifically programmed for 

each case. One of the most widely used ML paradigms is supervised learning, which involves 

training a model to associate a certain input with a certain output. Unsupervised learning, 

meanwhile, aims to infer a function that can describe hidden structures of data characterized 

only by input features. Several ML models have been widely experimented with in the life 

sciences field; among these are random forests, support vector machines, and artificial neural 

networks (NN) 16. Nowadays, whereas the name of some ML models, such as deep learning, has 

been widely used by the media, a different nomenclature, such as deep feedforward neural 

networks or deep convolutional neural networks, is employed in specialized literature 17. 

Deep learning (DL) can also be categorized as a subtype of ML and can be applied to a 

wide variety of domains 18. DL is, in fact, an algorithm that allows ML to make decisions, 

executing a series of functions using parameters learned from large amounts of labeled data and 

employing simple modules like the ones inspired by the function and structure of the human 

brain 19. Different deep learning models may be more useful when treated with specific kinds of 

data or tasks 20. Deep feedforward neural networks have a simple three-layer architecture (input, 

hidden, and output), characterized by the absence of cycles and a virtually unlimited number of 

units, which may be used to model intricate relationships 21. A recurrent neural network (RNN) 

is another popular DL model that can capture patterns and trends in sequential data, which makes 
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it a useful resource, especially in time series prediction 22. The transformer, which behaves 

similarly to an RNN model but has no limiting structures that confine information propagation 

in time or space, has been applied in document sound and language modeling, as well as in 

serving models for question-and-answer platforms 23. 

2.1.2. Deep learning (DL)

Deep learning, as a subfield of AI, provides an efficient and robust mechanism for 

modeling and approximating complex data by processing a large-scale, high-dimensional feature 

set through varying degrees of flexible deep multilayer structures with many easily tunable 

parameters 24. In contrast to analogical models based on advanced linear algebra, the structure 

in deep learning allows for the construction of end-to-end systems for learning from massive and 

unfiltered data 25. As a result, deep learning offers great potential in revolutionizing medical 

imaging and bioinformatics data analysis for both fundamental research and clinical diagnosis. 

The goal is to build automatic, reliable, and interpretable assistant tools to reduce human labor 

and dissatisfaction in weak AI realization over time 26. 

Despite the success of deep learning in other fields, its application in biomedicine often 

encounters methodological and theoretical challenges due to the high cost of labeled data, low 

cost of high-throughput data, and corresponding highly variable quality of molecular bio 

profiling results, intrinsic sample variability in human subjects, and ethical constraints of animal 

studies 27. For example, the signal of complex annotations from different pathophysiological 

processes sampled at different spatial locations and temporal stages in medical imaging data 

incurs high false positive and false negative risks due to semantic mismatch. Multiple variables 

from different animal cohorts or subjects impose a burden on experimental design 28. Biological 

event-derived conditions often suffer from intrinsic distribution shift problems due to the 

confounding effects of both the among-subject and within-subject cycles of multiple 

observations. These challenges lead deep learning method developers to focus not only on new, 

well-generated interpretable models from various perspectives but also on robust, adaptively and 

transparently robust models with controllable parameters for custom adaptation and model 

calibration through novel theoretical perspectives29.
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2.1.3. Natural language processing (NLP)

Natural Language Processing (NLP) is a branch of artificial intelligence aimed at training 

machines to understand, interpret, and process human languages. In the context of personalized 

medicine, the intersection of NLP and AI can be particularly valuable 30. Combining insights 

into clinical data can help form clusters of patients based on characteristics such as economic 

status, age, geographical area, and other socioeconomic parameters 31. Another example of the 

NLP application suggests taking into consideration not only descriptions of disease genomics 

but also text-based EHR data, such as the description of pathology results, reports of imaging 

tests, nurse notes with medical care information, or descriptions of lifestyle from doctors or 

psychologists 32. 

Knowledge discovery in clinical notes is associated with the creation and use of tools 

and methodologies for examining clinical notes to find new information about patients, diseases, 

or treatments 33. When it comes to customizing care plans that are right for unique patients, 

obtaining scientific knowledge is key. It is vitally important for businesses to build powerful, 

efficient NLP approaches to realize the promise of Big Data in delivering knowledge from 

unstructured EHR data 34. With the advancement of EHRs, we have the chance to finally obtain 

actionable knowledge from large-scale clinical notes. The increasing number and consistency of 

patient-encounter records combined with EHR popularity have allowed many studies to be 

conducted, establishing principles and techniques, and many helpful applications using clinical 

notes as research topics. Sharing data availability and such resources can help transform future 

patient care 35 36. 

2.1.4. Neural networks (NN)

NN is the most important modeling tool in modern artificial intelligence. It consists of 

massive numbers of neuron-like units. Each unit receives input and has the capacity to generate 

output through a function. Input to each unit is a weighted sum of all signals received by all units 

in the previous layer 37. Every input is then multiplied by a weight proposed by an algorithm, 

and then the weighted sum is input into a nonlinear transformation or activation function 

proposed by an algorithm. As a result of the nonlinearity introduced by the neuron model, it is 

possible to build a system with a generic decision-making system that can model very 

complicated patterns with an arbitrary degree of complexity38. It is considered the most useful 
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tool in solving machine learning problems. The methodology can automatically detect complex 

patterns from raw data and is useful for making predictions, classifications, time-series 

modeling, image and data compression, etc 39. In the healthcare sector, the extraction of such 

useful patterns is important in disease detection, prediction, diagnosis, treatment, device and 

drug development, and clinic planning, etc. NN is also extensively used in bioinformatics, 

clinical data analysis, and health informatics. 

In the pharmaceutical industry, package and prescribing errors can be prevented through 

machine learning that deploys NN for clinical decision-making. For successful diagnosis and 

efficient prognosis of different diseases, brain-computer interfaces, analysis of blood, 

endoscopies, heart and lung tones, skin, etc. 40. NN is capable of learning about individual patient 

medication. Input information, e-prescribing was positioned and optimized to provide 

appropriate and essential care for long-term, acute-care survival patients. In addition, neural 

learning will effectively categorize health data that address frequent disease types and provide 

efficient and essential healthcare solutions during outbreaks like health crises, which potentially 

occur at a record rate41.

2.2. The Role of ML, NLP, and Deep Learning in Data Denoising

The realm of data denoising has witnessed a transformative evolution through the advent 

of various technologies, each contributing unique methodologies and insights. The term 

"denoising" itself evokes a process reminiscent of clarifying a muddled message, akin to 

distilling the essence from noise. In the landscape of machine learning, myriad algorithms have 

emerged, designed to sift through data clutter with remarkable precision. Machine learning 

(ML), a cornerstone of contemporary data science, has redefined the parameters of data analysis. 

By leveraging intricate patterns within datasets, ML techniques enable the identification and 

removal of anomalies that obscure clarity. Natural language processing (NLP), another critical 

component, extends this paradigm to textual data, employing linguistic models to refine and 

enhance the quality of communication 42. Here, the focus lies on eliminating syntactical noise 

and semantic ambiguities, paving the way for more coherent interpretations. Moreover, neural 

networks have taken the forefront in this endeavor, functioning as intricate webs of 

interconnected nodes that emulate human cognitive processes. These networks are adept at 

learning from vast quantities of data, making them invaluable for denoising tasks that require 
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deep contextual understanding 43. Deep learning, a subset of this technology, further amplifies 

these capabilities, allowing for the extraction of features at multiple levels of abstraction. This 

layered approach facilitates the discernment of subtle signals amidst the cacophony of irrelevant 

information. In summary, the convergence of machine learning, natural language processing, 

neural networks, and deep learning has forged a robust framework for the denoising of data. 

Each technology contributes its distinctive strengths, collectively enhancing our capacity to 

achieve clarity and precision in an increasingly complex data landscape 44.
Table 1. An overview of software platforms that speed up different phases of the drug research and discovery 
process by utilizing AI techniques including deep learning, predictive modeling, and virtual screening

Software Interpretation Characteristics Ref

DeepMind AlphaFold
(Google, Mountain View, CA, USA)
https://deepmind.google/technologies/a
lphafold/, accessed on 10 October 2024

protein structure 
prediction by Deep 

learning model

Forecasts protein 
structures with high 

accuracy
45

Atomwise
(Atomwise Inc., San Francisco, CA, 
USA) https://www.atomwise.com/,

accessed on 10 October 2024

AI-driven drug
discovery platform

Virtual screening,
lead optimization

45

Recursion Pharmaceuticals
(Recursion, Salt Lake City, UT, USA) 

https://www.recursion.com/,
accessed on 10 October 2024

High-throughput
screening platform

Cellular phenotypic
analysis, rare

diseases
46

BenevolentAI
(Benevolent AI, London, UK)
https://www.benevolent.com/,
accessed on 10 October 2024

Drug discovery and
development

platform

Predictive modelling,
target identification

47

Schrödinger Maestro
(Schrödinger, New York, NY, USA)

https://www.schrodinger.com/,
accessed on 10 October 2024

Molecular modelling
and simulations

Molecular docking,
QSAR modelling

48

Insilico Medicine
(Insilico Medicine, Hong Kong)

https://insilico.com/,
accessed on 10 October 2024

Drug discovery and
biomarker

development

Generative
modelling, drug
repurposing, and
aging research

49

XtalPi
(QuantumPharm Inc., Boston, MA, USA)

https://www.xtalpi.com,
accessed on 10 October 2024

AI-driven drug
crystal prediction

Predicts drug crystal
forms, stability

50

Cyclica
(Cyclica, Toronto, ON, Canada)
https://cyclicarx.com/science/,
accessed on 10 October 2024

AI-driven drug
discovery platform

Polypharmacology
prediction, target

deconvolution
51
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3. Applications of AI in Drug Development

3.1. Drug discovery and design

3.2. Predictive modeling for efficacy and toxicity

3.3. Optimizing clinical trials

3.4. Other application

3.1. Drug discovery and design

There are several highly technical review articles that discuss the use of artificial 

intelligence (AI) in drug design, though nearly all of them are specifically targeted at algorithms 

or areas 52. Here we present a brief overview of the main areas of application of AI in drug 

discovery and design. Central to AI in drug discovery is the concept of 'in silico drug discovery,' 

where the vast amounts of genomic, chemical, and pharmacological data available are used to 

computationally describe biological systems and chemical processes with the goal of designing 

and discovering new compounds of therapeutic value 53. As a result, this technology has the 

potential to fundamentally change the way in which drugs for many diseases are discovered and 

developed53. 
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Fig 1. Application of AI in drug development 

The first applications of AI in drug discovery are mostly in computer-aided drug design, such 

as the often-discussed docking of molecules using machine learning or molecular description 

and prediction using deep learning 54. This includes the creation of libraries of chemical 

properties and structural information about drugs, the analysis of structural properties of drug 

target proteins such as proteomics research, the study of interactions between drug molecules 

and their corresponding endogenous protein targets such as in the determination of QSAR, 

enzyme-substrate interactions, and the prediction of binding constants 55. These applications 
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have a significant impact on understanding the complexity of the human genome and in 

proposing new biological mechanisms that could not be previously envisaged for drug 

intervention 56. In silico drug discovery has also had an expanded impact on finding new 

indications for drugs already in the market, to propose, for example, repurposing some drugs in 

the treatment of cancer or in the elucidation of the off-target effects of some drugs 57 58. 

3.2. Predictive modeling for efficacy and toxicity

Predictive modeling approaches, machine learning algorithms, and QSAR are widely 

employed for generating predictive models to integrate large amounts of data from diverse 

sources and types 59. However, predicting and optimizing the efficacy of personalized drug 

combinations is still very challenging. Investigations directed at optimizing drug combinations 

predominantly focus on chemical pleiotropy and signaling pathway crosstalk 59. However, the 

development of facile predictive algorithms, sophisticated systems biology models, and big data 

analytical approaches enables insights into a more complete set of molecular consequences of 

drug exposure, which could improve drug combination selection for efficacy, influence the 

direction of drug development, and identify potentially overlooked toxicities 60. QSAR, 

pharmacokinetic models, and PBPK models have been developed to predict the joint effects of 

therapeutic interventions 61. 

There is enormous potential for advancing precision medicine by leveraging the growing 

power of technology for drug combination selection through precision medicine research. This 

may, however, require an improved view of the nodes that mediate drug–drug interactions and 

expanded human data banks 62. Logic circuits, signaling and regulatory networks, and derived 

decision trees can uncover the complexities of drug-induced changes and lead to the elucidation 

of combinations of reagent interventions. The design of novel combinations can be driven by a 

joint desire to minimize the probability of success while limiting adverse effects and enhancing 

therapeutic outcomes 63. Machine learning can guide the joint development of the multidrug 

microbiome system or suggest potential novel regimens by the discordance of optimizing cancer 

drug combinations in cells versus xenograft mice, or by identifying drug–target–pathway 

connections in certain cell types. Existing experimental and bioinformatics approaches can 

provide the gold standard training sets for scrutiny of unexplored cells and tissues. The ideal 
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learning paradigm may not exist, and multifaceted, Mult constraint workflows may be necessary 

for different situations. 

 

3.3. Optimizing clinical trials

The use of artificial intelligence algorithms to select the appropriate patient population 

and the optimal dosing is expected to raise the rate of clinical trial success. 90% of novel 

anticancer compounds entering phase I clinical trials never reach the market 64. Among these 

drugs, many are efficacious but just for a small fraction of patients, while most of the non-lethal 

side effects are not acceptable. Companies are working together to optimize trial recruitment, 

and several startups are involved in the AI-based selection of patients for their inclusion in 

clinical trials on patient-centric protocol design65 (Table 2). Optimization of the patient cohort 

may also lead to improved outcomes of the clinical trial. A challenge demonstrated how the AI 

algorithm, as a background, leads to more accurate re-assessment of breast cancer risk. 

Optimized clinical trials with enriched cohorts may result in shorter trials, saving time and 

money, and may reduce the dropout rate due to adverse events, thus speeding up clinical 

development and marketing66. Moreover, with proven efficacy, the new therapeutic formulation 

or packaging option can be approved as a bioequivalent of the listed counterpart. Since the 

optimized patient population and very positive results can boost the price and thus profitability, 

investments will be easier to find while marketing expenses may be lower67 68. 

Table 2. Clinical Trial Utilizing Artificial Intelligence 69

Trial ID 
(NCT/DOI) Condition/Disease AI Application Purpose of AI

NCT06059378 Optical Polyp
Detection

Using AI-assisted Optical Polyp 
Diagnosis for Diminutive Colorectal 

Polyps (AI-OD)
to show the accuracy of 

intracolonoscopy

NCT05178095 Colonic Polyp 
Detection

Artificial Intelligence in Colonic Polyp 
Detection

detection of colonic 
polyps during outpatient 

colonoscopy

NCT04358198
Gastric Intestinal 

Metaplasia 
Diagnosis

Usefulness 
of Artificial Intelligence (AI) for GIM

diagnosing gastric 
intestinal metaplasia

NCT05489471 Lung Cancer
Impact of 

an Artificial Intelligence (AI) System 
on Chest X-ray Reporting

Nodule detection and 
malignancy prediction
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NCT06093217
Acute Pulmonary 
Embolism (AID-

PE) (AID-PE)

Artificial Intelligence to Improve 
Detection and Risk Stratification of 

AID-PE/ AID-PE

detection of acute 
Pulmonary Embolism 
(PE) in patients who 
undergo Computed 

Tomography Pulmonary 
Angiogram

NCT04918992 Pelvic Cancers
Post Radiotherapy MRI 

Based AI System to Predict Radiation 
Proctitis for Pelvic Cancers

predict radiation 
proctitis for patients 
with pelvic cancers 

underwent radiotherapy

NCT06456203

Respiratory Tract 
Infections
Infections

Lung Diseases
Respiratory Tract 

Diseases
Pneumonia

Trial of Artificial Intelligence for 
Chest Radiography (ACER)

an economic analysis of 
impact of AI decision 
support on radiology 

service delivery.

NCT06934239 Brest Cancer Impact of Artificial Intelligence on 
Breast Cancer Screening (PRISM)

To compare patient-
cantered outcomes when 

3D screening 
mammograms are 

interpreted with versus 
without a leading FDA-

cleared AI decision-
support tool in real-
world U.S. settings

NCT05018663 Pancreatic Solid 
Lesions

Artificial Intelligence (AI) 
Cytopathology Trial

To compare accuracy of 
preliminary diagnosis 
results between ROSE 

and AI at bedside versus 
final pathology report

NCT05241483

Laboratory Critical 
Values

Predictive Value of 
Tests

Reference Values
Relative Value 

Scales
Vital Signs

Remote Patient Monitoring and 
Detection of Possible Diseases 

With Artificial Intelligence Telemedici
ne System (AI - diseases)

Possible disease 
detection with artificial 
intelligence from the 
patient's vital values 

possible disease 
detection from the 

patient's examination 
records

NCT05423964 Adenoma
Adenoma Colon

Colorectal Cancer
Impact of AI on Trainee ADR

To determine the impact 
of AI based endoscopy 
on the rate of recording 
of quality improvement 
metrics versus historical 

performance in our 
program.

NCT06527378 Edentulous 
Alveolar Ridge

Edentulous Mouth

Artificial Intelligence in Dental 
Implant Planning (AIDENT)

offering new 
opportunities to improve 

the precision and 
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Tooth Loss efficiency of 
implantology

NCT06877988 Visual Impairment

Artificial Intelligence (AI) - Assisted 
Visual Impairment Screening Model: 

Community-based Implementation and 
Evaluation of Performance, Feasibility 

and Costs.

To evaluate the 
performance, 

operational efficiency, 
acceptability, feasibility, 
and cost-effectiveness of 
an AI-assisted screening 

model for visual 
impairment in a 

community setting.

NCT06301945

Thymic Carcinoma
Thymic Epithelial 

Tumor
Thymoma

Thymoma and 
Thymic Carcinoma

Artificial Intelligence Prediction Tool 
in Thymic Epithelial Tumors 

(INTHYM)

To improve the accuracy 
of histopathological 

classification of thymic 
epithelial tumors, and to 
better predict the risk of 

recurrence

NCT05438576 Cardiomyopathy
Pregnancy Related

Screening for Pregnancy Related Heart 
Failure in Nigeria

To evaluate the 
effectiveness of 

an artificial intelligence-
enabled ECG (AI-ECG) 

for cardiomyopathy 
detection in an obstetric 

population in Nigeria

NCT04580095 Heart Diseases Artificial Intelligence for Improved 
Echocardiography

To assess the effect 
of artificial intelligence 

algorithms on image 
quality in 

echocardiography.

NCT06763952 Diabetes
Vision

Leveraging Artificial Intelligence to 
Prevent Vision Loss from Diabetes 

Among Socioeconomically 
Disadvantaged Communities

To investigate whether a 
novel artificial intelligen

ce-based screening 
strategy improves 

screening and follow-up 
care rates across 

race/ethnicity groups 
and reduces racial/ethnic 
disparities in screening

NCT05339750 Allergic Contact 
Dermatitis

Allergy Skin 
Patch Artificial Intelligence (AI)

To assess human 
and artificial intelligenc

e performance in 
grading contact 

dermatitis reactions in 
healthy volunteers

NCT06790134 Pancreatic Diseases

Validation of an AI-Assisted 
Pancreatic EUS System for Training 
Improvement: a Prospective, Multi-

Center, Randomized Trial

To verify the auxiliary 
role of 

the artificial intelligence
 (AI) system in 

pancreatic endoscopic 
ultrasound (EUS) scans
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NCT06584305 Body Dysmorphic 
Disorder

AI Screening for BDD in Aesthetic 
Surgery: Enhancing Safety and 

Outcomes (AI)

to evaluate the 
effectiveness of an AI-
powered screening tool 
for Body Dysmorphic 

Disorder (BDD) among 
patients seeking 
aesthetic surgery

NCT05557162 Cardiac 
Amyloidosis

Artificial Intelligence Enhanced ECG 
to Detect Cardiac Amyloidosis

to assess a 
novel artificial intelligen

ce (AI)-enabled 
electrocardiogram 

(ECG)-based screening 
tool for improving the 
diagnosis of cardiac 
amyloidosis (CA)

NCT06397820

Coronary Artery 
Disease

Coronary Artery 
Stenosis

Relation Between AI-QCA and 
Cardiac PET (AI-CARPET)

To evaluate the clinical 
implications 

of artificial Intelligence 
(AI)-assisted 

quantitative coronary 
angiography (QCA) and 

positron emission 
tomography (PET)-
derived myocardial 

blood flow in clinically 
indicated patients

NCT06412900

Kidney Stone
Obstruction Ureter

Renal Colic
Ureter Stone

Radiomics and Image Segmentation of 
Urinary Stones 

by Artificial Intelligence (RISUS_AI)

To personalized and 
improved treatment and 

follow-up of patients 
with kidney stones using 

radiomics and the 
development of an 

artificial intelligence 
tool for CT examination 

assessment

4. Smart Drug Delivery Systems

4.1. Controlled release systems

Since pharmacokinetic parameters in drug release should be highly controlled and 

allowed to be determined in a certain target, applying particular drug release in the needed part 

of the body eliminates the inconvenience of numerous drug administrations, enhances simple 

structure therapy, and guarantees patients’ compliance70. This is the creation of controlled 

release systems. Artificial intelligence methods and control theory are gaining increasing 

recognition, and their implications in this direction have grown vastly. These critical 

observations propose a more intensive impact of the interdisciplinary strategy in solving the 
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extremely practical challenges inherent in this subject. Some challenging points of drug 

pharmacokinetics, dynamics, and modeling that are enhanced or limited by incorporating 

specific processes or applications are presented 71. Controlled release systems or multiple dosing 

regimens are self-associative, crystalline, polycrystalline, amorphous, and microporous drug 

carriers, drug-polymer conjugates, osmotic and electronic pumps delivering drugs, which 

possess a particular pharmacokinetic and pharmacodynamic profile. These profiles could be 

different from those produced by established prolonged-action drugs and have a similar range 

of therapeutic effects 72. The pharmacokinetic and pharmacodynamic times of such drug 

exposure should be determined in a certain target. Then, to be of interest, controlled release 

dosage forms might reasonably affect certain changes in the pharmacokinetic and 

pharmacodynamic processes 73. A specific controlled release involves stopping the drug release, 

drug reprocessing, and adaptation of the most important actions. Such research, development, 

and production of controlled release systems have focused great interest in this subject. 

4.2. Targeted delivery mechanisms

The precise identification of suitable targets using an appropriate molecular recognition 

system, and the release of active therapeutic agents in the right dose at the right place, is a crucial 

feature of any practical smart drug delivery system 74. Nanoparticles designed for use in vivo 

can also incorporate targeting moieties that recognize and interact specifically with certain cell 

types or structures. The function of the tissue/cell-specific ligand on the nanoconstruct is to 

confer cell-specific properties to the nanoconstruct, allowing it to selectively target and 

accumulate in its target location. Ligands also reduce the uptake of nano constructs by tissues 

not constitutively expressing the target antigen. Such ligands reduce the level of nano construct 

accumulation in less-targeted tissues while increasing the circulation of the particles in the body 
75. This interaction can improve the resolution in the delivery of the drug and allow its controlled 

release with minimum side effects. Overall, the use of ligand-targeted nano constructs in vivo 

results in improved drug delivery and drug efficacy at the targeted site76 77. 

A guideline block of text in a column of scientific literature shows that in vitro and in 

vivo studies report that targeted delivery systems improve delivery and uptake. However, 

researchers have variously referred to different materials, structures, and configurations, as well 

as ligand attachment methodologies. A comprehensive and systematic survey is required, using 
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advanced information collection techniques and scientific knowledge discovery methods78. Such 

a study will provide researchers with a broad perspective on which particles or systems are often 

mentioned, why, and to what extent nanomaterial ligand attachment influences the property and 

function in these works. This study will enable researchers to grasp the current research status 

and to identify further research needs79. Such a study in relation to smart drug delivery systems 

is a key reason for conducting the proposed work. Users can find out which systems are often 

machine-readable, which molecules are attached and get an overview of the techniques currently 

in use 80. 

4.3. Bio-responsive systems

The design of stimuli-responsive or bio-responsive systems could be seen as an 

intelligent approach to deal with the drug delivery challenge. A general strategy aims to locally 

apply energy to control release kinetics, elimination, or spatial resolution 81. The use of, for 

example, light, sound waves, magnetic fields, or variations in temperature has been reported. 

Phototherapy methods currently play a significant role in the treatment of cancer 82. Hence, a 

local energy impulse could trigger the response to the dose of an applied therapeutic or 

supporting agent. Besides photodynamic therapy, the use of types of particles could be strongly 

promising towards photothermal and/or sonodynamic therapies 83. Moreover, upon such a 

locally applied set of external conditions, some smart liposomes and polymeric carriers could 

undergo subsequent transformations, enhance their encapsulating potentials, or release the 

loaded agent 84. 

While designing those smart nanocarriers,85 the approach of "planning for a long time of 

operation, considering many possible target molecules for action as much as possible," as seen 

from the point of view of the number of functions per system established, seems just a "pure 

science" overstatement for an engineer, less updated towards the realistic range of opportunities 

awaiting medical use 86. In this sense, the use of these smart nanocarriers as hosts for therapeutic 

agent functions requiring some substitution of defective proteins and cell functions using 

different types of oligomers and polymers could represent a promising groundbreaking use 

concerning personalized medicine applications 87. 
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5. AI-Driven Innovations in Drug Delivery

5.1. Predictive analytics for formulation design

Machine learning has seen a surge in popularity of research in study formulation design 

in recent years as it can enable rapid and high-throughput material discovery due to improved 

prediction accuracy of AI models 88. Further, this approach allows customization of drug 

delivery systems (e.g., tailoring release rates, increased stability which can prolong drug shelf 

life). In one example, a formulation design software has been implemented to innovate drug-

loaded nanostructured lipid carriers with the desired spray drying characteristics, drug 

encapsulation, and drug release profiles for application in dry powder inhalation 89. Using this 

software to optimize NLCs for dry powder inhalation enabled greatly enhanced depositing 

aerosol and increased dissolution rate. This transformative approach will enable a personalized, 

adjustable drug release system tailored to each patient’s unique macromolecular composition for 

the treatment of various drug indications as we unravel new drug distribution mechanisms and 

develop reliable predictive capabilities 90 91. 

In another example, a unified adaptive design optimization of an mRNA-based vaccine 

formulation was described that would cover the whole vectorial/combinatorial composition 

space of an mRNA formulation in as few labs experiments as possible 92. The model search 

technique was then applied to find the most efficacious personalized mRNA vaccine 

formulation. Follow-up wet lab characterization experiments validated the model predictions. In 

this work, the personalized process would rule out all specific antigens, enable evaluation of a 

large pool of candidates for all respondents by delivering a personalized mRNA vaccine to all 

participants 93. Although these studies have demonstrated the potential of predictive analytics 

for drug formulation design and material discovery, it is important to stress that there are still 

major challenges in overcoming 1) obtaining high-quality data and models, 2) how to transfer 

models across settings and into the clinic, and 3) the cost of goods sold necessary to implement 

AI-guided strategies into a living cell or establishing the recommendations and quality standards 

for regenerative medicine 94. 

5.2. Optimization of dosage and release profiles

To ensure that the administered dose of a drug is the most efficacious, it is often 

necessary to tightly control the release kinetics of the drug cargo. Parenteral routes of 
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administration for most drugs deliver a constant, low-dose background level, with a bolus of 

additional drug after administration 95. This may not be a biologically relevant mimic of the 

peak-and-trough release profile for orally administered drugs, leading to inefficient drug 

utilization and a risk of adverse effects. Therefore, for many drugs, it would be beneficial to 

develop formulations with release kinetics that better mimic those of non-parenteral routes of 

administration 96. Optimization of complex drug-release profiles has already been demonstrated 

using proof-of-concept setups and algorithms, showing the potential for reduced time-to-market, 

money, time, and waste in the development of proposed formulations with desired release 

profiles 97. 

Tailoring the release profile of a given therapeutic compound over time to deliver the 

drug most effectively and efficiently is of high relevance and interest, offering a fascinating 

combination of goal-driven research, challenges 98. Exploration of AI-based systems can be 

expected to lead to innovative and, most probably, unconventional solutions. In this review a 

brief overview of how AI is currently used to actively optimize the dosage and release profiles 

of existing drug delivery systems, as well as to develop new drug delivery systems that can be 

used to optimize the release profiles of known therapeutic compounds for any given effect 

specification 99. It must be considered the optimization of active pharmaceutical ingredients 

within current mainstream dosage forms, followed by an exploration of how AI can be 

theoretically extended to the design and optimization of non-parenteral, nonoral drug delivery 

systems that offer the possibility of unique release profiles, rivaling or augmenting those which 

result from initial drug discovery, thereby offering the possibility of eliciting novel drug 

effects100. 

5.3. Integration with nanotechnology and biosensors

The development of various artificial intelligence (AI) techniques has its own roots 

entangled with the specialized disciplines within nanotechnology such as nanomaterials, 

nanoelectronics, nanobiotechnology, and nanocomputing 101. On the other hand, AI integrated 

with nanotechnology is the formulation of AI-driven nano techniques consisting of AI-based 

modeling, synthesis, characterization, testing, and quality control. AI can create thinking 

machines that could simulate biological neurons. Nano biocomputing systems include memory, 

Page 19 of 75 RSC Pharmaceutics

R
S

C
P

ha
rm

ac
eu

tic
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

9:
37

:5
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5PM00089K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5pm00089k


processors, and others that are dedicated to the consistent performance of computing within 

bioinformatics. 

AI, integrated with medical research and the administration of drugs, also plays a pivotal 

role in the field of pharmacy. For several years, research and studies have been evolving with 

the perfect match of AI and nanotechnology, which has ushered in the design and fabrication of 

nanoparticles, exploiting the intrinsic properties of the nanostructured material 102. Most of the 

work has been concentrated on the drug delivery of spare material. At the same time, some of 

the work is focused on the targeted distribution of biofunctionalized nanoparticles for cancer 

treatment and diagnostic imaging 103. 

Table 3. Popular AI model tools used for drug discovery 89 104 105 106 107.
AI Model Tools Summary Application Area Example / Use 

Case

DeepChem

Deep learning models for molecular property p
rediction, virtual screening, and generative che
mistry are among the many tools and models f
or drug development offered by this open-
source library.

Predictive 
modeling, QSAR, 

multitask 
learning

Predicting 
bioavailability and 

solubility in 
nanoparticle drug 

formulations

RDKit

A popular open-source cheminformatics library 
with a number of features including handling 
molecules, searching substructures, and 
calculating descriptors. Drug discovery 
software can incorporate it with machine 
learning methods.

Molecule 
manipulation, 

descriptor 
calculation

Generating 
molecular 

fingerprints for 
drug-likeness 

evaluation

ChemBERTa

A conceptual model developed especially for 
tasks involving drug development. It can 
produce molecular structures, predict 
characteristics, and aid with lead optimization 
because it is pre-trained on a sizable corpus of 
chemical and biomedical literature and is based 
on the Transformer architecture.

NLP-based 
molecular 
property 

prediction

Predicting 
ADMET properties 

from SMILES 
without 

handcrafted 
features

GraphConv 
(Graph 

Convolutional 
Models)

A molecular graph-based deep learning model 
architecture. By using the structural information 
contained in the graph representation of 
molecules, it has proved successful in 
forecasting molecular characteristics like 
toxicity and bioactivity.

Structure-based 
prediction of 
drug activity

Predicting IC50 of 
drugs on cancer 
cell lines using 

molecular graphs

AutoDock Vina

A well-known docking program that predicts 
the binding affinity between small compounds 
and protein targets using machine learning 
approaches. It can help with lead optimization 
and virtual screening for drug discovery.

Molecular 
docking and 

virtual screening

Identifying drug 
candidates for 

COVID-19 main 
protease
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SMILES 
Transformer

A deep learning model that creates molecular 
structures from Simplified Molecular Input 
Line Entry System (SMILES) strings. Lead 
optimization and de novo drug design are two 
applications for it.

Molecular 
representation 
learning (NLP)

Pretraining on 
SMILES for 

generative drug 
design and 

property prediction

Schrödinger Suite

A complete drug discovery software suite that 
includes a number of AI-powered capabilities. 
Predictive modeling, ligand-based and 
structure-based drug design, virtual screening, 
and molecular modeling are among its modules.

Molecular 
dynamics, 

docking, binding 
affinity

Simulation of 
protein-ligand 
complexes for 

kinase inhibitors

IBM RXN for
Chemistry

An artificial intelligence model for chemical 
reaction prediction. It helps with drug synthesis 
and the development of new synthetic pathways 
by generating possible reaction outcomes using 
deep learning algorithms and sizable reaction 
databases.

Reaction 
prediction, 
synthesis 
planning

Designing 
retrosynthesis 
pathways for 

custom prodrugs

scape-DB

A database called scape-DB (Extraction of 
Chemical and Physical Properties from the 
Literature-DrugBank) uses machine learning 
and natural language processing to extract 
biological and chemical information from 
scholarly publications. It offers useful data for 
studies on medication discovery.

Scaffolding and 
bioisosteric 
replacement

Identifying 
alternative 

scaffolds for 
known therapeutic 

compounds

GENTRL 
(Generative 
Tensorial 

Reinforcement 
Learning)

A deep learning model that creates new 
molecules with desired characteristics by fusing 
generative chemistry and reinforcement 
learning. De novo drug design and optimization 
have made use of it.

Generative 
molecule design 

with 
reinforcement

Designing novel 
opioid analgesics 

with desired 
potency and low 
abuse potential

Genetic 
Algorithms

Genetic algorithms are optimization methods 
that draw inspiration from the concepts of 
genetics and natural selection. To obtain the 
required dosage form properties, they can be 
used to optimize formulation compositions, 
drug release patterns, and process parameters.

Feature selection, 
formulation 
optimization

Optimizing 
nanoparticle 

composition for 
sustained release

Artificial Neural 
Networks
(ANNs)

Drug release kinetics from various dose forms 
have been modeled and optimized using 
artificial neural networks (ANNs). They can 
help identify the best formulations and forecast 
how active pharmaceutical ingredients (APIs) 
will release under different circumstances.

QSAR, release 
profile prediction

Predicting release 
rate of drugs from 
hydrogels based on 
polymer properties

Support Vector 
Machines
(SVMs)

To forecast and model interactions between 
formulation variables, including excipient 
composition, processing parameters, and drug 
release profiles, SVMs have been employed in 
dosage form optimization. They facilitate 
formulation design space optimization.

Classification of 
active/inactive 

compounds

Predicting drug-
likeness and 

toxicity of new 
compounds

Particle Swarm
Optimization 

(PSO)

For the purpose of optimizing dose forms, PSO 
is a population-based optimization algorithm. It 
has been used to optimize dissolution profiles, 

Parameter 
optimization, 

hybrid modeling

Optimizing ANN 
weights for drug 
release modeling
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particle size distribution, and other formulation 
factors.

Artificial 
Intelligence-based

Expert Systems

Expert systems mimic human experts' decision-
making processes by using AI approaches such 
as fuzzy logic and rule-based systems. Taking 
into account various formulation and process 
variables, they can be used for dosage 44form 
optimization.

Decision support 
for formulation & 

synthesis

Recommending 
excipient selection 
for personalized 

oral dosage forms

Monte Carlo 
Simulation

By taking into account the uncertainties and 
variability in formulation and process factors, 
Monte Carlo simulation techniques have been 
utilized to optimize the performance of drug 
products. They support process design and 
strong formulation.

Probabilistic 
modeling, 

pharmacokinetics

Modeling 
absorption 

variability in 
transdermal drug 

delivery

Computational 
Fluid

Dynamics (CFD)

The optimization of fluid flow and mixing in 
dosage form production processes, including 
granulation, coating, and drying, is made 
possible by CFD models. They aid in the 
creation of consistent and effective procedures.

Simulating drug 
transport in 
biological 
systems

Modeling blood 
flow-mediated 

drug delivery in 
microvessels

Response Surface
Methodology 

(RSM)

Through the modeling and analysis of the 
interaction between various variables and their 
impact on formulation responses, RSM is a 
statistical technique that aids in the optimization 
of dosage form formulations. It facilitates 
comprehension and formulation parameter 
optimization.

Experimental 
design, 

formulation 
optimization

Optimizing 
liposomal 

formulation for 
maximal 

entrapment 
efficiency

Artificial Neural
Network–Genetic 

Algorithm
(ANN-GA) 

Hybrid Models

To optimize dose forms, hybrid models that 
combine ANN and GA approaches have been 
utilized. To find the best solutions and forecast 
formulation properties, they can effectively 
search the formulation space.

Release kinetics 
modeling, 

optimization

Modeling and 
optimizing in situ 
gel formulations 
for ocular drug 

delivery

Multivariate 
Analysis

Techniques

Dosage form optimization has made use of 
multivariate analysis techniques including 
partial least squares (PLS) and principal 
component analysis (PCA). They help with 
dimensionality reduction, formulation 
performance optimization, and the 
identification of crucial formulation factors.

Chemometrics, 
PCA, PLS for 
data reduction

Analyzing HPLC 
profiles of drugs 

for quality control

6. AI Applications in Implantable Drug Delivery Devices

6.1. Role of feedback mechanisms

A significant aspect associated with the systems encompassing artificial intelligence is 

feedback. In systems driven by data, the importance of feedback is significantly amplified. The 

inclusion of feedback in smart delivery systems would allow the dose and frequency of agent 
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administration to be adjusted according to individual characteristics and dosing targets, thus 

improving therapeutic effects, reducing toxicities, and minimizing ADR risks 108. The use of 

feedback in systems necessitates a shift away from the self-healing systems described previously 

in favor of prescribed healing mechanisms. This reliance on prescribed healing mechanisms 

necessitates the use of responsive materials and devices 109. Materials responsive to various 

stimuli, ranging from environmental factors to those associated with the therapeutic target, hold 

promise for incorporating feedback into the drug release mechanism. Such a development would 

demand the convergence of material chemistry, responsive polymers, responsive amphiphiles, 

and responsive composite materials, such as pH-responsive nanoparticles. Additionally, 

appropriate devices and assembly techniques capable of altering drug dose delivery rates or 

switching drug release on and off would need to be engineered with a high degree of precision 
110. Research in responsive polymers and pharmaceutical excipients is classified as responsive 

materials relevant to drug release modulation. Drug delivery systems featuring good flexibility 

in the modulation of agent release patterns, such as drug-eluting stents, can incorporate both 

iontophoretic and transport machine feedback schemes 111. These advanced smart drug delivery 

systems can revolutionize current clinical practice by virtue of their capability to offer 

therapeutic doses of the drug in response to the real needs of the patient, without demanding the 

patient to be physically treated in a hospital. 

6.2. Adaptation to patient-specific requirements

Pharmacological treatment in drug delivery design is typically delivered in fixed doses 

to patients of variable physio pathological characteristics. For instance, patients may exhibit 

distinct disease progressions, such as slowed vascular blood flow in the vicinity of cholesterol 

plaque deposits in the context of inflammatory macrophage recruitment for atherosclerosis, 

which can affect the preferred particle type, size, coating chemistry, and site of release 112. 

Another aspect is the complex interaction of particle properties with the human body, from the 

protein corona that forms upon injection to the targeting and transportation capabilities that are 

dictated by the complex biological forces that control particle-particle and particle-tissue 

interaction. Together, this implies that a personalized approach toward particle design will 

become ever more relevant as we strive to treat patients in the most non-toxic, cost-effective, 

and successful manner 113. AI can significantly aid this development by capturing and utilizing 
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vast amounts of knowledge of existing drug delivery systems, either used in their target context 

or in various other applications 114.

7. The Concept of Personalization in Medicine

7.1. Genetic and phenotypic considerations

Genetics essentially determines not only the physiological and behavioral traits of an 

individual but also their propensity to develop diseases. The knowledge of specific genetic 

information may be pivotal for therapeutic decisions at an individual level 12. Pharmacogenetics 

and genotyping have already shown promise in individualized drug treatment by identifying 

genetic links to variations in therapeutic response to drugs. The defining elements associated 

with drug metabolism and individual-to-individual differences in targets such as drug receptors 

offer the ability to tailor treatment regimens with the greatest likelihood of positive benefits and 

reduced likelihood of toxicity due to drugs. The inherited genetic information describes only a 

portion of drug response, and additional factors like diet, the microbiome, acquired genetic 

information, disease status, concomitant medication, and pharmacoeconomic issues can have 

substantial effects on drug response115. 

Personalization, based on a variety of phenotypic and genotypic assessments, is the 

advance of present drug selection strategies. Single nucleotide polymorphisms (SNPs) alter the 

response of some drugs and thus should influence several drug treatments in clinical practice 116. 

The role of SNPs in terms of linking specific drugs to specific diseases has not yet been fully 

appreciated. Pharmacogenetics is defined as the research of all inherited factors that affect drug 

actions in families and populations. The association of genotypic differences with inter-

individual fluctuation in drug efficacy and toxicity outcomes is also known 117. Through 

analyzing genetic variation, we plan for a personalized medicine approach and convey the right 

dose and the correct drug to the right patient. In terms of inherited factors as well as prior genetic 

illnesses and other positive characteristics important for medical decisions such as disease 

diagnosis, clinical evaluation, and gene function evaluation, pharmacogenetics has evolved 

significantly 118. The analysis of the genetic variants influencing the reaction to a medication 

may be realized through both genome-wide association studies and clinical pharmacogenetics 

implementation  119. 
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Fig.2 Traditional Treatment vs Personalized Treatment

7.2. Importance in chronic and rare diseases

There is a consensus among healthcare professionals that any medical treatment 

approach is patient-specific, but it is heterogeneous in disease and health state. Thus, the 

pharmacokinetics and pharmacodynamics are altered from person to person or may differ due to 

simultaneous medication for other diseases 120. With respect to the varying pharmaceutical 

characteristics and the design of specific treatments for such rare diseases, considering the 

sporadic patient data creates a challenge in management and therapy compliance 121. 

Additionally, most chronic diseases are accompanied by comorbid features, such as side effects 

that result from the interaction of multiple factors using combined therapeutic agents. Maximum 

medication response with minimal deterioration of the health state needs to be addressed to 

improve the patient's quality of life 122. From pilot studies using cancer treatment to gene-

targeted clinical trials, researchers have started to focus on personalized therapeutic regimens 

according to their recent findings and relevant databases. The present status of genetic and non-

genetic factors of the disease needs to be discussed from the initial disease prediction towards 

the treatment scenario and its prognosis 123. Precision medicine research is presently restricted 
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to patients who are in good health, extensive medical technology, excellent public healthcare, 

and efficient data management systems, i.e., health smart devices, big data technology, and data-

based models mostly used in treatment personalization 124. Such growth is also heavily 

influenced by accelerated progress seeking pharmaceutical treatments for peptic ulcers, the 

eradication of H. pylori naturally, and the treatment of antibiotics for chronic hepatitis and some 

forms of cancer. More extensive pathologies, including cancer, chronic pancreatitis, 

inflammatory bowel disease, and hepatic cryoglobulinemia targeting the pancreas, stomach, 

intestines, liver, and other organs with the same success have recently emerged in gastric and 

liver drug delivery systems with fewer chemotherapeutic drugs 125. As a result, treatment 

personalization also necessitates the ability to develop drug delivery systems targeting these 

areas. With novel vaccine and drug delivery, nanoparticles, nano emulsions, and their 

combination kits can address both rare and chronic pathologies, and the design of smart devices 

is urgently required.

8. AI Tools for Personalization

8.1. Genomics data analysis

Currently, recent technological advancements have launched the new field of "genomic 

medicine" and its focus on the influence of genetic differences on the development and 

progression of human diseases 126. There is growing evidence to substantiate those genetic 

differences exist among patients in their response to drugs and their susceptibility to drug-

induced toxicity. Pharmacogenomics, a branch of personalized medicine, identifies patient 

profiles that subject them to drug responses, thereby optimizing drug therapy, with competencies 

for clinical decision-making and improvements in drug safety and outcomes. In addition, 

treatment suggestions based on patients' genetic characterizations are necessary to solve the 

issues of adverse drug reactions and the lack of pharmaceutical efficacy 127. The valuable 

information from whole genomes can be stored by diverse high-throughput functional genomics 

platforms employed for the comprehension of the function of genes. These potentially curative 

strategies are only showing substantial clinical success with the development of genome-

sequencing methods, resulting in a wealth of protein variants, new therapy targets, and some 

therapies for rare Mendelian diseases that do not have other effective treatment options 128. This 
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requires the adoption of personalized care and the efficient delivery of safe, genome-edited cells 

to patients. 

8.2. Patient stratification using AI algorithms

Highly heterogeneous disease biology is a problem that may not be resolved by targeting 

individual biomarkers. A growing trend in the clinical management of cancer patients is 

reclassifying patients into groups of similar prognosis and treatment efficacy, and more optimal 

therapeutic use of medicine129. Tumor stratification is subsetting cancer patients based upon the 

heterogeneity of cellular and molecular characteristics into clinically actionable population 

homogeneity. Although biomarkers such as estrogen or HER2 expression in breast cancer, 

activity of tyrosine kinase inhibitors in non-small cell lung cancer, and mutation testing before 

anti-EGFR treatment in colorectal cancer have demonstrated both clinical relevance and cost-

effectiveness, additional biomarkers could predict if a particular drug is likely to have superior 

efficacy or disease-modulating activity in patients with a predefined genetic, proteomic, or 

metabolomic signature 130 131. 

A patient first arriving in the clinic has the potential to be corrected and immediately 

steered to the cluster with the best projected outcome using advanced predictive algorithms 132. 

This can be achieved by attempting to learn from populations of pre-labeled patients by 

machines. Modeling patient behavior and the course of the disease can result in predictive 

models that can group patients in specific clusters, calling them strata, for which specific 

treatment decisions can be recommended. Although enabling this may still be a dream for 

healthcare regulators, AI has just finished entering the clinic 133. AI has also been used to identify 

patient groupings for colorectal cancer, endocrine therapy in breast cancer, and drug 

effectiveness in systemic sclerosis. 

To refine the potential benefits of using AI models for treatment guidance, clinical care 

must gradually become more personalized. This new treatment approach that has gained much 

attention in recent years is personalized medicine, also known as precision medicine 134. In 

contrast to the one-size-fits-all treatment in decades past or patients classified by the stage of a 

disease, clinicians and researchers now integrate clinical, molecular, and patient readiness data 

to predict individual risk factors and to optimize treatment options 135. The patient clinical 

pathway, diagnostic testing, patient qualification for participation in a clinical trial, treatment 
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intervention, and support after treatment are tailored and more focused on the individual. In 

particular, the immune system of patients is the centerpiece of personalized medicine, and no 

two patients have the same immune profile at the same moment 136. Such personalized treatment 

plans can be designed uniquely by integrating a patient's own molecular makeup, aggregates of 

molecular data, and AI technology 137.

 

8.3. Development of tailored therapeutics

The development of personalized therapeutic agents capable of targeting features or 

mutations in an individual is an appealing form of individualized medication that may help 

optimize health care 138. Inherent to this approach is the capability to produce tailored drugs on 

a patient-to-patient basis with the same level of production efficiency as currently experienced 

in the mass production of drugs 139. Advanced manufacturing techniques, now including 

techniques for gene editing and printing at the nanoscale, are increasingly being used in the 

pharmaceutical sector, accelerating the development of tailored therapeutics 140. Even the 

development of drugs tailored to a particular target population that can take advantage of 

economies of scale associated with large patient groups is advantageous. 

The development of tailored therapeutics can also be enhanced using artificial 

intelligence. Of specific interest is the concept of using intelligent software algorithms to help 

find optimal molecular therapeutics and geometric arrangements that best achieve a desired 

biological effect. The use of intelligent algorithms for the development of potential drug 

candidates can help to optimize attributes required of a potential drug, aiming to minimize 

typical poor in vivo drug performance, and help select drug leads that are more likely to lead to 

genuine improvement in the targeted therapeutic outcome. Allocating a greater effort in 

identifying lead drug candidates that are smaller and more diverse in structure and mechanism, 

addressing the current popularity for repurposing existing drugs, offers several advantages. 

Small molecules and groups of molecules having properties other than those associated with 

traditional drugs, and which have lower known safety concerns may receive heightened interest 

while advancing understanding of the behavior of molecules to support future drug lead 

optimization141 . 
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9. AI-Enhanced Precision Therapies

9.1. Case Study: AI in Oncology

Artificial intelligence (AI) has contributed substantially in recent years to cancer 

resolution. Cancer is the leading cause of death in developed countries. However, advances in 

early detection and improvements in therapeutics contribute to decrease cancer mortality and 

increase the amount of cancer survivors. Evidence-based medicine, based on a patient-centric 

approach, is rapidly replacing experience-based medicine. AI could revolutionize medicine, 

being the key driver of the transformation of healthcare to precision and personalized medicine. 

In oncology, there are major barriers for AI implementation, such as biased data, lack of 

standardized collection, insufficient clinical validation, or outdated regulatory frameworks. Big 

data is extremely useful in the digitization of healthcare. Traditional software approaches are not 

suitable for the challenges imposed by digital healthcare. Automated algorithms can help to 

process complex data and extract meaningful patterns, changing treatment evaluations and 

patient classifications. AI and ‘machine learning’ (ML) have achieved several important medical 

advances. In oncology, the question is ‘How will AI improve the outcomes of patients with 

cancer?’. Major advances in technology have produced large-scale, multidimensional data for 

cancer research. Cancers are now understood as multifactorial diseases requiring unique 

treatment and management. New cancer diagnoses are focused on complex methods such as 

measurement of molecular features to match individuals to targeted treatment plans. Analysis 

and sharing of clinical data have become paramount as our knowledge of cancer heterogeneity 

grows142. The application of AI algorithms has the potential to transform health and healthcare 

delivery. Common applications of AI in healthcare include identifying conditions, risk factors, 

and patterns, which can support clinical decision making and improve treatment outcomes. The 

complexity of oncological diseases presents an opportunity for AI to impact oncology-related 

problems. However, few AI tools have had a significant impact in oncology. The goal of this 

study is to present an AI-based solution tool for oncology problems validated at a medical 

institution in Spain 143.

 9.1.1. Impact on Treatment Personalization

Emerging AI techniques have shown promises in various aspects such as predicting 

genes related to drug side effect in an interactions network and similarly categorizing drugs 
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based on structure or compound similarities that would help identifying some compounds that 

can intervene with the effect of drugs and thus serve as candidates for new generation drugs. 

From treatment strategy perspective, AI would have the capability to locate titleable genes from 

the whole genome at patient level to increase mutations predicted reliably and determine the 

patient cohort for a given treatment. With respect to treatment types, AI tools could assist in 

establishing the predict treatments based on previous treatment outcomes from exploratory to 

mechanism guided treatment. Other potential applications of AI reasonable less related to the 

molecular level include predicting diabetes development based on multi-phenomena records and 

analyzing co-event logs to note the potential drug abuse patterns of an individual. AI offers 

highly cost-effective and efficient platforms on local data outreach. Given the treatment choice, 

it could filter the most exemplar patients and give complementary recommendation for 

upcoming visits probability distribution based on the prescription. Such systems suggest the 

therapeutic procedures to patients and thus help dispensing tailoring treatment.

AI is expected to alter the treatment type greatly from exploratory treatment to 

mechanism guided treatment with the enhancement of health record data completeness. With 

respect to exploratory treatment type, treatment recommendation engines pursue related 

patients’ previous treatment outcomes in databases and thus assist finding a wider candidate 

treatment. Most recently proposed recommendation systems are not capable or unsuitable to 

consult again and to highlight the insight of memories. A desired recommendation system should 

be patient level aware based on the developed validation method and a sample system has been 

demonstrated to consider the treatment candidate set as the context with incorporated local 

patients history and treatment recommendation. AI empowered prediction tools could open a 

door to the treatment types and recommend the appealing patient’s cohort who tolerate better 

targeted medicines via data mining on genotypic, epigenetic, lifestyle, social networks and 

interactions, and environmental heterogeneities on drug metabolism, reactivity and biological 

activity 144.

9.1.2. Outcomes and Effectiveness

Due to the clinical team facing complexity in treatment drug and dosage selection, AI 

intervention is to be assessed with respect to outcomes and effectiveness by focusing on 

precision medicine in precision pharmacology, predictive view for experimental trials and early 
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diagnosis of chronic conditions. Pharmacogenomic data, clinically approved drugs and 

associated dosage levels and generic information have been structured and analyzed, where the 

role of AI for both structure and prediction aspects as far as the application in pharmacology are 

concerned is discussed. The possible predictions are highlighted, where accuracy is increased 

with the inclusion of more features from both pharmacogenomic data and chemical structure 

descriptors. With respect to a predictive view on drug trials, potential failures of drug trial with 

respect to toxicity are assessed by structured analysis of toxicity data, where AI assistance in 

assessing target proteins, protein-ligand docking, adoption of lead compound selection, early 

toxicity assessment in addition to drug efficacy, and prioritization of compounds for wet-lab 

studies are assessed based on in silico datasets corresponding to a series of databases followed 

globally for applying AI modeling in drug toxicity are focused. New strategies powered by AI 

in tackling wishes for early chronic disease monitor and treatment based on big-data processing 

and machine learning model generation and assessment from current early chronic condition 

datasets are explored.

AI assistance is paramount in better targeted therapy through pharmacogenomic analysis 

and predictive pharmacology. The number of public available pharmacogenomic data resources 

has been updated and merged with pharmacogenomic knowledge base of drug treatment and 

targets in a user-friendly way entitled as PGP “Pharmacogenomics Database and Platform”. 

Analysis of potential of AI in precision pharmacology with respect to how to do the task, 

outcome prediction and feature prediction has been a highlight of AI assistive in breath-taking 

medicine treatment and the current limitations in accessibility of the application is discussed. 

Through a combination of ML and NLP approach, the noted drugs in the COVID-19 context and 

the associated potential target proteins have been identified based on a merged database of 

globally available attributes in drug repurposing 144 145. Though AI is outstanding in drug 

repurposing according to the collected initial knowledge, AI is trouble-some in preserving 

important weights and interpretable in counterfactual instances

9.2. Case Study: AI in Cardiovascular Medicine

Precision medicine is an evolving healthcare trend that aims to deliver personalized 

treatment protocols to every patient, particularly in cardiovascular medicine. The traditional one-

size-fits-all healthcare approach has focused on generalization: everyone individual with 
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hypertension, isosorbide dinitrate and/or metoprolol are prescribed, while all coronary artery 

disease patients with hypertension are treated the same. Cardiovascular medicine has numerous 

branches; for example, a patient with hypertension not accompanied by atherosclerotic 

cardiovascular disease, congestive heart failure, or post-myocardial infarction will be treated 

differently primarily just based on the symptoms related to that particular branch. On the other 

hand, a young patient with two-vessel coronary artery disease who developed an acute 

myocardial infarction without prior history will have an entirely different management approach 

than a middle-aged man having three-vessel coronary artery disease with prior history. 

Therefore, this approach requires proper understanding and processing of large amounts of real-

world patient data sampled over time. Precision cardiovascular medicine aims to identify and 

analyze the right intervention for the right set of patients at the right time staging involved with 

quantifiable outcome assessment, which is time-stamped and persisted in raw data format 146. 

The analysis of the data performed by human physicians is limited in the volume of data, the 

number of features involved in analysis, and processing speed, which are time-consuming and 

error-prone. There is a scope of AI-based methods assisting human physicians in understanding 

and optimizing the assessment of large amounts of patient data. Issues related to the input 

variable, extracting features, processing models, and understanding predicted outcomes require 

implementation of several different AI paradigms. An alarming implication of it for the 

healthcare provider is that machine-learning and deep-learning based algorithms employing 

hundreds of thousands or even millions input parameters provide prediction scores that do not 

offer real understanding of the processed data. The black-box nature of these models and the 

complexity of the data yield biophysical and medical implausibility of the predicted outcomes, 

which raises the need of research on interpretable AI and underlying biophysical process of the 

prediction scores.

Recently, AI-based methods have been evolving in precision cardiovascular medicine, 

attempting to improve patient care by analyzing patient data over time with quantifiable outcome 

assessments. As a result, the strategy involving a medical analysis of patient data with the 

involvement of AI means providing patient-centric data-assisted approach to human physicians. 

A systematic literature survey has been performed, by searching the most popular databases for 

the terms "precision medicine", "cardiovascular", and "AI" from January 1, 2010, up to July 10, 

2023. Findings relevant to cardiovascular medicine, precision medicine, and patient care were 
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considered. The focus was on AI implementations, biophysical models of predictions, and 

benefits of patient care improvement. The data sources reviewed suggest that there has been an 

increasing trend of research on precision medicine in the cardiovascular medicine domain in the 

last five years for AI implementation. The United States has reported the most research trends 

on precision medicine in cardiovascular medicine with a total of 16 papers, suggesting that these 

trends will continue to grow over time. The received papers have been classified into three broad 

categories, including cardiovascular branches, precision medicine branch, and AI algorithms.

9.2.1. Risk Assessment Models

Many ethical considerations surround the development and usage of Artificial 

Intelligence (AI) algorithms. The advancement of AI is creating a race for the development and 

deployment of AI algorithms primarily from the scientific and marketing viewpoints. However, 

it requires consideration of more than just technology, including ethics, governance, and 

regulation. Risk assessment algorithms are valuable and sought-after teaching tools in education 

at all levels, from Pre-Kindergarten to Universities worldwide. They are being increasingly 

developed by many organizations but without expected thought on what makes a robust and 

meaningful Assessment model.

In this study, the availability of better-trained and supervised AI systems due to growing 

data volume and quality is highlighted. State-of-the-art research efforts based on journal papers 

and patent analyses are also addressed in this regard. Therefore, potential data sources that allow 

doing something similar for developing a better risk assessment model, including healthcare 

organizations, online patient health data aggregation, and analysis, literature mining, text and 

image data, etc., are highlighted. Efforts made with academic collaboration to address some of 

these challenges such as the development of the AI guidelines and evaluation metrics are 

identified.

The potential threat to health and safety faced by a poorly implemented AI algorithm is 

stressed. The need for the establishment of an organization, similar to the FDA for AI systems, 

to ensure the validity, reliability, and ethical usage of the algorithm prior to any marketing and 

commercial use is also emphasized. The ever-increasing reliance on AI in health and society 

demands a wider recognition of the uniqueness of AI algorithms, addressing this challenge with 

prospective forethought rather than retrospective rectification. Machine Learning (ML) and 
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Artificial Intelligence (AI) techniques are being increasingly incorporated into computer-aided 

diagnosis systems. These AI-based systems significantly improve the accuracy and reliability of 

breast cancer diagnosis and risk assessment. Many investigators have used their personal health 

data to identify breast cancer risk factors. Logistic regression, linear discriminant analysis, naive 

Bayes, and feed-forward neural network algorithms are utilized to predict the risk of breast 

cancer in 5 years’ time 147.

9.2.2. Patient Management Strategies

Precision medicine has transformed the traditional practice of medicine from a symptom-

driven approach to a design and procedure that studies a patient’s genome to identify and treat 

ailments before symptoms appear. By enhancing and integrating diagnostic, prognostic, and 

predictive precision, quality is defined based on the analysis of metabolomics, genomics, and 

clinical data to drive its development and procedure. However, medical data analysis requires 

significant efforts from specialists in the respective administrative and statistical analyses geared 

toward the design of healthcare and research studies. Precision medicine relies on additional 

details from the healthcare environment to enrich medical conditions with genomic and 

metabolomic data. Subsequently, the integration leads to better prediction than the combined 

models. This is the functionality of intelligent and integrative approaches, models, tools, and 

technologies from which biomedical data quality, analysis, and mining engineering disciplines 

facilitate informatization and intelligent in-depth decision-making over heterogeneous 

biomedical data. A major limitation to the implementation of precision medicine is the amount 

of required analytic efforts where most of the efforts today are either manually-based or semi-

automated. The requirements of interpretability of intelligence, consideration of heterogeneity, 

and balance between the size of method space for discoveries and conducted analyses of a 

method family exacerbated the hurdle 144.

The proper realization of precision medicine requires a progressive environment that 

facilitates the informatization of observational and experimental studies, so that the immense 

difficulties in analyzing big data will be taken care of by powerful tools and technologies. 

Towards the end, a self-contained biomedical health data cube consisting of healthcare plans, 

in-patients and out-patients records, clinical data, genomics, and metabolomics has been 

constructed and tools for data analysis have been developed. The self-contained cube allows 
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unbiased heterogeneity detection and discovery as predefined users’ criterion can be taken into 

account for data query. Data predictive analytics tasks are completed using local modeling-based 

and knowledge-driven method families that are characterized by a mode of explainable 

intelligence and ease of usage. Integration of predictions from data quality based human nature 

ensemble provides more robust and accurate results, thereby recovering the tedious effort 

required for proper decision-making 148.

 9.3. Case Study: AI in Rare Diseases

AI technologies have made major strides in recent years, and expectations for future 

applications are huge. AI is expected to more efficiently detect early signs of rare diseases by 

analyzing different types of medical data and identifying patients whose symptoms resemble 

those of diagnosed rare diseases. AI is also expected to help test new candidates for drug 

development. This indicates that there is a massive need for systems capable of screening a huge 

number of compounds against many targets and predicting a huge space of pharmacological 

interactions.

There are excellent case studies on AI applications for drug treatment of rare diseases, 

one of them being protein misfolding diseases. There are also studies on the general detection of 

diseases by looking at images and texts. Some AI models generate molecular graphs and images 

of drugs with predicted affinity to targets based on previous knowledge. Some AI models are 

trained on sequences and 3D of targets to perform drug repurposing without any assumption 

regarding the functioning mechanism. There are AI models for mapping known drugs to new 

targets. Some algorithms merge existing data sources with novel data sources to build composite 

resources, yielding machine learning models with improved accuracy. It is now understood that 

well-defined learning tasks play an important role in machine learning model performance. Still, 

widely used self-supervised methods have no learning tasks to guide model learning.

There is only limited data available for a meaningful training of a model tasked with the 

identification of rare diseases. Some progress has been made in developing statistical methods 

validating the adequacy of a training dataset for a specific machine learning task. Detailed 

insights on state-of-the-art drug development approaches are given. Different AI methodologies 

are put in the context of selected rare diseases from the reviewed categories; state-of-the-art AI 

methodologies adaptable for rare disease targets. Significant new developments have taken place 
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for a wide spectrum of rare disease treatment applications. The computational feasibility of AI 

treatments for ultra-rare diseases should also benefit a few more common rare diseases.

9.3.1. Tailored Treatment Approaches

The potential for precision medicine in clinical practice is vast. The following case 

studies demonstrate new technologies that leverage AI algorithms with the goal of tailoring 

treatment approaches. These technologies span pairs of drugs whose effectiveness differs from 

patient to patient, specific drug combinations that yield prolonged cancer remission in 

individuals with relapsed cancers, and a rare genetic disorder stemming from a single nucleotide 

variant. In each case, complementary technologies were required to detect patient-specific 

disease biology relevant for therapy selection. Together, these advances showcase the 

implementation of the principles of precision medicine with the goal of tailored treatment. There 

is great optimism regarding the positive impacts of AI algorithms on precision medicine.

Although precision oncology shows vast promise for many tumor types in an era of 

targeted agents, it has yet to deliver broadly in clinical practice. Camarillo’s case involved a 43-

year-old woman with stage IIIC ovarian cancer treated at multiple leading academic medical 

centers who failed all treatment options. Deep phenotyping in a patient-derived but genetically 

defined syngeneic organoid model identified sensitivity of rapidly progressive cancer to 

combination therapy with poly-ADP ribose polymerase and immune checkpoint blockade. In 

vivo, this combination yielded profound tumor regression, prolonged remission, and 

simultaneous immune-mediated rejection of disseminated metastases 149. A wider appreciation 

of treatment paradigms across combinations of targeted therapies in breast, endometrial, 

pancreatic, and other cancers invigorate the development of de novo combinatorial therapies for 

these tumors.

Disease-specific platform technologies providing individualized precision medicine are 

also being combined with machine learning to discover previously unrecognized opportunities 

for drug repurposing. Camarillo’s individual case study coupled targeted next-generation 

sequencing and droplet digital PCR of exometabolomics to inform lead compound selection for 

a novel, newly discovered WT1-p53 protein-protein targeting strategy for malignant pleural 

mesothelioma that was exploited for de novo combination therapy with Paclitaxel. A new ex 
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vivo drug combination platform to guide treatment in patients with relapsed/refractory DLBCL 

is also under development 150.

9.3.2. Longitudinal Patient Data Utilization

With the advances of the Sensible City initiative and affordable mobile devices, some 

blue-collar workers are now equipped with smartphone-level internet-capable devices. The wide 

exposure to the internet in their work characteristics makes it possible to track the collective 

“social activity status” of the entire population in the city via their digital footprints. 

Commissioning a large-scale data survey using the back-end of their social media group enables 

the collection of the moving population’s extensive survey responses and internet usage patterns. 

Capturing and analyzing epidemiological progress, individuals’ response behaviour, and the 

operational conditions of large social gatherings will provide a far-reaching understanding of 

COVID-19 disparities inside and outside China 144. The rather ‘unitary’ open policy across 

different counties has allowed capturing semi-experience-based intervention measures and 

responses to COVID-19 in the first place but made those more ambiguous in terms of digital 

usage gaps and social layering comparisons because of the divergence international media 

information landscape. With an adequate amount of invariant data and new AI-based analytical 

approaches, social disparities towards the spread and mitigation measures of COVID-19 would 

be quantized and mitigated. The design of an effective monitoring platform for machine 

learning-based public health monitoring based on heterogeneous data could be summarized as 

five steps including meta-data layer, visualized platform; adjustable alert mechanism; data-

driven prediction approaches; decentralized & intuitive social media group-based intervention 

design.

Table 4. Examples demonstrating the various ways artificial intelligence is being used in 

industrial manufacturing

AI Application Overview Case Example Ref

Synthesis Route 
Prediction

AI predicts optimal synthetic routes 
for APIs, examining chemical 
databases and literature to suggest 
efficient pathways

IBM’s “Rxn for Chemistry” tool 
predicts chemical reaction pathways, 
used to streamline synthesis.

151
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Robotic 
Synthesis

Chemical synthesis is automated 
using AI-driven robotics, facilitating 
high-throughput testing and 
expediting the drug discovery 
process.

The University of Glasgow's 
"Chemputer" automates the production 
of medicinal molecules.

152, 153

Drug Design

AI identifies druggable targets by 
forecasting the molecular 
characteristics and structures of 
possible drug candidates.

In just 18 months, Insilico Medicine 
used AI to create a new medication for 
idiopathic pulmonary fibrosis.

154, 155

Drug Discovery

CRSIP technology and AI algorithms 
make it possible to determine which 
genes, when removed, result in cancer 
medication resistance or sensitization.

To find new targets for developing 
better drugs, AstraZeneca applied AI to 
CRISPR gene-editing technology.

156

Compound 
Selection

To find potential drugs candidates 
based on characteristics like 
solubility, permeability, and toxicity, 
AI evaluates chemical databases.

Exscientia discovered a novel 
compound for the treatment of 
immunomodulatory and inflammatory 
disorders using artificial intelligence.

157

Process
Optimization

By examining production line data to 
find inefficiencies and suggest fixes, 
artificial intelligence (AI) optimizes 
industrial operations.

To increase yield and decrease 
production time for their COVID-19 
vaccine, Pfizer utilized artificial 
intelligence.

158, 159

Continuous
Manufacturing 

and
PAT 

Technology

From acquiring raw materials to 
packaging the finished product, AI-
driven optimization improves several 
aspects of pharmaceutical production.

AI was used by pharmaceutical 
companies to increase efficiency in 
continuous manufacturing.

160

Medical 
imaging

By streamlining workflows, 
improving detection, and automating 
time-consuming operations, AI 
systems have been developed to assist 
radiologists.

AI algorithms are being used by Bayer 
to minimize burden and provide 
patients with quicker decision-making.

161

Digital Twin
Technology

To mimic, track, and optimize 
processes in real-time without 
interfering with actual production, 
artificial intelligence (AI) builds a 
digital twin, or virtual version, of the 
manufacturing process.

Johnson & Johnson increased 
productivity by simulating and 
optimizing their production processes 
using digital twins.

162

Predictive
Maintenance

Artificial intelligence (AI) models 
evaluate sensor data from equipment 
to forecast when maintenance is 
required, preventing unplanned 
malfunctions and efficiently 
scheduling maintenance tasks.

Pfizer decreased maintenance 
expenses and downtime in its 
manufacturing facilities by 
implementing AI for predictive 
maintenance.

46

Supply Chain
Optimization

By forecasting demand, controlling 
inventory, and streamlining logistics 
using performance data and market 
trends, artificial intelligence (AI) 
improves the pharmaceutical supply 
chain.

Novartis used artificial intelligence 
(AI) to handle supply chain logistics, 
which improved inventory control and 
cut expenses.

163
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Fig. 3 List of companies using AI and ML technologies in pharmaceutical research
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10. Synergistic Role of AI in Smart Drug Delivery and Personalized Medicine

10.1. Combining drug delivery systems with real-time data from AI models

One of the major limitations of current drug delivery systems is the inability to receive 

feedback on their effectiveness over time. This could be due to varied responses in drug activity, 

disease changes, and individual responses 164. However, with advanced technologies in 

diagnostics and imaging techniques, it is possible to monitor the drug delivery process and 

receive feedback on the drug's effectiveness in real time. Incorporating response data with AI 

models could have several positive implications, including but not limited to adjusting the drug 

dose, altering drug therapy, and modifying the delivery strategy for personalized drug delivery 
165. All these possibilities call for a more patient-centric and precision medicine-based approach. 

At the same time, AI models usually require very large amounts of data to achieve successful 

results, whereas data acquisition in this field, especially through the examination of clinical and 

preclinical entities for personalized medicine, is a challenging activity 166. Combining drug 

formulations with AI algorithms is a promising strategy toward combating these issues. Indeed, 

tailor-designed drug delivery systems that can both respond to external signals and collect 

relevant data with built-in sensors are considered a proactive way to enable personalized therapy 

strategies. By analyzing collected information through machine learning algorithms, the 

response of the drug delivery system can be predicted for various scenarios. Such designed 

systems will significantly expedite and optimize health care and enable personalized drug 

therapy for chronic diseases, especially in cases with different patient response rates or different 

disease phases 167. 

 

10.2. Patient monitoring and adaptive treatment plans

Patient health can be constantly monitored through wireless connected devices. Patient 

monitoring is already a key application of smart wearable sensors and microfluidic devices 

integrated into garments 168. Advanced wearable development and artificial intelligence allow 

the introduction of context awareness based on the patient’s environment and lifestyle, and 

personalized models for each patient for predictive association 169. The industry is quickly 

applying this technology to injectable medical devices. Even if some of these advanced sensors 

and body systems have not yet been integrated into market products, several companies are 

testing wearable microfluidics products. These liquids are properly combined with the drug in 
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the microfluidics process 170. Other companies are developing artificial pancreas systems that 

can monitor plasma glucose concentrations. In this way, they aim to help the patient optimize 

their own pancreatic production of insulin. Such artificial intelligence systems are just the 

beginning of what individual patient health monitoring and diagnostic tests have to offer. 

The consequence is that, soon, if a patient’s wearable detects the symptoms of a health 

problem, a pre-trained algorithm will personalize the patient’s precise medication at a specific 

dose. The health of the patient can be safely and automatically monitored outside of professional 

clinical environments and the patient’s drug delivery management 171. The patient’s compliant 

medication may significantly decrease, and the algorithms will adapt the therapeutic plan to the 

current condition of the patient. This medication may minimize diabetes and cancer effects in 

some cases through natural extracts or can reduce chronic drug administration side effects 172. 

Individual-specific real-time predictive monitoring is the next phase of smart connected drug 

delivery enabled by the integration of microfluidics into drug delivery devices. In this context, 

artificial intelligence connected with individual monitoring is processing the information 

gathered 173. The aim is to make such decisions and advise the medication to the patient so that 

their health condition can be maintained at the best possible level. 

10.3. Addressing pharmacokinetic and pharmacodynamic variability

High pharmacokinetic and pharmacodynamic variability between individuals is an 

important reason why patients need different doses and treatment regimens to achieve optimal 

therapeutic outcomes. However, the fixed dose commonly used in the clinic does not consider 

the variability between individuals 174. The variability in drug concentrations in the body is 

determined by changes in pharmacokinetic parameters, such as reduced drug metabolism and 

reduced renal clearance. The current approach to addressing pharmacokinetic variability is not 

patient specific. Clinicians consider the patient's weight and BMI, as well as disease status and 

comorbidities, to adjust the dosage per protocol or based on effective medication 175. Although 

the patient's genetic background can indeed be used to roughly predict the pharmacokinetic 

parameters of certain drugs, pharmacokinetic modeling and simulation technology can better 

predict the pharmacokinetics of drugs in patients, but it requires future blood concentration data 
176 177. 
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In summary, pharmacokinetic variability is the leading cause of improper treatment. 

However, various factors and covariates are not currently considered in dosing regimens. As a 

result, limited consideration is given to the different doses and dosing schedules needed for 

individuals to achieve the desired therapeutic effect 178. Since the genetic background of the 

patient can reveal many pharmacokinetic-pharmacodynamic relationships, it would be possible 

to develop a model to predict the pharmacokinetics of a target drug in vivo through the patient's 

DNA, and then deliver the drug in a personalized manner 179. Such an approach might also help 

to identify patients prone to adverse effects before undergoing therapy, allowing the dosage of 

the drug to be more customized for their use based on real-time pharmacokinetic information 
180. In addition, personalized monitoring information is also important to determine the 

biomarkers that best reflect the work of the drug and the patient's eligibility for medications 181. 

11. Challenges and Limitations

By using AI to analyze patient databases, we are training algorithms on the data produced 

in these smart systems. This data holds every detail of the patient, diagnosis, co-morbidities, 

drug treatment, and its effects, as well as other personal details 182. While the development of AI 

is crucial to the improvement of medicines, we must also ensure that we maintain patient privacy 
183. Anonymization is not enough, as training datasets using state-of-the-art models can lead to 

accuracy improvements in rendering data 'de-identified.' Personalization achieved by advanced 

data analytics techniques also requires the sharing of patient data and sometimes patient tissue 

at the sample level to implement the algorithm in clinical practice. Maintaining patient privacy 

during the lifetime of the field will require a fine balance to be struck between maintaining the 

power required for the AI to work effectively and anonymity 184. This field is a current area of 

active concern. 

The data needed to develop and use innovative drug delivery systems is rich and a perfect 

resource for data mining. The information will be used by a patient and by a future patient 

through machine-learning algorithms 185. Overcoming patient health as an object in use on a 

smart drug delivery system raises data privacy and security issues and ethical concerns related 

to informed consent, data ownership, fiduciary responsibility, patient transparency, data security 

and integrity, intellectual property, and societal and individual rights among others 186. The 

ethical considerations as well as innovation in materials and integration are important to bear in 
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mind when developing personalized medical systems over smart drug delivery system platforms 
187. 

11.1. Regulatory and ethical challenges

The development of AI components in biomedical algorithms not only encounters these 

technical issues but also other challenges from both regulatory and ethical perspectives. One of 

the biggest regulatory challenges to AI algorithm development concerns clinical validation 188. 

To obtain marketing approval or clearance from regulatory bodies, medical technology 

developers need to undertake empirical validation studies across a range of different 

environments and real-world users to demonstrate the safety and effectiveness of the technology 
189. The incorporation of AI into regulated medical technologies introduces an additional layer 

of complexity to the validation process, both from a technical and logistical standpoint 190. A 

resulting regulatory challenge is how to properly account for the unique issues that arise from 

an AI system that learns over time from a range of different real-world sources of data 191 192.

Developing ethical AI-based medical systems also presents many other contemporary 

bioethical issues, including accountability for AI's behavior and decisions; transparency to 

disclose the machine learning process and algorithm; preventing unfairness in the sense of 

harmful unintended bias; explainability and interpretability of an AI-based system's decisions; 

and reliability and stability in terms of unassertiveness or error 193. The precision of algorithms 

in complex environments is of particular concern. Complications arising from 

misunderstandings of how machine learning tools work may affect the required knowledge of 

the tools, resulting in concerns relating to privacy, autonomy, and whether these tools 

unjustifiably challenge autonomy 194. The intricate ways in which AI-related bioethics and self-

governance, even autonomy in relation to people with changing goals and values, adds to the 

depth of complexity regarding the design of and reliance on AI tools such as drug delivery 

systems. 

11.2. Risk of using AI in drug delivery and personalized medicine

Artificial intelligence (AI) is revolutionizing precision medicine and drug delivery 

systems. It offers immense potential to personalize immune responses, predict drug delivery 

kinetics, enhance pharmacological systems, and develop therapies for cancer and neurological 

disorders. By supporting drug design, chemical synthesis, biological evaluations, and decision-
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making in drug discovery, AI is an invaluable resource 195. The advantages of AI include 

predicting drug-likeness, exploring vast chemical libraries, and identifying synergistic drug 

combinations. It also aids in understanding treatments for rare diseases and facilitates drug 

repurposing. AI excels at extracting relevant biomarkers, improving data accuracy in 

epigenomics and genomics, and predicting protein-DNA interactions, which enhance future 

clinical trial designs 196. AI systems filter out data noise to prioritize compounds likely to succeed 

therapeutically, while safety models update toxicological databases, ensuring reliable 

information throughout drug development. Therefore, integrating AI into healthcare marks a 

transformative period, promising advancements in treatment precision and efficacy.

The domain of artificial intelligence in healthcare faces numerous challenges requiring 

careful consideration. A major issue is the lack of extensive, well-annotated cancer datasets, 

significantly undermining machine learning effectiveness 197. The rise in false-positive 

melanoma detection rates, which can increase ten-fold compared to clinical diagnoses, highlights 

the urgent need for thorough validation 198. As AI applications in health technology assessments 

grow, they outpace available data, raising important questions about potential consequences. 

Data privacy and security are critical concerns that demand careful attention 199. The inherent 

trade-offs in sensitivity analysis complicate this balance between innovation and risk. Smart 

systems' reliance on algorithmic decision-making makes them vulnerable to security breaches, 

which could have serious repercussions. The risk of producing erroneous outcomes also calls for 

strong oversight mechanisms. Ignoring new relational dynamics can lead to a loss of knowledge, 

while overlooked side effects from flawed algorithms can intensify existing vulnerabilities. The 

lack of a human touch in AI-driven healthcare solutions raises significant issues, especially 

considering cultural differences in understanding mental health. Furthermore, algorithmic bias 

poses a threat by potentially perpetuating and exacerbating current inequalities in healthcare200. 

Therefore, addressing these multifaceted challenges requires a focused and proactive approach.

 11.2.1. Data Privacy and Security Risks

The integration of artificial intelligence within the realm of healthcare revolves around 

the utilization of highly sensitive, primary personal data. The myriad of data privacy and security 

risks associated with the deployment of AI in personalized medicine and pharmaceutical delivery 

is substantial. Notably, the risks pertaining to data privacy encompass the potential for the re-
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identification of personal information that was intended to remain anonymized, alongside the 

peril of unjust discrimination stemming from the analysis and processing of such personal data 
201. Furthermore, the acquisition of personal data may precipitate its over-mining by data 

aggregators, thereby jeopardizing both patient rights and the competitive edge of enterprises 

engaged in AI-driven solutions. 

Entities (data operators) tasked with the processing of personal data—defined as any 

information that can be linked to an identifiable individual-bear the responsibility for such 

processing. The General Data Protection Regulation (GDPR) endorses a principle of privacy by 

design and by default, mandating data operators to safeguard against unlawful processing, as 

well as accidental loss, destruction, or damage, while ensuring the availability and accessibility 

of data. Most principles established for the management of conventional personal data extend 

their applicability to data categorized under AI 202. 

To accurately assess the risk associated with the processing of personal data in the 

context of AI, existing risk assessment tools tailored for personal data must be enhanced through 

the incorporation of novel methodologies that address the unique characteristics inherent to AI 

systems. Given the lucrative prospects associated with AI, the extensive collection of personal 

data is further amplified by intense competition among data operators striving to acquire more 

personal information 203. Consequently, the processing of personal data not only introduces the 

risk of re-identification when an individual is acknowledged but also the danger of unfair 

discrimination, as it facilitates the discernment of particular individual attributes-both protected 

and unprotected in terms of discrimination. 

11.2.2. Patient Data Protection

The concept of "digital sovereignty" has become crucial in discussions about governance, 

society, and technology, particularly due to extensive data collection. Managing digital resources 

involves significant ethical and philosophical implications that affect contemporary life. The 

debate focuses on data ownership, highlighting issues of privacy, autonomy, and individual 

rights 204. The interaction among states, corporations, and digital platforms has created a scenario 

where personal data is commodified, often neglecting the tenets of consent and agency. 

Understanding the principles governing data collection, storage, and use is essential, especially 

given advances in AI and machine learning. Recent developments stress the need for strong 
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frameworks to protect rights and promote transparency and accountability in digital 

environments 205. Ethical concerns about data usage are heightened by pervasive surveillance, 

raising issues about personal freedoms and the potential for misuse of sensitive information. 

Data-driven decision-making impacts society broadly, affecting collective behaviours and 

exposing algorithmic biases and systemic inequalities that threaten fair resource distribution. 

Stakeholders must engage in discussions to define ethical data practices, prioritizing fairness, 

inclusivity, and human dignity. The conversation around digital sovereignty transcends technical 

challenges, embodying a societal necessity for re-evaluating data ethics . As we step into a more 

interconnected future, the focus on protecting individual rights and cultivating a responsible 

digital culture is vital for our collective progress.

11.2.3. Cybersecurity Threats

The evolution of artificial intelligence (AI) and machine learning (ML) in the past two 

decades has driven significant changes, especially in personalized healthcare and the 

pharmaceutical industry. This technological progress brings ethical challenges. AI models can 

produce unpredictable outcomes that reveal vulnerabilities, leading to complex, undesirable 

consequences. Creating AI/ML systems that avoid ethical issues is a substantial challenge, still 

largely unresolved. The rapid development of these models risks unintended repercussions that 

could spiral out of control, raising existential concerns about AI functioning against human 

welfare 206. 

In pharmaceuticals, automated ML systems can process vast datasets to develop new 

medications rapidly. This efficiency, while promising potential cures for diseases like cancer, 

poses risks, such as the emergence of superbugs and the possibility of malicious entities 

deliberately releasing pathogens. Although no current pharmaceutical consortium is nearing this 

fast-paced research speed, such risks necessitate proactive measures to prevent dystopian 

outcomes. Additionally, as AI integration into daily life deepens, questions arise about ethical 

considerations in AI recommendations. Even though AI can suggest choices based on various 

values, it fails to provide data-driven solutions to ethical dilemmas, highlighting an ongoing 

complexity. 

The increasing presence of AI systems may distort human perceptions of value, 

encouraging unhealthy attitudes and potentially promoting violent or unethical behavior. 
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Moreover, AI capable of generating harmful code poses threats to users by exploiting their 

devices or networks. Advanced models can create realistic synthetic data, enabling malicious 

actors to produce convincing imagery or text with minimal coding skills. Such capabilities can 

expose security vulnerabilities and aid hackers, complicating the AI landscape. Deep learning 

models trained on code repositories may devise sophisticated exploits, further enhancing the 

challenges faced in AI governance and security 207. 

12. Future Directions

 12.1. Advancements in AI algorithms for better predictions

Artificial intelligence (AI) has increasingly enabled the development of intelligent 

systems and has been incorporated with a high degree of reliability across interdisciplinary fields 

in public health studies 208. In commonly adopted research models, various AI algorithms have 

been demonstrated to be significantly effective 209. AI models can be trained, optimized, 

validated, and used on different scales and have been shown to be superior at capturing non-

linear trends, analyzing vast amounts of complex data, and performing disease or drug 

compound predictions in big data. Different AI algorithms inherently contain specific principles 

or are suitable for diverse applications. The motivation for this work is that many AI algorithms 

could be better used but are possibly underemployed. Generally, AI algorithms, from traditional 

statistical and mathematical modeling methods to recently trending deep learning methods, have 

been widely and effectively implemented in various drug discovery or development predictive 

analyses or trials 210. Different AI algorithms contain distinct requirements and internal 

algorithms, and they are configured differently. The most used AI algorithms suitable for 

predictive analyses include random forest, support vector machine, convolutional neural 

network, and deep learning. When these methods are suitably configured, they can quickly 

present high performance. Understanding the operational principles, strengths, and limitations 

of the different AI algorithms is helpful for interdisciplinary professionals to execute a topic-

sensitive design for the reserved models 72. The AI algorithms can be better employed in terms 

of improved prediction results and reduced time-consuming or numerically aiming experimental 

designs. 
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12.2. Potential of wearable technologies in real-time data integration

Several wearable tools and sensors have been designed to monitor numerous body-

specific parameters in real-time. Personalized medicine can be greatly enhanced by wearable 

technologies integrated into smart drug delivery systems 211. Wearable devices collect and 

convey real-time data of biomarkers and physiological indicators to the doctor continually 212. 

These gadgets can provide real-time alerts, possess tiny form factors, are easy to operate and fix, 

and provide contact-free monitoring of the patient. The attendant sensors are capable of 

transducing data of the biochemical, electrical, or mechanical type. Being light in weight, these 

add a high level of comfort and do not skew the data obtained. A broad range of body-specific 

parameters can be directly monitored through the wearable technology, i.e., heart rate, pH, body 

temperature, blood pressure, movement, etc. Many diseases can be identified early on with the 

help of these types of devices 213. These can be as diverse as managing self-health in fitness 

enthusiasts, chronic disease management, COVID-19 detection, or heart health and syncope 

monitoring. Since wearable gadget technology is cost-free, the opportunities for driving 

imaginations are limitless 214. Certain clothing can have integrated skin sensors. 

 12.3. Collaborative frameworks between AI researchers and clinicians

There is no simple answer to how to ignite the implementation of AI frameworks in the 

clinic. A key challenge faced by many researchers is the realization that moving a proof-of-

concept machine learning model into the clinical setting involves not just building a model, but 

the careful assessment of all single components that together form the system that will be 

validated in a clinical trial 215. Therefore, suggest making machine learning algorithms more 

accessible to the clinical domain. By encouraging results to adhere to AI-driven protocols, 

domain-specific language requirements would regulate newly developed algorithms and 

delegate compliance to the AI agents 216. The best approach to achieve this is the development 

of a standardized semantic knowledge framework to guide the development of future AI 

approaches and prioritize clinical needs. Similarly, for average clinicians to understand and 

critique AI-driven research, we need forward-thinking AI researchers to translate their work into 

language that is understandable without a degree in computer science. This reciprocal 

environment is extremely difficult to achieve, which is why we see interprofessional 

collaboration as the most important success factor for successful AI implementation in 
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personalized medicine. Interprofessional collaboration requires frequent communication among 

AI researchers, domain-educated users, and decision-makers, as well as future AI developers 

and users of the system. Whether AI-driven management and triage, AI-driven therapeutics, or 

AI-driven augmented diagnostics are at stake, the role that AI will play within healthcare is 

growing 217. Only through interprofessional collaboration can this growth be managed 

effectively. 

12.4. Role of quantum computing in drug delivery and personalized medicine

Inspired by the large number of drugs approved daily by regulatory authorities around 

the world, scientists are engaged in customizing the necessary treatment that an individual 

patient may require and designing it precisely to reach the target site in a timely manner and 

quickly release the functional doses 218. With the advancement of medical technology in recent 

years, continuous progress in the field of drug delivery has led to the conclusion that the 

introduction of quantum optimization of proteins (quantum optimization of proteins highlights 

the convergence of quantum mechanics and biochemistry. Using quantum methods to optimize 

protein structures is gaining traction, potentially reshaping our comprehension of molecular 

interactions as researchers explore quantum states' roles in protein folding and stability). and 

pharmacovigilance can pave the way to meet this challenge. With the introduction of quantum 

computing, novel ideas should be released immediately that can support the development of 

strategies to optimize prototype synthesis or facilitate combinatorial library selection 219. 

Subsequently, we present a quantum computing model that optimizes the protein selection 

problem for open-loop drug delivery (The term "open-loop drug delivery" refers to administering 

therapeutic agents without real-time feedback or adjustments based on the patient's response) 
220. The concept of a quantum computer is a new one, and we seek to evaluate its effects in 

computer technology and the software industry. The relationship between the process of drug 

discovery and quantum computing is still in its infancy. Researchers, however, realize that the 

two areas are compatible and work to merge quantum computing and chemical problems 221. 

The accelerated, disruptive technologies of quantum computing and quantum optimization begin 

to merge with strong interests in the future drug discovery market. The benefits that quantum 

computing can provide result from its nature as a real-time artificial intelligence algorithm 222. 

Page 49 of 75 RSC Pharmaceutics

R
S

C
P

ha
rm

ac
eu

tic
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

9:
37

:5
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5PM00089K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5pm00089k


It provides real-time information by analyzing one molecule at a time, so one can quickly 

intervene when the forecasts show undesired results, which is positive in the field of drugs 223. 

13. Conclusion

AI has revolutionized smart drug delivery and personalized medicine by enabling 

better characterization of drugs, real-time monitoring, and accurate therapeutic interventions. 

The use of AI-based strategies helps in patient stratification, pharmacovigilance, and 

multimodal diagnostics with the objective of timely identification of potential problems and 

optimization of nanoparticle-based therapeutics. Real-time personalized point-of-care 

diagnostics and predictive models to personalize dosing accuracy, minimize adverse effects, and 

ensure treatment adherence will lead to better, safer delivery of drugs. The integration of AI 

with genomics, proteomics, and biomarkers has definitely set a foundation for personalized 

treatment protocols. However, the realization of the potential of digital health will call for 

international collaboration, policy support, and strategic investments. Inspired by past 

technological revolutions, digital health must be prioritized to ensure equitable access to 

precision medicine and proactive disease management. Future innovations in AI-driven 

healthcare include combining sensory-based health monitoring with AI, IoT, robotics, and 

advanced medical devices. This integration will make possible early disease detection, 

personalized digital therapeutics, and remote monitoring, ultimately saving hospital costs and 

the burden that chronic diseases inflict on society. Despite challenges that arise from the AI-

driven nature of medical devices and digital therapeutics, attention to real-world 

applications rather than theoretical models must be paid. AI-driven medical technology must 

focus on real-time diagnostics, self-management systems, and adaptive interventions to enhance 

patient outcomes and revolutionize healthcare delivery. With AI, the future of healthcare 

is changing toward a proactive, personalized, and technologically integrated approach, marking 

the beginning of a digital health revolution aimed at improving global health and well-being.
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