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s underlying out-of-equilibrium
reaction networks with random graph analysis†

Éverton F. da Cunha,‡ab Yanna J. Kraakman, ‡c Dmitrii V. Kriukov, ab Thomas van
Poppel,a Clara Stegehuis *c and Albert S. Y. Wong *ab

Network measures have proven very successful in identifying structural patterns in complex systems (e.g.,

a living cell, a neural network, the Internet). How such measures can be applied to understand the rational

and experimental design of chemical reaction networks (CRNs) is unknown. Here, we develop a procedure

to model CRNs as a mathematical graph on which network measures and a random graph analysis can be

applied. We used an enzymatic CRN (for which a mass-action model was previously developed) to show

that the procedure provides insights into its network structure and properties. Temporal analyses, in

particular, revealed when feedback interactions emerge in such a network, indicating that CRNs

comprise various reactions that are being added and removed over time. We envision that the

procedure, including the temporal network analysis method, could be broadly applied in chemistry to

characterize the network properties of many other CRNs, promising data-driven analysis of future

molecular systems of ever greater complexity.
Introduction

Complex networks describe the interactions between a vast
number of components and are the foundation of many
natural, societal, and technological phenomena.1 At the
molecular level, interactions take place in networks based on
DNA, proteins, or metabolites.2 The discovery of recurrent
patterns in biochemical networks (i.e., network motifs),3 in
particular, has sparked chemists to translate theoretical design
principles that use feedback loops4,5 into practical molecular
methods that enable the synthesis of out-of-equilibrium
chemical reaction networks (CRNs).6,7 Despite signicant
progress, expanding the complexity in CRNs in a modular,
theory-based way remains scarce.8

One of the main difficulties in the synthesis of CRNs resides
in the requirement of the integral approach, involving organic
synthesis and mathematical modelling.9 Advances in systems
chemistry—a subdiscipline at the interface of systems biology
and supramolecular chemistry8—demonstrate that CRNs can
be experimentally designed, rationalizing behaviour ubiquitous
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for living systems e.g., bistability,10–12 oscillations,13,14 and other
transient behaviours.15–17 In all examples, mass-action models18

are used to support and validate their observed dynamics,
demonstrating the need for mathematical modelling to guide
the design of CRNs.19 Experimentally-designed CRNs (or, more
generally, CRNs designed articially by chemists), however,
cannot always be accurately modelled using mass-action
kinetics due to complexity of the reaction mechanisms
involved as well as limitations in the determination of rate
constants thereof.20 The experimental framework for CRNs with
more complex behaviour21–23 is gaining ground rapidly, and
novel approaches that can capture their dynamics are needed.

Alternatively, mass-action models can be represented by
a bipartite graph with nodes representing chemical species and
reactions. The mathematical foundation for so-called species–
reaction graphs was introduced in the early 1970’s,24 and gained
signicant attention aer Feinberg demonstrated that abstract
graph theory can be applied to study interconnected chemical
reactions.25,26 Bipartite graphs are commonly applied to repre-
sent CRNs,27,28 or to detect the lowest-energy paths in molecular
transformations (wherein reaction mechanisms are treated as
CRNs).29–31 In all examples, paths are used as network proper-
ties. Other network statistics (such as centrality, clustering and
motifs) have been used to analyse CRNs that are large. In this
context, biochemical networks32–34 and combustion networks35

are similar because they both comprise many intermediates,
each with numerous reaction paths. When analysing network
statistics, random graphs can provide a benchmark to lter out
effects that are created by randomness. Overall, mathematical
properties of the solutions of mass-action systems are strongly
Chem. Sci.
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View Article Online
related to key properties of the CRNs that generate them,
including their feedback interactions.36

Despite the advances in CRN theory, analyses of species–
reaction graphs that are sufficiently informative to guide the
design of CRNs for the synthesis-oriented chemist are scarce.
An important distinction between the out-of-equilibrium reac-
tion networks of interest to the systems chemist8–17 and the
aforementioned networks, wherein reaction mechanisms are
treated as CRNs,27–31,35 is that the rst type of CRNs use inter-
mediates that are stable and separable compounds whereas the
second type of CRNs use intermediates that are short lived and
cannot be separated as individual compounds. That is, while
theory can take the perspective that thousands of reactions can
be treated as similar, in practice, each class of reactions can
have its own chemical rules.37,38 We need new methods to
represent, collect and extract information to predict structures
and functions of CRNs that are synthetically feasible. This is
a non-trivial task as the design of CRNs requires expertise in
chemical synthesis and graph analysis to create a foundation
that takes into account the chemical and mathematical
perspectives on how reactions become networks.

In this work, we show that we can combine the temporal
dynamics of the CRN with the information provided by the
graph to analyse the temporal behaviour of the network statis-
tics. We developed a method that integrates the representation
of CRNs as graphs with the application of network measures to
model experimentally-designed CRNs (Fig. 1). Briey, any
chemical system can be described by a set of elementary reac-
tions but to create insights into the system, chemists typically
use conceptual models to visualize the interactions as positive
and a negative feedback loops (Fig. 1, le panel). To illustrate,
ESI, Fig. S1† shows a previously developed enzymatically-driven
CRN for which a mass-action model was developed.13 Building
on this foundation, we designed a procedure (illustrated in
Fig. 1 as steps I–IV) that could translate the reactions in this
model into a species–species network comprising of nodes and
edges. This procedure not only allows for an explicit illustration
of the relationships among the nodes, but also for the
Fig. 1 Translation of synthetically-designed CRNs into a species–spec
visualized as a conceptual model comprising feedback loops (left panel, c
work, such representation is used to simulate the structure of the CRN b
(step III). The procedure can also take the dynamic nature of chemical r

Chem. Sci.
application of network measures commonly employed in
network science. We show that measures for clustering and
centrality could reveal the underlying network statistics
important for the temporal existence of feedback loops. To the
best of our knowledge, this is the rst work that combines
random graph theory with dynamics of out-of-equilibrium
reaction networks.

Results and discussion
From elementary reactions to structure (step I)

The rst step in the procedure encodes the enzymatic oscillator
as a species–species network (ESI, S2†). In here, each edge
represents a unique chemical conversion from one species to
another represented by nodes. Our procedure transforms the
set of elementary reactions into a network. The species are
labeled as reactants, intermediates and products resulting in
a total of 10 nodes; three reactants (Tg, Ap, Pro-I), six interme-
diates (Tr, Int-I, I, Tr$Tg, Tr$Pro-I, Ap$Int-I), and one product (P)
that summarizes the species that do not contribute to the
overall dynamics (the inhibited trypsin complex and hydrolysed
inhibitors). Subsequently, we assigned a directed edge for each
pair of species in an elementary reaction, with the direction of
the edge indicating whether the species was consumed or
produced. We note that multiple chemical conversions could
take place between the same pair of species.39 To account for
this multiplicity, we dened weights based on the number of
edges assigned to each pair of species. ESI, Table S1† show the
outputs of the algorithm applied on the enzymatic oscillator,
where the nal column (a so-called edge list) denes the
species–species network: a graph with 10 nodes and 19
weighted edges (G1).

Network properties of the enzymatic oscillator (step II)

Next, step II in the procedure is to choose and adapt the network
measure of interest. To illustrate, we chose three network
measures2,40 (degree, clustering coefficient, and betweenness
centrality, Fig. 2) commonly applied in network science. To
ies network enables graph-based analyses. A list of reactions can be
onventional approach) and as a species–species network (step I). In this
y applying network measures (step II) and assessing their significance
eactions into account (step IV).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Degree, clustering coefficient and betweenness centrality. An
example for how network measures are determined for node i, where
all edges have weights equal to 1. The degree (ki) measures the sum of
the weights of the connections of each node. The clustering coeffi-
cient (cci) measures the likelihood that two neighbours of a node
forming a wedge form a feedback triangle (Di). A wedge, Wi, is a set of
two edges h/ i and i/ jwith hs j at node i. A feedback triangle (Di),
therefore, is h/ i/ j/ h. The betweenness centralitymeasures how
frequent a node lies on the path with the least number of steps
between other nodes. It is computed by counting the number of
shortest paths that pass through node i.
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account for the directed and weighted nature of the edges in our
species–species network, we adapted these measures slightly.41,42

To be precise, the rst measure, degree (ki), computes the sum of
the weights of the edges connected to each node:

ki =
P

e connectedto iweight(e)

In other words, ki determines the number of times that a node is
involved in the species–species network.

The second measure, clustering coefficient (cci), investigates
paths that form cycles between triples of nodes i, j and k. Such
paths are called ‘feedback triangles’, and they are of the form i
/ j/ k/i. The clustering coefficient computes the fraction of
feedback triangles formed by the node with its neighbours. In
particular,

cci ¼ Di

Wi

where Di denotes the number of feedback triangles attached to
node i, and Wi denotes the number of wedges, the number of
length two paths passing through node i. The cci measures,
thus, the likelihood that two neighbours of a node forming
a wedge can form a feedback triangle. For instance, cci = 1/2 in
Fig. 2 means that half of the wedges attached to node i form
a feedback triangle. Note that this denition of cci does not
consider edge weights.

The third measure, betweenness centrality (bci), computes
the centrality of a node based on the shortest paths in the
network: for every pair of nodes, node imay lie on the path with
the least number of steps between these nodes. The bci outputs
the fraction of nodes for which this is true. In particular,
© 2025 The Author(s). Published by the Royal Society of Chemistry
bci ¼ 1

p�i

X

u;vsi

su;vðiÞ
su;v

;

where p−i is the number of node pairs (excluding node i)
between which a path exists, su,v is the number of shortest paths
between nodes u and v, and su,v(i) the number of shortest paths
between u and v that pass through node i. The multiplicity of
a shortest path between two nodes is dened as the product of
the edge weights of the path. bci, thus, provides information on
the number of times with which a species acts as an interme-
diate between network connections.

Having established the foundation for the three network
measures, we then applied the measures to characterize the
species–species network (ESI, S3.1†). Crucially, the oscillator
can only exist when the network is maintained under out-of-
equilibrium conditions. Therefore, we introduced two nodes
(source, S, and waste, W) to take the inow of the reactants and
the outow of the products of the network into account. Fig. 3a
shows that the graph for the CRN out-of-equilibrium (G2)
comprises more nodes (12 instead of 10) and more weighted
edges (32 instead of 19) than the graph for the CRN in equi-
librium (G1). Details of the graphs are appended to ESI, Tables
S1 and S2.†

In this CRN, the intermediates are nodes that on average
have a higher contribution than other species to the connec-
tivities in the graph, given that their degree (�k4–9 = 7.1) is higher
in comparison to the degree of the reactants (�k1–3 = 5.3)
(Fig. 3b). The node 10 has an articially high value (k10 = 10)
because it summarizes several species as products. The degree
for nodes 11 and 12 that represent the ow components, S (k11
= 3) and W (k12 = 10), reects the inow of the three reactants
and outow of ten species. That the node for Tr (i = 4) has the
highest degree (k4 = 12) reects the fact that the design of the
CRN is built around the key enzyme Tr (see conceptual model in
ESI, Fig. S1†).13

A different pattern emerges when we considered the cci
(Fig. 3c). On the node for Tg (i= 1), for instance, cc1 = 0.2 as 1/5
of the wedges can create the feedback triangle representing the
conversion of Tg into Tr (via the auto-activation, Tg / Tr, and
autocatalytic steps, Tg + Tr = Tr$Tg / 2 Tr). For Tr$Tg, node 7,
cc7 = 1/4 is slightly higher because it has the same number of
triangles but one less wedge. The cci for 4, species Tr, is
signicantly lower (cc4 = 1/10) as this node has neighbours that
are not shared with 1 and 7. Overall, we observed two distinct
responses: a cci for any node is (i) non-zero for species that are
involved in the positive feedback loop (Tg, Tr, and Tr$Tg), and
(ii) zero for species that are not involved in the positive feedback
loop. Notably, the auto-activation step was included as a side
reaction in the mass-action model of the enzymatic oscillator as
it was required to provide the initial activation of Tr.13 In this
case, the auto-activation, plays a critical role as well, because it
is required to complete the feedback triangle between 1, 4 and
7, making the numerator of cci non-zero.

The bci (Fig. 3d) shows that nodes 4 and 5 have the highest
betweenness centrality value. This underscores the importance
of the species Tr and Int-I to act as the key intermediates of the
network. Surprisingly, the nodes 8, and 9—nodes for species
Chem. Sci.
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Fig. 3 Static analysis of the species–species network of the enzymatic
oscillator using network measures. (a) Graph-based models, or
species–species networks, of the enzymatic oscillator in- and out-of-
equilibrium. G, abbreviates graph. Source, S, is the node that accounts
for the inflow of the reactants, and waste, W, is the node that accounts
for the outflow of the products of the network. (b–d) Network
measures applied on the enzymatic oscillator. Data are reported in ESI,
Table S3.†
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which role in the oscillator is oen neglected in the mass-action
model, Tr$Pro-I and Ap$Int-I—also appear to share a similar
high occurrence with which the species act as an intermediate
between network connections. In contrast, species I (bc6 = 0.05)
appears to have a less important role to sustain the network
connectivity than anticipated in previous work.13 Other nodes
with low values for bci are 1–3, and 7. The nodes for the
Chem. Sci.
reactants (i = 1–3) only appear on shortest paths that direct
from an inow (S). The node for Tr$Tg (i = 7) only lies on the
shortest path corresponding to when Tg converts into Tr,
explaining its similarly low betweenness value. Finally, the three
nodes, i = 10–12, do not lie on any shortest path. bc10 is zero
and validates that 10 summarizes species that do not contribute
to the overall dynamics. bc11 and bc12 are zero is because edges
are either directing from 11 (the source) or directing to 12 (the
waste). Overall, that similar patterns for ki, cci, and bci were
observed for G1 shows that the introduction of the nodes to
account for the continuous inow of reactants and outow of
products does not signicantly alter the structural properties of
the CRN.
The signicance of network measures applied on the
enzymatic oscillator (step III)

In step III of the procedure, the signicance of the network
measures is assessed by a random graph null model. This is
important, as oen the measured values depend, in unknown
ways, on the CRN size, its edge density and other intrinsic
system properties.43 For this reason, it is common in network
science to compare statistics on a given network to randomized
versions of the same network, to see whether they stand out, i.e.,
are signicant.43 This approach has proven extremely successful
in e.g., metabolic, genetic and protein networks,2 and we
propose it can be applied to out-of-equilibrium networks rele-
vant to systems chemistry. We developed a random graph null
model to compare the statistics of G2 to randomized versions of
the same species–species network. The procedure generates 10
000 randomized congurations of G2, under the condition that
the degrees are xed but connections are randomized. Subse-
quently, the cci and bci are applied to these randomized
networks to determine the range of values that these measures
can take (ESI, S3.2†). In other words, we provide a negative
control for the measures applied on G2 (a so-called null
hypothesis). In this way, we can identify which nodes show
features that may be used to characterize the trypsin oscillator.

The possible values that the measures can take, given
random conditions, are summarized as boxplots in Fig. 4a and
b. The distributions for cci and bci based on the null model are
compared with the values obtained for G2 to determine if its
node occurs within the 25–75th percentile of the randomized
networks (i.e., a typical value, depicted as a grey circle). A
typical value indicates that the properties of the node would
also appear if the CRN was driven by random processes. On the
other hand, a node that is not within the 25–75th percentile
(i.e., an atypical value, depicted as a red circle) indicates that
their properties are different from an otherwise randomly
assembled CRN. For the clustering coefficient, we found that
only 7 appears to be atypical (Fig. 4a) and for the betweenness
centrality, 3, 5, 7, 8 and 9 all appear atypical (Fig. 4b). The
nodes 10–12 are excluded from this analysis as they did not
contribute to the overall dynamics of the system. Hence, we
identied the relevant set of nodes for the graph-based anal-
ysis of the enzymatic oscillator under out-of-equilibrium
conditions. That is, for further analysis of the cluster
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Significance of the network measures. Box plots depict the
distribution of the measures based on 10 000 randomized graph
samples for the (a) clustering coefficient and (b) betweenness
centrality. The relevant nodes for G2 are determined by whether the
value from the original network occurs within the 25–75th percentile
(i.e., a typical value) or not (i.e., an atypical value).
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coefficient there is only one relevant node (7) and for the
betweenness centrality there are ve nodes from which we can
choose (3, 5, 7, 8 and 9).
Fig. 5 Time-dependent graph-based analysis. (a) Simulated time
series of the enzymatic CRN wherein oscillations of key intermediates
(Tr and Int-I) are sustained. See ESI, S3† for initial conditions. (b) The
evolution of network G2 during the time required for completing
a single oscillation (oscillatory period). The normalized [Tr] is deter-
mined by averaging five consecutive oscillations in (a). (c) The emer-
gence of the cluster coefficient (cci) and betweenness centrality (bci)
as a function of space velocity (sv), the parameter that determines the
inflow and outflow of species. The insert shows the appearance of cc7
and bc5 during the oscillatory period under the conditions depicted in
(b) (sv = 0.2 h−1). Extended materials include animated image
sequence used in (b), and (c).
Network measures applied on temporal behaviour (step IV)

Finally, in step IV of the procedure, the time-dependent
dynamics of the network measures is analysed. This is done,
since reactions take place all the time but at specic moments
during the reaction trajectory certain ones are more prevalent
(depending on the change in the concentration of the species
involved in the reaction). Therefore, we simulated the CRN
using the model described by ODEs. Fig. 5a shows the charac-
teristic behaviour of the oscillator in time, wherein the
concentration of key intermediates Tr, [Tr], and Int-I, [Int-I],
oscillate with the same frequency. The simulated time series
are used as input to represent the temporal evolution of the
species to determine the addition or removal of edges in G2.
Briey, we considered that an outgoing edge can only exist when
the associated node is present, and used a threshold to deter-
mine the presence of the nodes at each time interval (for details,
see ESI S3.2†). To ensure that the sustained oscillations had
established, our analysis starts from 50 h onwards.

During the development of each oscillation, different
subgraphs of G2 were identied. Fig. 5b shows the behaviour of
the CRN as a single oscillation with the oscillatory period
ranging from 0 to 1. The inserts highlight the node for Tr (i= 4).
At the local minima of the oscillation (per = 0 and per = 1) the
© 2025 The Author(s). Published by the Royal Society of Chemistry
node is only connected with one edge in the graph, whereas at
the local maxima (per = 0.5), the node is connected with many
edges. When transitioning from a minimum to a maximum
(e.g., per= 0.4), edges are formed, but they disappear during the
transition from a maximum to a minimum. Particularly, at per
= 0.6 the node becomes disconnected from the graph. The
extended set of ‘snapshots’ is appended to ESI, Fig. S4,† which
shows that the discussed transitions are rather abrupt and that,
remarkably, new edges are oen being formed, even during per
between 0.5 and 1. Hence, the network with all chemical
interactions involved does not exist, and moreover, while the
trend in the total number of reactions that are active may go up
Chem. Sci.
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or down, the system still constantly adds and removes indi-
vidual reactions.

The graph-based analysis was extended by determining
when the clustering coefficient of 7 (cc7) and betweenness
centrality of 5 (bc5) are non-zero during the oscillatory period.
The cci and bci of the discussed example are indicated in the
insert of Fig. 5c, which shows that cc7 could yield its maximal
value of 1/4 only within per = 0.47–0.49 (thus, before the local
maximum of the oscillation). The maximal value of 0.30 for bc5,
instead, was found at a different interval, 0.5–0.58 (thus, when
the oscillation started to decrease). We note that 7 was the only
option for the temporal analysis of cci, and that 5 was chosen
arbitrarily for the temporal analysis of bci. The latter can be
substituted by any of the other relevant nodes identied in the
random null model (3, 7, 8 and 9) without inuencing the
analysis.

Essentially, the clustering coefficient and betweenness
centrality show if (and when) the desired feedback loops are
acting on the network. Fig. 5c shows the impact of different
initial conditions on network dynamics, measured by the
appearance of the network measures cci and bci under a range
of space velocities, sv—the parameter that determines the rate
of inow and outow of species. The cci and bci cannot
distinguish oscillations that are sustained or damped (ESI,
Fig. S5†). To this end, we determined the intervals for their
presence only for sv values within 0.02 h−1 # sv # 0.25 h−1, the
conditions wherein oscillations are sustained. We found that
the trajectories of cc7 and bc5 follow the pattern of the local
maxima of the oscillation in [Tr] (dashed line). Fig. 5c shows the
(dis)appearance of the connection with the intermediate
inhibitor (i = 5), highlighting the emergence of the reactions
important for a short, or efficient, pathway in G2. In this case,
the edges that are present when bc5 reached its maximum value
indicate that the connections crucial for the negative feedback
loop are made. Therefore, bc5 appears when the oscillation
decreases. Oppositely, the clustering coefficient allows for
examining the existence of the positive feedback. In the case of
this CRN, it was built on three species forming a feedback loop,
and Fig. 5c indicates that it is present only in a narrow interval.

Conclusions

Graph-based analyses are widely used in literature for basic
characterization of networks of any kind but have rarely been
applied to experimentally-designed chemical reaction networks
(CRNs). We have developed a method to characterize
experimentally-designed CRNs, which we demonstrated based
on an existing enzymatic network. The method comprises four
steps: (I) represent a CRN as a graph to model the interactions
as edges. (II) Apply network measures to provide the key char-
acteristics of the structure underlying the CRN. (III) Identify the
crucial nodes in the network using a random graph null model.
(IV) Perform temporal analysis on the graph to reveal the
evolution of the structure over time. This method allows us to
analyse systems with out-of-equilibrium behaviour such as
oscillations in which the standard CRN theory of does not apply.
The integration of the expertises in system chemistry and
Chem. Sci.
random graph analysis ensured that the translation from
a reaction scheme that denes the CRN into a graph as well as
the opposite translation—from network measures into the
chemical functioning of the CRN—was executable.

The algorithm developed in this work can be used for
translating many other synthetically-designed CRNs into
species–species networks, providing ample opportunities to
extend the analysis beyond the clustering coefficient and
betweenness centrality and apply it to a larger set of out-of-
equilibrium networks. Most of the current measures are built
on the occurrence of specic network patterns of specied
sizes,43 while in systems chemistry, similar structures such as
feedback loops may result from differently sized network
patterns. Characterizing CRNs with more complex feedback
loops will require network measures capable of including
longer and more diverse cycles. Furthermore, this may require
constructing these models on more complex graph-like struc-
tures, such as hypergraphs,44,45 where it becomes possible to
identify higher-order paths (known as hyperpaths). These
hyperpaths provide a more detailed view of the feedback loops
in complex interactions, capturing the intricate dependencies
within the networked chemical system. Testing newly designed
measures would require a broader training set of CRNs to assess
their validity, underlining the need for developing such a data-
base.46 We anticipate that our approach forms a foundation that
may lead to training algorithms that can go beyond the
synthesis of complex molecules47,48 and enable data-driven
analysis of complex out-of-equilibrium reaction networks with
ever greater complexity.
Methods
Soware

NetworkX (an open source Python package for complex
networks) was used as the computational data structure to
develop the species–species networks and implement the
networkmeasures used in this work. Functions were encoded in
Python and MATLAB®. The Python le CRN_network_tools.py
contains most of the scripts: the CRN2NET algorithm, the
measures, the temporal evolution of the measures, and the
visualization. The Python les in the null_model folder contain
the scripts used to create the null model. All Python scripts
developed for this work contain detailed information on the
functions in the comments. The Python environment can be
setup with CRN_network_tools_env.yml. The MATLAB® les
(*.m in enzymatic oscillator.zip) were used separately to simu-
late the time series of the CRN. A README.txt is included as
a user guide to setup the computational environment and how
to execute the scripts. A Jupyter Notebook le (Complex Network
analysis of oscillatory CRN.ipynb) is provided to allow for an
interactive interface for importing, generating and manipu-
lating Python functions and data.
Script development

Details on the development of the CRN2NET algorithm and
application of the networkmeasures on the enzymatic oscillator
© 2025 The Author(s). Published by the Royal Society of Chemistry
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are appended to ESI S2 and S3,† respectively. ESI S3† includes
the implementation of the network measures, development of
the random graph null model, and network measures applied
on temporal behaviour.

Data availability

The data that support the ndings of this study are available in
the ESI† of this article. Source codes for the simulated data can
be downloaded from https://doi.org/10.4121/ac3c7c42-f367-
41d7-bd3b-fa54714b3a1b. The readme le provides
instructions to run the codes, and produce the full dataset
used in this work.
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43 A. Barrat, M. Barthélemy, R. Pastor-Satorras and
A. Vespignani, The architecture of complex weighted
networks, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 3747–3752.

44 F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. F. de
Arruda, G. Franceschiello, I. Iacopini, S. Ké, V. Latora,
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