Vapor phase coupling of n-butanol over the mixed catalyst system PdZn/SiO2 + TiO2

Abstract

Coupling fermentation derived oxygenates via Guerbet-type reactions offers a potential route for producing fuels and chemicals from agricultural feedstocks. In this work the vapor phase reactions of n-butanol over a bimetallic PdZn/SiO2 catalyst and physical mixtures of PdZn/SiO2 and TiO2 were studied. The bimetallic catalyst was highly selective for n-butanol dehydrogenation without the subsequent decarbonylation of butanal which is characteristic of monometallic Pd nanoparticles. When combined with TiO2, a known aldol condensation catalyst, the bifunctional system performs Guerbet-type coupling reactions and produces mixtures of C8 oxygenates and higher-order products including C7, C8, and C12 hydrocarbons. Results show that within the reaction network PdZn/SiO2 performs dehydrogenation/hydrogenation reactions and decarbonylates C8 aldehydes to form C7 hydrocarbons. TiO2 catalyzes aldol condensation and alcohol dehydration reactions responsible for producing C8 and C12 hydrocarbons. Based on the developed understanding of the function of each catalyst, it was shown that increasing the Brønsted acidity of the TiO2 catalyst resulted in an increase in the production of C8 hydrocarbons relative to C12 hydrocarbons. This work demonstrates the ability of bimetallic Pd-based catalysts that are selective for alcohol dehydrogenation to participate in Guerbet-type coupling reactions and that their combination with an appropriate aldol condensation/dehydration catalyst is an effective strategy to produce higher molecular weight oxygenates and hydrocarbons from renewable resources.

Graphical abstract: Vapor phase coupling of n-butanol over the mixed catalyst system PdZn/SiO2 + TiO2

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2024
Accepted
27 Dec 2024
First published
22 Jan 2025

React. Chem. Eng., 2025, Advance Article

Vapor phase coupling of n-butanol over the mixed catalyst system PdZn/SiO2 + TiO2

E. C. Wegener, React. Chem. Eng., 2025, Advance Article , DOI: 10.1039/D4RE00474D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements