CO2-binding alcohols as potential candidates for poly(vinyl chloride) upcycling

Abstract

Despite the increasing global production of poly(vinyl chloride) (PVC), its recycling remains a major challenge, primarily due to its high chlorine content and limited compatibility with conventional recycling processes. This study explores the use of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-based CO2-binding alcohols (CO2BALs) as nucleophiles for PVC functionalization, aiming to enhance its upcycling potential. The impact of solvent polarity, CO2BAL conversion, and reaction time on the substitution-to-elimination ratio was systematically investigated. Although the degree of substitution remained below 10 wt%, a promising SN2/E2 selectivity of 94/6 was achieved. The functionalized materials were characterized using 1H NMR, FT-IR, SEC, and TGA, confirming the successful grafting of carbonate moieties and highlighting thermal stability trends. While CO2BAL stabilization in polar solvents may limit reactivity, alternative approaches, such as flow chemistry, are currently under consideration to improve substitution efficiency. This work provides new insights into CO2-based strategies for PVC modification, bridging the gap between polymer upcycling and sustainable chemistry.

Graphical abstract: CO2-binding alcohols as potential candidates for poly(vinyl chloride) upcycling

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2025
Accepted
11 May 2025
First published
02 Jun 2025

Polym. Chem., 2025, Advance Article

CO2-binding alcohols as potential candidates for poly(vinyl chloride) upcycling

J. Delcorps, E. Ben Ayed and O. Coulembier, Polym. Chem., 2025, Advance Article , DOI: 10.1039/D5PY00350D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements