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S-Alkylation of sulfinamides with Zn-carbenoids:
expanding stereoselective sulfoximine synthesis
beyond NH derivatives†

Glebs Jersovs, a,b Dzonatans Melgalvis,a,b Artis Kinens, a,b Pavel A. Donetsa and
Edgars Suna *a,b

Sulfoximines are experiencing steadily increasing use in the development of pharmaceuticals and agro-

chemicals. Although recently a number of synthetic methods to access this versatile motif have been dis-

closed, only NH-sulfoximines have been considered as the ultimate targets. Here, we report an approach

toward enantiopure N-substituted sulfoximines via direct stereoretentive S-alkylation of parent sulfina-

mides with zinc carbenoids. Mechanistically, a carbon–sulfur bond is formed in the course of 1,2-metal-

late rearrangement featuring an unusual migration of the S-atom in the transient zincate complex. The

approach accommodates a large variety of differently substituted sulfinamides and features excellent

functional group compatibility.

Introduction

Owing to their chemical stability and ease of synthesis, sulfo-
namides and sulfones are widely employed motifs in drug dis-
covery, agrochemistry and materials science. Closely structu-
rally related sulfoximines retain the beneficial properties of
sulfonamides and sulfones while offering the additional
advantage of three diversity vectors combined with a
configurationally stable sulfur stereocentre. The enriched
structural variability allows accessing 3D chemical space and
renders sulfoximines particularly suitable for modular mole-
cular design that is difficult to achieve with sulfonamides and
sulfones.

Not surprisingly, sulfoximines have recently1 gained reco-
gnition in asymmetric synthesis,2 the development of insecti-
cides3 and small-molecule drug discovery4 (Fig. 1). In the
latter field, however, all recent clinical candidates exclusively
feature NH-structures and the full substitution potential of
the sulfoximine motif remains underutilized. On the other
hand, a study conducted at Bayer demonstrated that
N-alkylated sulfoximines indeed show promise5 in terms of
favorable physicochemical and pharmacokinetic properties.
Thus, cyclo-roniciclib features improved permeability,

reduced efflux and lipophilicity while displaying potency,
metabolic stability and solubility comparable to those of roni-
ciclib (Fig. 1).

Fig. 1 Bioactive sulfoximines.
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The surge of recent applications has vigorously spurred
interest in the synthetic community and a stream of novel
methodologies has started to fill the previously underexplored
chemical space surrounding sulfoximines.6 Especially, remark-
able progress has been achieved in the development of the
corresponding stereoselective approaches. Thus, advances in
S-imidation7 methods have allowed the direct synthesis of
sulfoximines from sulfoxides.8 Moreover, asymmetric imi-
dation of thioethers affords enantiopure sulfimides,6b,9

which in turn may be converted to sulfoximines via stereo-
specific oxidation. Enantiopure products are also accessi-
ble via desymmetrization10 and kinetic resolution11 of
racemic NH-sulfoximines. The pioneering work of Jonson12

on nucleophilic substitution at the S-atom in sulfonimidoyl
derivatives has evolved13 into another class of powerful
methodologies. Despite all these advances, most method-
ologies focus primarily on the synthesis of NH-sulfoxi-
mines, completely neglecting possible substitution at the
N-atom.

Likewise, only NH-sulfoximines are ultimately targeted by
several general methods that borrow the stereogenic SNO-frag-
ment from widely available Ellman’s sulfinamide (Scheme 1).
The common strategy of these approaches involves the con-
secutive introduction of substituents at the S-atom owing to
the susceptibility of intermediate t-Bu-sulfoximines to t-Bu-

cleavage (Scheme 1A). Thus, the addition of nucleophiles to
sulfinamide derived S-electrophilic sulfonimidoyl fluorides
allows access to a wide range of protected sulfoximines
(Scheme 1B).13c Importantly, the carbamoyl protecting group
plays a pivotal role as no addition occurs with other protecting
groups. The inherent nucleophilic properties of sulfinamide
derivatives have been exploited in another type of
S-functionalization approach (Scheme 1C). Thus, both
S-alkylation14a,b and S-arylation14c–e have been reported despite
sulfinamides being ambident nucleophiles that predominantly
exhibit N-specific reactivity (Scheme 1D).15 The desired
S-selective functionalization has required the introduction of
an appropriate N-protecting group such as pivaloyl for the aty-
pical S-nucleophilicity to manifest.

The necessity for N-protection limits the role of Ellman’s
sulfinamide simply to a convenient source of S-stereogenicity.
However, the chemistry developed over the years around this
versatile chiral auxiliary offers innumerable opportunities
for N-functionalization.16 Therefore, we realized that
N-functionalized Ellman’s sulfinamide derivatives could serve
as excellent substrates for the modular synthesis of tri-substi-
tuted enantiopure sulfoximines. Such an approach would
address the overlooked N-substitution and, considering the
emerging usefulness of N-alkylated sulfoximines,4a,5 would sig-
nificantly expand the diversity of accessible structures.

Scheme 1 Stereoselective approaches to sulfoximines from Ellman’s sulfinamide.
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Herein, we report the development of a general approach
for chemo- and stereospecific S-alkylation of various
N-substituted sulfinamides with Zn-carbenoids (Scheme 1E).
Control experiments and DFT calculations provide strong evi-
dence that the S-selective alkylation proceeds through stereo-
specific 1,2-metallate rearrangement. Overall, the developed
modular synthesis of tri-substituted sulfoximines allows for the
reliable introduction of a broad range of N-substituents and
tolerates a wide range of functional groups.

Results and discussion

In 2022, we accidentally discovered17 that the treatment of sul-
finamide 1a′ with excess diethylzinc and diiodomethane deli-
vers sulfoximine 2a′ rather than the anticipated cyclopropana-
tion (Scheme 2). While S-alkylation of thioethers with Zn-car-
benoids is precedented,18 comparable reactivity of sulfina-
mides has been reported only once by Zercher et al. and was
primarily regarded as a synthetic obstacle.19

Unfortunately, the depicted transformation of 1a′ suffered
from reproducibility issues. Consequently, we undertook com-
prehensive optimization of conditions20 using simplified tert-
butyl sulfinamide 3a as a model substrate (Table 1). When

sequentially treated with excess diethylzinc and diiodo-
methane, 3a failed to react and was quantitatively recovered.
Gratifyingly, increasing the nucleophilicity of 3a by deprotona-
tion restored the reactivity and S-methylated derivative 4aa was
obtained in high yield. Irrespective of the nature of the base
employed (entries 2 vs. 3), the Li-salt of 3a afforded the best
results in terms of both conversion and yield (entries 2, 4 and
5). Importantly, the treatment of lithiated 3a with MeI pro-
duced N-methylation product Me-3a exclusively irrespective of
the presence or absence of ZnEt2 (entries 6 and 7). The deter-
mined optimal reagent system was efficient enough to conduct
the transformation under slightly over-stoichiometric con-
ditions additionally boosting the yield of 4aa (entry 8).

To gain insight into the mechanistic aspects of the trans-
formation, we performed a brief NMR investigation using a
nearly stoichiometric variant of the identified conditions
(Scheme 3A). To begin with it was established that separately
prepared lithium salt Li-3a does not interact with CH2I2.
However, the treatment of Li-3a with ZnEt2 results in the
reversible formation of a 1 : 1 zincate complex Zn-3a.

Due to the known21 dynamic nature of ZnEt2 complexation,
we were unable to determine the exact binding mode of the
Zn-atom in Zn-3a using NMR spectroscopy. On the other hand,
attempts to crystallize Zn-3a resulted only in the formation of
Li-3a crystals.22 Nonetheless, upon the addition of CH2I2 to
Zn-3a, a rapid reaction occurred. The obtained mixture con-
tained the expected amount of EtI corresponding to quantitat-
ive I-Zn exchange leading to the formation of the Furukawa
carbenoid (Scheme 3B). Next, the minor amount of PrZnI
detected matched the decomposition of the excess of the
formed carbenoid (Scheme 3C). The respective 1,2-metalate
rearrangement is recognized as the major cause of instability
in related species in coordinating media.23 Finally, the major
product resulting from Li-3a was determined to be dialkylzinc
4aa-Zn.

The combined results of the NMR experiment and the
optimization study allowed us to formulate a mechanistic
hypothesis. Once formed in the reaction mixture, the
Furukawa carbenoid will either undergo an irreversible 1,2-
metalate rearrangement or engage in rapid complexation with
Li-3a similarly to ZnEt2 (Scheme 3C vs. 3D). The latter scenario
should give rise to transient zincates SM-1–3 analogous to Zn-
3a. Irrespective of the realized Zn-binding mode24 in SM-1–3,
the anionic character of the ensuing 1,2-rearrangement ren-
ders21a the formation of 4aa-Zn faster compared to the unpro-
ductive decomposition pathway (Scheme 3C). On the other
hand, the migratory aptitude of the S-atom in SM-1–3 appar-
ently must exceed that of the Et substituent. We cannot rule
out the possibility that I-Zn exchange may occur directly
between the zincate Zn-3a and CH2I2; however, the same zin-
cates SM-1–3 would arise in this case.

To gain a deeper insight into the mechanism of the trans-
formation, a computational study at the DFT level was per-
formed.25 Analysis of possible zincate complexes between Li-3a
and the Furukawa carbenoid identified the N,O-bound adduct
SM-4 as the most thermodynamically stable configuration

Scheme 2 Serendipitous discovery.

Table 1 Selected experiments for the optimization of reaction
conditionsa

Entry Base

Carbenoid formation Yieldb, %

Metal alkyl Iodide x 3a 4aa Me-3a

1 — ZnEt2 CH2I2 2.5 100 — —
2 LiHMDS ZnEt2 CH2I2

c 2.5 3 86 —
3 n-BuLi ZnEt2 CH2I2 2.5 4 82 —
4 NaHMDS ZnEt2 CH2I2 2.5 15 74 —
5 KHMDS ZnEt2 CH2I2 2.5 8 75 —
6 LiHMDS ZnEt2 MeI 2.5 5 — 89
7 LiHMDS — MeI 2.5 — — 95
8 LiHMDS ZnEt2 CH2I2 1.2 0 95 —

a Sulfinamide 3a (0.1 mmol) was deprotonated using a base
(0.11 mmol) in THF (1 mL) for 15 min at 0 °C and then sequentially
treated with an alkyl metal and alkyl iodide. b 1H NMR yield was
measured against mesitylene as an internal standard. cNo reaction
with CH2Br2 instead of CH2I2 (see ref. 20).
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(Fig. 2). In view of the minimal (<0.5 kcal mol−1) energy differ-
ence between the two diastereomers of SM-4, it is represented
by a single structure.

N-Bound SM-1 was determined to be the second most popu-
lated isomer, whereas O- and S-bound SM-2 and SM-3 are far
less energetically favored. Four-membered TS-1A, which ulti-
mately leads to the observed product 4aa-Zn via PDT-1A, pos-
sesses the lowest energy (13.2 kcal mol−1) of all calculated tran-
sition states. The incorporation of an explicit Zn-bound THF
molecule in SM-1 and TS-1A results in only a minor decrease
(9.9 vs. 11.3 kcal mol−1) in the respective energy gap.
Therefore, we assume that the omission of Zn-bound THF

should not have a decisive impact on the overall calculated
profile of the potential energy surface. The second lowest
energy transition corresponds to the formation of N-alkylated
PDT-2C via TS-2C, which is 3.3 kcal mol−1 higher compared to
the observed S-alkylation TS-1A. Possible competitive Et-
migration stands third in the order of increase in transition
state energy. The corresponding TS-1B exceeds TS-1A by
6.6 kcal mol−1. Thus, the computational study indeed con-
firms a significant kinetic preference for the observed S-atom
migration.

The synthetic utility of dialkylzinc intermediate 4aa-Zn was
probed through a series of experiments (Scheme 4). Thus, deu-

Scheme 3 NMR experiment and mechanistic hypothesis.

Fig. 2 The most kinetically favored transitions of the EtZnCH2I–Li-3a complex.
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teration and iodination expectedly afforded the corresponding
4aa-D and 4aa-I. Moreover, transmetalation to [(trimethylsilyl)
methyl]copper afforded mixed cuprates,26 which smoothly

delivered homoallylic derivatives 4aa-1–4 via coupling with the
respective allylic bromides.

Next, we set out to explore the scope of the discovered sulfi-
namide alkylation with respect to geminal diiodides (Table 2).
To begin with, the reliability of S-methylation with CH2I2 (5a)
was confirmed in a scaled-up synthesis of 4aa. Gratifyingly,
non-functionalized CH2I2 homologues 5b–g also readily
engaged in the reaction. Steric crowding around the gem-
diiodo carbon definitely suppressed the alkylation, as exempli-
fied by the decreased yield of neopentylic 4ad. Despite the
presence of a double bond favorably aligned for intramolecular
cyclopropanation,27 5f afforded the expected sulfoximine 4af.
The low yield of 4ag most probably arises from the acute sus-
ceptibility of the 5g-derived benzylic carbenoid toward unpro-
ductive 1,2-metalate rearrangement.

The merits of the current methodology were most vividly
revealed in reactions of 3a with functionalized diiodides 5h–n.
The low basicity and nucleophilicity of the employed organo-
zinc species allow for the introduction of a variety of func-
tional groups. Additionally, the diiodides 5o–q were found to
react in a cascade manner via the dialkylzinc intermediates.
While the corresponding 4ao-Zn and 4ap-Zn undergo intra-
molecular alkylation delivering alicyclic 4ao and 4ap, 4aq-Zn
engages in Blaise-type cyclization to 4aq.

The high compatibility of the transformation with func-
tional groups was further exploited during the investigation of
possible patterns of α-N-substitution (Table 3). Sulfinamides
3b–p were prepared using Ellman’s auxiliary and methylated

Scheme 4 Synthetic utility of dialkylzinc intermediate 4aa-Zn.

Table 2 Scope of geminal diiodides

a The reaction was performed at 25 °C. b In the presence of LiBr (10 equiv.) over 16 h at 25 °C.
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analogously to 3a. In most cases, the optimized conditions
performed adequately without the need for additional modifi-
cations. However, a lower reaction temperature was found to
be beneficial for several substrates in view of the limited stabi-
lity of the corresponding Li-salts at 0 °C. The presence of a
hydroxyl group in 3m was successfully mitigated by higher
loading of reagents. The configuration of the α-N-stereocenter
apparently does not play a critical role in reaction perform-
ance, since both 4fa and 4ga were isolated with high yields.
Moreover, the crystal structure obtained for 4fa unambiguously
confirmed the stereoretentive character of the alkylation.
Primary alkyl groups at the N-atom of the starting sulfina-
mides are also tolerated, as evidenced by the reaction of 3n.
Notably, the corresponding 4na was formed without any loss
of enantiopurity. Less nucleophilic N-arylated 3o and
N-acylated 3p displayed a noticeable drop in reactivity, whereas
a number of sulfinamides28 encumbered with tertiary N-alkyl
substituents failed to deliver the expected products. In agree-
ment with the computational analysis, the latter result
suggests that the formation of N-bound zincate SM-1 (Fig. 2) is
pivotal for successful S-alkylation.

Having investigated the reactivity of S-tert-Bu-sulfinamides,
we turned our attention to substrates with other substituents
at the S-atom. To this end, a number of corresponding deriva-
tives were prepared by literature known29 t-Bu-cleavage
(Table 4). The stereoretentive character of this transformation
was confirmed by X-ray crystallography of 1a.

As before, S-methylation of the obtained substrates was per-
formed first. The simplest Me-sulfinamide in the series, 1a,
was found to be moderately reactive toward the CH2I2 derived
Furukawa reagent under standard conditions at 0 °C (Table 5).
Apparently at this temperature, the rate of carbenoid decompo-
sition is comparable with the rate of the requisite methylation.
However, at −30 °C the stability of the carbenoid is improved
sufficiently in order to participate predominantly in a pro-

ductive interaction with 1a. Therefore, homologues 1b–e, h,
and i were methylated at −30 °C and the corresponding sulfox-
imines were isolated in good yields. Additionally, the reaction
was determined not to be limited to S-alkyl substrates, since
S-arylated 1t, derived from Davis’ sulfinamide 1u, performed
equally well. However, the problematic methylation of 1u and
the exceedingly low reactivity of cyclic sulfinamide 1v clearly
denoted the restraints of the standard reagent system.

Our focus then shifted to S-alkylation with other substi-
tuted diiodides. Using the ethylation of sulfinamide 1a as a
model reaction, we evaluated30 the efficacy of several diorgano-
zinc reagents. While ZnEt2 still delivered the ethylsulfoximine

Table 3 Scope of α-N-substituents

a Performed at −30 °C for 16 h. b LiHMDS (2.2 equiv.) and ZnEt2/CH2I2 (2.5 equiv.).

Table 4 Deprotection of tert-butyl sulfinamides
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2ab in a fair yield, significant improvement was achieved using
the unsymmetrical diorganozinc reagent ZnPh(n-Bu). As con-
firmed by a separate investigation,31 ZnPh(n-Bu) combined the
high reactivity of Zn-alkyls in I-Zn exchange with the low pro-
pensity of the Ph-substituent for migration, thus increasing
the stability of intermediate carbenoid species.

The discovered efficiency of ZnPh(n-Bu) encouraged us to
explore the alkylation of 2a with homologues of 5b employed
previously (Table 6). Importantly, the excellent functional
group compatibility of the transformation was completely
retained. Alkylsulfinamides 1b, i, and h with S-substituents
besides methyl were also found to be competent substrates.
Gratifyingly, the reaction of 3a with benzal iodide 5g mediated
by ZnPh(n-Bu) afforded the corresponding 4ag with a yield sig-

nificantly superior to that obtained under the standard con-
ditions (Table 2).

Disappointingly, the use of ZnPh(n-Bu) did not alleviate the
unusually low reactivity of cyclic sulfinamides. Nevertheless,
replacing the Ph group with the apparently completely non-
migratory32 dimethylsulfone fragment in diorganozinc 6
further reduced unproductive 1,2-migration and improved the
performance of several cyclic sulfinamides and other pre-
viously challenging substrates (Table 7). Pleasingly, 5- and
6-membered 1v, a′, and w reacted equally smoothly. Full reten-
tion of potentially epimerizable stereocenters in 2a′ and 2wa
clearly stresses the mildness of the procedure. As opposed to
the initial conditions discovered for the methylation of 1a′
(Scheme 2), the current protocol afforded 2a′ reproducibly and

Table 5 Methylation of non-t-Bu-sulfinamides

a Performed at 0 °C. b 1H NMR yield was measured against mesitylene as an internal standard.

Table 6 Scope of ZnPh(n-Bu) mediated alkylation Table 7 Scope of diorganozinc 6 mediated alkylation

a Performed in DME. bOver 16 h.
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with a better yield. Alkylation with a homologue of CH2I2 was
also successfully realized in the reaction of 1v with diiodide 5r.
Importantly, none of the currently existing synthetic methods
(Scheme 1) possess the capacity for S-alkylation of cyclic sulfi-
namides. Unexpectedly, the diorganozinc 6 performed infer-
iorly to ZnPh(n-Bu) in the case of linear alkylsulfinamides
(Table 6) and thus could not replace ZnPh(n-Bu) in this case.

Finally, methylation mediated by 6 was probed on the so far
poorly reactive Davis’ sulfinamide 1u (Table 5) and N-acylated
3p (Table 3). Gratifyingly, the corresponding sulfoximines 2vr
and 4pa were obtained with much better yields. The particu-
larly remarkable enhancement in the case of 4pa is
noteworthy.

Conclusions

In summary, we have developed a new synthesis of sulfoxi-
mines based on a hitherto unknown alkylation of sulfinamide
salts with Furukawa-type carbenoids. This stereospecific trans-
formation involves an anionic 1,2-metalate rearrangement of
the corresponding zincate complex, which competes with
mechanistically related unproductive carbenoid decompo-
sition. Operating under a simple reagent system based on com-
mercially available ZnEt2, t-Bu-sulfinamides were found to be
excellent substrates. Moreover, we have demonstrated the syn-
thetic utility of the resulting organozinc intermediates.
Coupled with mild t-Bu-cleavage, the transformation provides
a new entry to variously N-substituted S-alkyl sulfinamides.
Subsequent iterative application, on the other hand, seam-
lessly joins the chemistry around Ellman’s auxiliary with S,S-
dialkyl sulfoximines. The method may also be extended to
S-arylated substrates, as illustrated by the use of Davis’ sulfina-
mide derivatives. While the sulfinamide structure–reactivity
relationship is still not fully understood, a solution for sub-
strates that are resilient to alkylation under standard con-
ditions has been successfully identified. The discovered modi-
fications of the dialkylzinc precursor effectively suppress the
unproductive carbenoid decomposition, hence enforcing the
requisite alkylation. It is noteworthy that structures obtained
via the corresponding transformation of cyclic sulfinamides
are virtually inaccessible by other contemporary methods.
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