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In recent years, GW-BSE has been proven to be extremely successful in studying the quasiparticle (QP)

bandstructures and excitonic effects in the optical properties of materials. However, the massive

computational cost associated with such calculations restricts their applicability in high-throughput

material discovery studies. Recently, we developed a Python workflow package, pyGWBSE, to perform

high-throughput GW-BSE simulations. In this work, using pyGWBSE we create a database of various QP

properties and excitonic properties of over 350 chemically and structurally diverse materials. Despite the

relatively small size of the dataset, we obtain highly accurate supervised machine learning (ML) models

via the dataset. The models predict the quasiparticle gap with an RMSE of 0.36 eV, exciton binding

energies of materials with an RMSE of 0.29 eV, and classify materials as high or low excitonic binding

energy materials with classification accuracy of 90%. We exemplify the application of these ML models in

the discovery of 159 visible-light and 203 ultraviolet-light photoabsorber materials utilizing the Materials

Project database.
1 Introduction

Light-matter interaction is the fundamental physical phenom-
enon behind a wide variety of existing high-impact applications
such as photovoltaics, photocatalysis, medical diagnostics,
scientic instrumentation, imaging (e.g., infrared imagers), and
sensing (e.g., for light detection) along with potential future
quantum devices.1–3 New opportunities to optimize the perfor-
mance of these existing optical devices and to pave the road for
emerging elds can be realized by the discovery and design of
novel functional materials.

The Materials Genome Initiative (MGI)4,5 was proposed in
2011 to enable the discovery, manufacturing, and deployment
of advanced materials twice as fast and at a fraction of the cost
compared to traditional methods. To achieve theMGI objectives
one of the key strategies adopted was to harness the power of
data and computational tools jointly with experimental inves-
tigations.4,5 Since then a new paradigm for acceleratedmaterials
discovery has emerged by designing new compounds in silico
using rst-principles calculations and then performing experi-
ments on the computationally designed candidates.6–8 Several
open-source databases have been developed to aid the acceler-
ated material discovery goal such as the Materials Project,9
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(ESI) available: The performance of
study, a detailed description of the
f materials shortlisted for visible and
eir ML-predicted properties. See DOI:

the Royal Society of Chemistry
Aowlib,10 C2DB,11 ESP,12 NoMaD,13 OQMD14 etc. The avail-
ability of such large data has opened up an emerging paradigm,
the application of machine learning (ML) and other data
science methods for material discovery, thus, making material
discovery essentially a big-data problem.15–20 ML accelerated
material discovery has made a revolutionary impact in appli-
cations ranging from organic and solid-state LEDs, batteries,
ferroelectric, high-k dielectric, hydrogen storage, high-entropy
alloys, and thermoplastics to shape memory alloys.16,19,21

The fundamental challenge of applying this well-established
material discovery paradigm of combining rst-principles
computations and data science methods to applications
where light–matter interaction is a key phenomenon is the
unavailability of large datasets that are accurate enough in
comparison to experimental observations. While some rst-
principles methods such as GW-BSE (Bethe–Salpeter equation)
formalism for simulating excitonic effects can produce optical
properties with sufficient accuracy they are computationally
very expensive. Thus it is not surprising that the largest data-
base of GW-BSE computed absorption spectra is that of ∼300
spectra of two-dimensional (2D) materials.11,22

The unavailability of large-scale data of rst principles
computed excited state properties can also be partially attrib-
uted to the lack of open-source computational tools to perform
such high-throughput computations. Recently, the authors
have developed pyGWBSE,23 a python workow package that
enables automated high-throughput GW-BSE simulations using
VASP, one of the most widely used rst-principles atomistic
modeling soware, and made it available through open-source
licensing. While there have been recent efforts in the
RSC Adv., 2025, 15, 8253–8261 | 8253
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View Article Online
development of similar workow codes, they either suffer from
issues like the absence of BSE capabilities24 and database
integration,25 or use other ab initio modeling soware for the
excited-states calculations26

In this study, we demonstrate the applicability of ML models
in predicting accurate excited state properties such as quasi-
particle gap (QPG) and exciton binding energy (EBE). To
accomplish this goal, we generated the largest database of rst-
principles computed QP and excitonic properties of bulk
materials computed and curated using pyGWBSE. This data-
base contains static dielectric constants, effective masses, QP
bandstructure, absorption spectra, and several other excited
state properties such as EBE, integrated absorption coefficients,
etc. of more than 350 bulk materials, and new materials are
being added to the database continuously. We nd that among
the various ML regression algorithms, Random Forest Regres-
sion has the best performance for predicting QPG within an
RMSE of 0.36 and EBE within an RMSE of 0.29 eV. We also nd
ML models that accurately classify materials to have integrated
absorption coefficient (IAC),2 anisotropy in absorption coeffi-
cient (AAC),2 and excitonic binding energies suited for a good
photoabsorber with an accuracy of ∼90%. Lastly, we apply the
ML models developed in this work to identify promising
materials that can absorb visible and ultraviolet (UV) radiation
for photovoltaic or photocatalytic applications based on their
QP and excitonic properties from a list of ∼7000 materials for
which only the ground state properties are available in the
Materials Project database.
2 Results and discussions

As we intend to develop and apply ML models for predicting the
QP and excitonic properties of a wide variety of materials, we
rst demonstrate the diversity of the materials within our GW-
BSE computed dataset. In Fig. 1 we classify all the materials in
the dataset according to their chemical composition, crystal
systems, and the number of constituent atomic species. As one
can see from Fig. 1(a), our materials dataset has a signicant
fraction of materials from all the seven crystal systems, except
the triclinic phase, which constitutes less than 1% of our
training set. Fig. 1(b) shows that our training set of materials
consists of almost equal percentages of oxides, pnictides,
halides, and chalcogenides. In addition, 26% of the materials in
Fig. 1 A classification of the bulkmaterials' dataset considered in this wor
number of constituent elements. The figure shows that the materials in

8254 | RSC Adv., 2025, 15, 8253–8261
the training set don't fall in any of the aforementioned chemical
groups. Given the diversity in the chemical compositions and
the crystal symmetries of the materials in our dataset, we can
expect that the ML model trained with the data can be used for
a wide variety of materials. Moreover, we also look at the
number of unique chemical species in the selected materials in
Fig. 1(c) which shows that most of the materials in our dataset
are binary (58%) and ternary (29%) compounds, which ensures
that our ML model captures diverse chemical properties of
multi-element compounds.

The diversity of our GW-BSE computed database is unique in
terms of all the aforementioned characteristics. The only other
database that hosts GW-BSE computed properties is that of
Hasstrup et al.11 which is limited to two-dimensional (2D)
materials and therefore restrictive in terms of crystal systems
and chemical compositions.

In the following two sections, Sections 2.1 and 2.2, we
present the accuracy of various ML algorithms in predicting the
QP and excitonic properties of materials. In particular, we focus
on the QPG and the EBE of materials. We also discuss the most
important features that were used in these models and their
physical signicance. In Section 2.3 we present ML models for
classifying materials as high or low excitonic binding energy
materials. Finally, Section 2.4 demonstrates how the MLmodels
developed in this work allow the discovery of visible-light and
UV-light photoabsorber materials by utilizing existing materials
database without the need for any explicit GW-BSE simulations.
2.1 QP gap prediction

The bar plot in Fig. 2(a) shows the distribution of the QP gaps of
the 314 materials' dataset. One can see that the materials have
a broad range of QP gaps (0–15 eV).

For the ML prediction of the QPG, we tested four regression
methods – the kernel ridge regression (KRR), the random forest
regression (RF), the support vector machine (SVM), and the
multi-layer perceptron (MLP)27,28 methods. A 10-fold cross-
validation was employed to ensure randomness in the
training and test datasets. Note that while our dataset consists
of GW-BSE calculations of nearly 350 materials about 35 of
them were not included in the ML model development as they
had unphysical values for some of the features considered in
this study. The model obtained from the RF method performed
best for the QP bandgap prediction with an R2 score of 0.98 and
k in terms of (a) the crystal system, (b) chemical composition, and (c) the
the dataset are very diverse.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Random forest regression model predicted QPG plotted
against GW computed QPG. The training and test set data points are
shown as + symbols and circle symbols, respectively. The distribution
of the QPGs corresponding to the entire dataset is also shown in the
background as a bar plot. To show the scale used for the histogramwe
have shown the highest value as reference in the figure. (b) The five
most important features used to predict the QPG along with their
percentage importance are shown as a bar plot. See Section II of the
ESI† for a detailed description of the features used in this study. The
training and test set data points in (a) are colored based on the DFT
computed bandgaps, EDFTg , which is the most important feature in the
prediction. The EDFTg is denoted by the color bar.

Fig. 3 (a) RF model predicted EBE plotted against GW-BSE computed
EBE in the training (+ symbols) and test set (circle symbols). The
distribution of EBEs corresponding to the entire dataset is also shown
in the background as a bar plot. To show the scale used for the
histogram we have shown the highest value as reference in the figure.
(b) The eight most important features according to their Gini impor-
tance and their % importances are shown as a bar plot. See Section II of
the ESI† for a detailed description of all the features used in this study.
The training and test set data points in (a) are colored based on the
average dielectric constant, 3avg, which is themost important feature in

avg
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RMSE of only 0.36 eV. Fig. 2(a) compares the RF model pre-
dicted and GW computed QP gaps where the training set is
shown with the ‘+’ symbols and the test set via the circle
symbols. The model obtained from the MLP also led to a very
similar R2 score as the one obtained from the RF method. Table
S1 in the ESI† compares the performance of the models ob-
tained from all four methods.

It is noteworthy that most of the previous studies of ML-
based bandgap predictions have been limited to a particular
material class such as studies of MXenes by Rajan et al.29 or
perovskites by Pilania et al.30 In contrast, in this work, we have
a dataset that includes materials without any such restrictions
on chemical compositions or materials classes. Despite working
with a more diverse set of materials, our RF model is capable of
similar/better accuracy as the earlier studies.29,30 In practical
applications, we seldom have perfectly crystalline materials and
we oen see intrinsic defects (vacancies, Frenkel defects,
Schottky defects, etc.) as well as extrinsic defects (substitutions,
interstitials, inclusions, etc.) and oen polycrystalline materials
with planar defects like grain boundaries. These factors are
known to modulate the bandgaps of materials 10–15% from the
pure single-crystal materials that are typically studied through
simulations. Thus, from a practical application point of view, an
error in the bandgap of 0.3 eV for a material that has a bandgap
of 2 eV or larger is accurate enough to develop and test these
materials in the laboratory. However, for materials with a much
smaller gap (closer to 0.5 eV) our method as well as experiments
more advanced and rigorous studies are required to achieve
desired bandgaps. Hence such materials need to be carefully
evaluated computationally prior to experimental investigation.

Fig. 2(b) shows the most essential features for the QP gap
predictions. The number of features used and their importance
in the random forest algorithm is computed by calculating the
© 2025 The Author(s). Published by the Royal Society of Chemistry
Gini importance (see Methods Section 4.2 for more details).
Fig. 2(b) shows that the DFT computed bandgap is the most
important feature in the QP gap prediction with 92% impor-
tance. This is expected as the Kohn–Sham eigenvectors form the
initial ansatz for the QP eigenvectors. DFT bandgaps are
routinely used as a starting point in the determination of GW
computed QP gaps. Furthermore, it is extremely promising that
the macroscopic average dielectric constant (3avg) emerges as
the second most important feature. While it is well known that
the full frequency-dependent dielectric matrix in the plane wave
basis 3q(G,G0,u) is an important ingredient in the GW calcula-
tions, its determination is expensive and unsuitable for high-
throughput computation. Here, by showing that the QPG gap
can be predicted with a reasonable accuracy by using only the
easily calculable static macroscopic dielectric constant 3avg = 1/
limq/0(3q(G = 0,G0 = 0,u = 0)−1), our model emerges as an
extremely useful tool in future high-throughput material
discovery studies. Three of the 5 features shown in Fig. 2(b) have
very low total importance, less than 1%. We examine the rele-
vance of these features by comparing the RMSE values of RF
models that include 1 to 9 of the most important features. An RF
model obtained by including just the most important feature,
i.e. the DFT gap, gives quite a large RMSE of 0.72 eV. Fig. S1 in
the ESI† shows that the RMSE values for the QP gap prediction
decrease from 0.44 eV to 0.36 eV when the number of features
included in the model increases from 2 to 5, and thereaer it
remains almost constant for up to 9 features. Thus, these three
other features are also important for accurate QP gap predic-
tions, despite their low, <1%, contribution to the total feature
importance.
2.2 EBE prediction

Fig. 3(a) shows the distribution of the EBE of the materials in
our dataset as a bar plot (shaded region in the background). We
the EBE prediction. The 3 value is denoted by the color bar.

RSC Adv., 2025, 15, 8253–8261 | 8255
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note that the dataset consists of materials with EBE in a very
wide range, up to 6 eV. However, the majority of the materials
(over 80%) have EBE <1 eV. Fig. 3(a) also shows the RF model
predicted EBE plotted against computed EBE for all the mate-
rials in our dataset. The RF model predicts the EBE of materials
with an R2 score of 0.86 and an RMSE of 0.29 eV (using 10-fold
cross-validation). Table S1 in the ESI† compares the perfor-
mance of the RF model with MLP, SVM, and KRR models which
are all found to perform much worse than the RF model.

Fig. 3(b) shows the most important features and their %
importance as computed using the Gini importance method.
The most important features include properties like dielectric
constants, effective masses of electrons and holes, and atomic
packing fractions that are also considered in well-known phys-
ical theories of EBE. For instance, the average dielectric
constant and the hole-effective mass features are also included
in the Wannier–Mott (WM) model. In the WM model, the

EBEWM ¼ me4

2ħ232
, where m ¼ memh

me þ mh
is the reduced effective

mass of an electron and a hole, e is the charge of an electron, ħ is
the reduced Planck's constant and 3 is the dielectric constant of
the material. EBEWM, can thus be obtained from ground state
properties without explicit BSE simulations.

In the case of Wannier–Mott (WM) excitons, the Coulomb
attraction between e–h pairs is screened to a larger extent
resulting in an exciton wavefunction that is spread over
multiple unit cells and has low EBE. Since a majority of the
materials in our dataset have a low (<1 eV) EBE, the Wannier–
Mott model applies to them.

In Fig. 4 we compare the RMSE accuracy of both the WM
model and the ML model as a function of the EBE. This RMSE
as a function of EBE has been calculated by considering only
materials with EBE in a 1 eV window around a certain EBE
value. Our results show that the ML model has a much lower
RMSE than the WM model. Furthermore, while consistently
poorer than the ML model, the WM works comparatively well at
low EBE but fails dramatically in the high EBE region. This is
Fig. 4 The RMSE accuracy of both Wannier–Mott (WM) and charge
transfer/Frenkel (CT) models as well the ML model as a function of the
EBE. The RMSE as a function of EBE has been calculated by considering
only materials with EBE in a 1 eV window around a certain EBE value.
Our results show ML model performs better in any energy window
than the WM or CT model. WM model works fairly well in the case of
low EBE but fails in the high EBE region. The CT model is less accurate
than the WMmodel in the low EBE region but works better in the high
EBE region.

8256 | RSC Adv., 2025, 15, 8253–8261
not surprising, since the materials that have very high EBE in
the range of 4–5 eV are expected to exhibit Frenkel or Charge
Transfer (CT) type excitons. CT excitons are more localized with
very strong Coulomb attraction between e–h pairs and therefore
have high EBE. The EBE of a CT exciton is given by the

expression, EBECT ¼ e2

4p3rCT
where rCT is the separation

between the electron and hole of an exciton or radius of exciton
wavefunction. Unlike the WM model, this model can not be
used to predict the EBE of solid-state materials using ground-
state DFT computed properties, as rCT can not be computed
without solving the BSE. CT excitons are usually localized in
a length scale of the order of the size of a unit cell of materials
and are also expected to have smaller rCT for materials with
tighter packing efficiency. Thus one can assume that rCT =

fV−1/3, where f is a dimensionless proportionality constant and V
is the volume of the unit cell, allowing the estimation EBECT
from ground state properties without the need of BSE
simulations.

In Fig. 4 we present the RMSE accuracy of EBE obtained from
the CT model (f = 0.5) as a function of the EBE. In comparison
to the ML model, the CT model is consistently poorer with high
RMSE values. However, as expected, it performs better than the
WM model in the high EBE region.

Overall, the ML model performs much better in any energy
window in comparison to the WM or CT model. We think this
superior predicting capability comes from the inclusion of
additional material properties not present in the WM model
such as packing fraction and range of electron and hole effective
masses and dielectric constants. By including such attributes
our ML model is capturing the physics of not only the low EBE
excitons but also the higher EBE regime where the CT model is
more perhaps applicable than the WM model. Therefore, one
can in principle build a more general empirical model for
excitons based on the properties revealed by our ML model.
2.3 ML classication of exciton binding energies and
absorption-related properties

In the previous two sections, we discussed the capabilities of
our ML model in predicting accurate QPG and EBE of a wide
variety of materials by solving a regression problem. This
undoubtedly has a lot of potential applications in identifying
materials with specic bandgap requirements such as for ultra-
wide bandgap semiconductors for power electronics applica-
tions or optical devices in visible or UV light applications.
However, for tractable BSE calculations with reasonable k-grids,
the computed EBEs have an error of ∼100 meV for low EBE
values, which is subsequently extended in our ML model. At the
same time, the EBE values calculated from the BSE method
present a strong correlation with experimental EBEs.31,32 Thus,
from a material designing/discovery point of view, an equally
useful exercise would be to identify materials with desirable
optical/excitonic properties such as having a low EBE, which is
a classication problem. In this section, we apply classication
algorithms to classify materials based on their excitonic
properties.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Among excitonic properties, low EBEs are preferred in
applications where free e–h pairs are desired for example in
photocatalytic materials.2 In addition, two other parameters
derived from BSE obtained absorption spectra—the integrated
absorption coefficient (IAC) in the solar wavelength range of
interest and anisotropy in absorption coefficient (AAC)—are
useful to quantify the potential of a material for solar-energy
absorption, for example in photovoltaics and photocatalysts.
The methods section describes the calculation of IAC and AAC
from the frequency-dependent absorption spectra. In a previous
study, we have established that low EBEmaterials are those that
have EBE smaller than 0.2 eV, high (visible/UV)-light IAC
materials have an IAC larger than >10.5 × 104 cm−1 eV, and
high AAC materials have AAC $0.8.

Fig. 5 shows the results of classication obtained by the RF
method in the form of confusion matrixes. Fig. 5(a) shows the
confusion matrix for classifying materials as low EBE. Fig. 5(b)
shows the matrix for classifying materials as high UV-light IAC
and Fig. 5(c) for classifying materials as high AACmaterials. For
the EBE classication, only 21 of the 305 materials were clas-
sied incorrectly resulting in a high classication accuracy of
93%. The classication models for the IAC and AAC resulted in
an accuracy of 94% and 83% for the 355 materials in the
dataset, respectively. Additionally, we employed the AdaBoost,
stochastic gradient descent (SGD), and MLP27,28 methods for the
classication. However, the RF performed best among the four
methods. ESI Table S2† shows the comparison between the four
methods.

The feature set used for IAC and AAC classication was
selected following a similar strategy employed for the QP gap
and EBE prediction described earlier. In the ESI Fig. S2 (IAC)
and S3 (AAC)† we have shown the most important features
along with their % importance. In the case of IAC prediction
mean dielectric constant (67.1%) and DFT computed bandgap
(4.6%) emerge as the two most important features. The emer-
gence of these two properties as the most important features
can be understood from the fact that for a high absorption in
the visible spectrum, 1.7–3.5 eV, one needs to have a material
Fig. 5 Confusion matrix illustrating the number of true positives, (TP),
predicting if materials possess a low exciton binding energy (EBE), <0.2 eV
anisotropy in absorption coefficient, >0.8. All the incorrect classificatio
classifications (FPs and FNs) are shown in shades of green and yellow.

© 2025 The Author(s). Published by the Royal Society of Chemistry
with a QP gap in the same range and also needs to have
signicant absorption coefficient (f3(u)) in that energy range.
As we have seen in Fig. 2 for the QP gap prediction mean
dielectric constant and DFT computed bandgap are the two
most important features, it is not surprising that they are also
equally important for the IAC predictions. Moreover, the high
importance of the mean dielectric constant also signies a high
degree of correlation between the static dielectric constant of
a material and frequency-dependent dielectric function. In the
prediction of anisotropy in visible light absorption (AAC) we
nd that the range of dielectric constant (max{3x, 3y, 3z} − min
{3x, 3y, 3z}) is the most important feature (58.8%). All the other
important features in the prediction of AAC have importance
<5%. Therefore, one can identify a material with a high degree
of anisotropy in visible light absorption by looking at the
anisotropy in the static dielectric constant, which once again
highlights the importance of static dielectric constants in the
excitonic properties. The Materials Project (MP)9 database
currently holds ∼150 000 materials, but only ∼7000 (4.7%) of
them have computed static dielectric constants. We believe that
the static dielectric constant using DFT is quite inexpensive to
calculate but is a crucial parameter to understand material
applicability for a wide variety of electronic and optoelectronic
applications and therefore it would be useful to compute and
curate it for more materials in existing materials databases.
2.4 Screening materials from MP database

The high accuracy (90%) of our ML classiers enables their
application to a larger material set to screen for materials
suitable for photoabsorption-based applications such as
photovoltaics, and photocatalysis.

We perform such screening on ∼7083 materials that have
static dielectric constants and DFT computed band structure
available in the MP database. We nd that out of 7000 mate-
rials, only 159 passed the criterion of low EBE, high IAC, and
high AAC in the visible-light region, 1.7–3.5 eV. Regarding the
UV-light absorption, 3.5–4.2 eV, we found 237 materials passed
the aforementioned criteria.
true negatives (TN), false negatives (FN), and false negatives (FN), for
, high integrated absorption coefficient (IAC), >10.5× 104 cm−1 eV, and
ns (TPs and TNs) are shown in different shades of red and correct
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Fig. 6 Materials obtained from the MP database and selected for visible (a) and UV light (b) applications through the ML-based screening process
are categorized into different chemical compositions. The outer rings represent the fraction of the starting set of ∼7000 materials belonging to
different chemical groups whereas the inner rings represent the same for selected (159 for visible and 203 for UV) materials. In the case of visible
light absorption, we see significantly fewer oxides pass through the screening process, whereas, pnictides and chalcogenides comprise a major
fraction of the selected materials.
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Fig. 6 examines the chemical compositions of the materials
in the starting set of ∼7000 materials (outer rings) as well as
ones that emerged as suitable for visible-light applications,
Fig. 6(a), and UV-light, Fig. 6(b), respectively, inner rings. We
nd that most of the visible-light materials are either pnictides
or chalcogenides. Note that almost half of the starting set of
materials, 47%, are oxides but only 2 oxides pass through the
screening. This is not surprising since oxides mostly have larger
bandgaps than the visible light region. More oxides, six, are
found in the screened materials for the UV light region. Most of
the materials for UV absorption also belong to pnictides or
chalcogenides. Furthermore, we nd that almost half of the
selected chalcogenides are tellurides. In the ESI Tables S6 and
S7† we list all the screened materials for both visible and UV
absorption respectively along with their ML-predicted QP gap
and EBE values. In Tables S6 and S7,† we have also reported
whether a screened material has been already synthesized
before and has an ICSD ID and the computed value of energy
above hull. We nd that the majority of these materials 193 out
of 234 materials have been already synthesized. Moreover, we
nd that 168 out of 193 previously synthesized materials have
computed energy above the hull value of 0 eV. An examination
of the screened materials shows that several of these materials
have been studied in the context of photoabsorption-related
applications, for example, GeTe,33 AlSb,34 SnSe,35 etc. Thus it is
likely that the other screened materials can be promising novel
materials for photoabsorption-related applications.

3 Conclusion

In this study, we report the largest dataset of excited state prop-
erties of bulk materials calculated using the state-of-the-art GW-
BSE formalism. This database has been created using the open-
source Python workow package pyGWBSE and made publicly
available through the website https://hydrogen.cmd.lab.asu.edu/
gwbse-data. Using this dataset we have developed ML models
that can predict the QP gap and EBE of a diverse set of
materials with excellent accuracy. Despite having a limited
8258 | RSC Adv., 2025, 15, 8253–8261
dataset size of ∼350 materials, the ML models predict the QP
gap with an accuracy of 0.36 eV (RMSE) and EBE with an
accuracy of 0.29 eV. Moreover, we demonstrated that using the
ML models developed on this dataset we can screen materials
based on excited state properties such as EBE, IAC, and AAC by
using only ground state DFT computed properties. Using our
ML models we utilize the relevant existing DFT computed date
in the MP database, available for 7000 materials, and screen
159 materials for visible and 203 materials for UV light-based
applications. This work presents a robust framework to utilize
the underlying potential of the large datasets of ground-state
properties available in open-source materials databases, allow-
ing us to obtain excited state properties without the need for
explicit simulations.

4 Computational methods
4.1 GW-BSE calculations

Quasi-particle (QP) energies, the energy required to add or remove
an electron from an interacting many-electron system is not
a ground state property of the system and therefore can't be
computed accurately using DFT. These QP energies can be
computed correctly at a reasonable computational cost using
many-body perturbation theory within GW approximation. Within
GW approximation one computes the self-energy as the product of
one-particle Green's function (G) and the screened Coulomb
interaction (W).36,37 The QP energies are evaluated as a correction
to the KS eigenvalues using rst-order perturbation by assuming
the difference between exchange–correlation potential (Vxc) and
self-energy is sufficiently small. QP energies, and thus QPGs, of all
the materials in this study were computed using the one-shot
G0W0 method via the high-throughput workow code
pyGWBSE.23 pyGWBSE workows allow high-throughput rst
principles atomistic simulations via the VASP38 package by high-
throughput automated input le generation, submission to
supercomputing platforms, analysis of post-simulation data, and
storage of metadata and data in a MongoDB database. We use the
PBE54 psuedopotentials as employed in VASP to determine the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Kohn–Sham eigenvalues and eigenvectors. A plane wave cutoff of
500 eV and a k-grid with reciprocal density 200 Å−3 was used for
all the GW-BSE calculations. A xed value of 100 eV for the
screened Coulomb energy cutoff and 80 for the number of
frequency grid points was used for all the GW calculations since
these parameters don't display a signicant dependence on the
material of choice.23 The number of unoccupied bands for the
GW simulations was selected such that the QPGs converged
within <0.1 eV. The macroscopic dielectric constants reported
here were calculated using density functional perturbation theory
following the formalism originally introduced by Baroni et al.39

and later implemented for projector-augmented wave method-
ology by Gajdoš et al.40 Once the QP energies were obtained, the
absorption spectra, 3(u), and EBE were computed by solving the
Bethe–Salpeter equation (BSE). BSE is a two-particle equation that
explicitly includes the electron–hole interactions or the excitonic
effects within the Tamn–Dancoff approximation.41,42 The number
of valence (v) and conduction (c) bands included in the BSE
calculation are selected such that the vertical v/ c transitions of
energy less than 3 eV were obtained. From a BSE solution, the
optical gap is the lowest energy excitation. The EBEs are the
difference between the optical gaps and the direct QP gaps.

To quantify the fraction of incident light that can be absor-
bed by a material in a desired frequency range, we can compute
the integrated absorption coefficient, IAC. IAC is obtained by
integrating the BSE computed frequency-dependent absorption
coefficient, aint.23 In the case of light polarization along x axis,

aint
x ¼

ðumax

umin

axðuÞdu

where axðuÞ ¼
2p

�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð31xðuÞÞ2 þ ð32xðuÞÞ2

q ����� ð31xðuÞÞ1=2
�

l

(1)

where 31(u) is the real and 32(u) the imaginary part of the
dielectric function. u and l are the frequency and wavelength of
incident radiation. The 32(u) is obtained by solving BSE and
31(u) is computed using the Kramers–Kronig relation.

To assess whether a material has a preference for absorbing
light of certain polarization we calculate the anisotropy in
absorption coefficient (AAC), aanisoint . aanisoint is dened as the ratio
of min(aint

x,aint
y,aint

z) and max(aint
x,aint

y,aint
z).
4.2 Machine learning

All the ML models were created using the Scikit-Learn ML
library.43 Over 150 features were used for training the ML
models for this work. Section II in the ESI† describes the
features considered in this work. The features include DFT-
computed material properties that are available in the MP
database including the DFT bandgaps and the dielectric
constants. In order to include the effective masses as features,
we computed the effective masses from the bandstructures
available in the MP database by employing the sumo44 code and
the MP Application Programming Interface (API).

The most important features were determined by computing
the Gini Importance45 method. The Gini Importance of each
© 2025 The Author(s). Published by the Royal Society of Chemistry
feature is calculated as the decrease in node impurity weighted by
the probability of reaching that node. Furthermore, for the
prediction of QPG and EBE, we chose the minimum number of
features that were needed to obtain an RMSE value converged
within 0.01 eV.

Abbreviations
QP
 Quasiparticle

EBE
 Exciton binding energy

DFT
 Density functional theory
Data availability

The GW-BSE calculations performed to create the dataset were
performed using publicly available pyGWBSE code (https://
github.com/cmdlab/pyGWBSE). The GW-BSE dataset will be
made available through the website (https://
hydrogen.cmd.lab.asu.edu/gwbse-data) upon publication. The
codes used to develop ML models and apply them to the
Materials Project dataset have been made publicly available
(https://github.com/cmdlab/ML-GWBSE). The materials
shortlisted in this study for visible and UV lightbased
applications along with their ML-predicted properties has
been reported in the ESI.†
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