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Abstract

Nucleophilicity and electrophilicity are important properties for evaluating the reac-
tivity and selectivity of chemical reactions. It allows the ranking of nucleophiles and
electrophiles on reactivity scales, enabling a better understanding and prediction of re-
action outcomes. Building upon our recent work (Digit. Discov., 2024, 3, 347-354), we
introduce an atom-based machine learning (ML) approach for predicting methyl cation
affinities (MCAs) and methyl anion affinities (MAAs) to estimate nucleophilicity and
electrophilicity, respectively. The ML models are trained and validated on QM-derived
data from around 50,000 neutral drug-like molecules, achieving Pearson correlation co-
efficients of 0.97 for MCA and 0.95 for MAA on the held-out test sets. In addition, we
demonstrate the ML approach on two different applications: first, as a general tool for
filtering retrosynthetic routes based on chemical selectivity predictions, and second, as
a tool for assessing the chemical stability of esters and carbamates towards hydrolysis
reactions. The code is freely available on GitHub under the MIT open source license
and as a web application at www.esnuel.org.
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Introduction
The interaction between electrophiles (electron-accepting species) and nucleophiles (electron-
donating species) is a fundamental concept in chemistry for describing the reaction of
molecules. The concept introduced by Ingold in 1933 is based on earlier theories of valency
and acid-base chemistry,1–4 and it provides an important language for explaining chemical
reactivity and selectivity. For example, Mayr and co-workers have shown that the reactiv-
ity of nucleophiles and electrophiles can be quantified on scales that describe their relative
reactivity.5 Specifically, the Mayr-Patz equation links the bimolecular rate constant of var-
ious organic reactions to experimentally derived parameters such as nucleophilicity (N),
electrophilicity (E), and a nucleophile-specific sensitivity factor (sN):

log k20◦C = sN (N + E) (1)

Essential to Equation 1 is that it covers a broad range of reaction rates, from those that
are virtually undetectable (k20◦C < 10−5 M−1s−1) to those that are diffusion-controlled
(k20◦C > 109 M−1s−1).6,7 However, experimentally measuring these reactivity parameters
can be quite labor-intensive as well as difficult for reactions at the extreme ends of the
reactivity scale. To streamline this process, various computational approaches have been
developed. This includes estimating the rate constant using the Eyring equation8,9 and
computing the reactivity parameters from frontier molecular orbital (FMO) energies10,11 or
chemical affinities.12–14 Moreover, several machine learning (ML) approaches have recently
emerged based on Mayr’s database which currently holds experimental reactivity parameters
for 355 electrophiles and 1,300 nucleophiles.6,15–21

Our recent work introduces ESNUEL,22 a fully automated quantum chemistry (QM)-
based workflow for EStimating NUcleophilicity and ELectrophilicity. A workflow that
builds upon studies by Van Vranken and Baldi showing that calculated methyl cation
affinities (MCAs) and methyl anion affinities (MAAs) of structurally different molecules
correlate with Mayr’s N · sN and E, respectively, when accounting for solvent effects.13,14

While ESNUEL provides good agreement22 with Mayr’s experimental values (R2 = 0.84
and 0.94) and Baldi and van Vrankens computational results (R2 = 0.98 and 0.99), and
provides excellent generalizability with a median wall time of less than two minutes per
molecule using eight CPU cores for 2,341 molecules (averaging ∼ 10 heavy atoms and ∼ 6
identified electrophilic and nucleophilic sites), further reducing the wall time to seconds or
sub-seconds would be advantageous for many applications such as computer-aided synthesis
planning (CASP).
In this work, we introduce two new atom-based ML models designed to predict MCA and
MAA values for estimating nucleophilicity and electrophilicity. Our ML models are trained
on QM-calculated MCA and MAA values of neutral drug-like molecules to ensure that
the predictions apply to pharmaceutical research. Furthermore, the ML predictions are
accompanied by reliable uncertainty estimates, which provide valuable information on when
to employ the QM-based workflow. Compared to our QM-based workflow, the ML models
significantly reduce the computational cost, achieving a median wall time of 0.36 seconds
per molecule for the same 2,341 molecules on a single CPU core. This makes the ML
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approach particularly useful as a post-filtering method in retrosynthesis planning, where it
can quickly detect potential selectivity issues and thereby improve synthetic route design.

Methods

Dataset preparation

We employ a subset of 50,000 unique molecules from the ChEMBL database constructed to
cover a large part of the drug-relevant chemical space. The subset is limited to neutral closed
shell molecules with a maximum number of 24 rotatable bonds (median = 6.0, mean = 6.3)
and 10 to 30 heavy atoms (median = 24.0, mean = 23.7). Using our recently introduced
QM-based workflow,22 we detect nucleophilic and electrophilic atomic sites for each molecule
and compute their corresponding methyl cation affinities (MCAs) and methyl anion affinities
(MAAs) according to Eqs. 2 and 3. The only change to the original QM-based workflow
is that for all reactants and products, we embed 20 conformers using RDKit23 instead of
min(1+3 ·nrot, 20) conformers, where nrot is the number of rotatable bonds. The MCAs and
MAAs are obtained at the r2SCAN-3c SMD(DMSO)//GFN1-xTB ALPB(DMSO) level of
theory. An overview of the QM-based workflow is presented in Figure S1 in the Supporting
Information.

Nuc + CH +
3

∆E
MCA product

MCA ≡ −∆E
(2)

Elec + CH –
3

∆E
MAA product

MAA ≡ −∆E
(3)

After completing the QM calculations, the results are categorized into two datasets: one for
nucleophilic sites with corresponding MCA values, and the other for electrophilic sites with
their MAA values. Calculations that lead to changes in the atom connectivity are excluded.
Such connectivity changes typically arise from unwanted proton transfers or fragmentation
reactions during the geometry optimization. Additionally, six MCA and one MAA calcula-
tions are excluded based on Chauvenet’s criterion, where the probability of the most extreme
MCA or MAA value is calculated under the assumption of a Gaussian distribution. If the
probability falls below a predefined threshold of 1 %, the point is removed, and the process is
repeated until all points are above the threshold. Consequently, the MCA dataset consists of
650,857 unique atomic sites from 47,921 unique molecules, while the MAA dataset includes
534,119 unique atomic sites from 47,440 unique molecules. Distributions of MCA and MAA
values, as well as the numbers for various detected functional groups, can be found in the
Supporting Information.
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Single-point GFN1-xTB to
compute CM5 atomic charges

Conformer embedding and
MMFF screening for lowest
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0.30 0.00 0.00 -0.54 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.17 0.11 0.00Shell 1

Shell 2

Atom descriptor =

x̄̄i Atomic descriptor with 3 shells (53 dim. vector)
ȳ̄̄i Calculated MCA or MAA values in kJ/mol

ML Properties

Nucleophilicity (MCA −ΔE)

Nuc + CH3
+ MCA productΔE

Electrophilicity (MAA −ΔE)

Elec + CH3
− MAA productΔE

Figure 1: The workflow for creating atomic descriptors used as input feature vectors for
machine learning. The atomic descriptors consist of charge model 5 (CM5) atomic charges
sorted according to a modified version of the Cahn–Ingold–Prelog (CIP) rules. The tar-
get values are either MCA or MAA values at the r2SCAN-3c SMD(DMSO)//GFN1-xTB
ALPB(DMSO) level of theory.

Atomic descriptors

Following previous work on atomic property predictions,24–31 we construct a 53-dimensional
feature vector of sorted atomic charges for each identified nucleophilic and electrophilic
atomic site as seen in Figure 1.

Starting from a SMILES string of a given molecule, we embed min(1 + 3 · nrot, 20)
conformers using RDKit, where nrot is the number of rotatable bonds. Each conformer
then undergoes a geometry optimization using the Merck molecular force field (MMFF,
version MMFF94s) implemented in RDKit.32,33 This allows us to extract the lowest energy
conformer for which we calculate charge model 5 (CM5) atomic charges by running a
single point calculation using GFN1-xTB as implemented in the open source semiempirical
software package xtb.34,35 While the CM5 charge scheme has been shown to be largely
conformation-independent24 we found that the MMFF optimisation has a small positive
effect on the accuracy of the ML model, and decided to include this step in the workflow
as it has negligible computational cost. The nucleophilic and electrophilic atomic sites are
then found by matching a set of SMARTS patterns using RDKit. All of the SMARTS
patterns for the nucleophilic and electrophilic atomic sites are provided in the associated
GitHub repository.

The nucleophilic sites include double/triple-bonded atoms, singly charged anions, atoms
with lone pairs, and specific functional groups such as aldehydes, amides, amines, carban-
ions, carboxylic acids, cyanoalkyl/nitrile anions, enolates, esters, ethers, imines, isonitriles,
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ketones, nitranions, nitriles, and nitronates.
The electrophilic sites include double/triple-bonded atoms, singly charged cations, and

specific functional groups such as acyl halides, aldehydes, amides, anhydrides, boranes, car-
bocations, esters, imines, iminium ions, ketones, Michael acceptors, and oxonium ions.
Finally, the atomic descriptors are constructed for the identified atomic sites by creating
and concatenating shells of neighboring atoms around the query atom, including atoms up
to three bonds away. The shells contain calculated CM5 atomic charges sorted according
to a modified version of the Cahn-Ingold-Prelog (CIP) priority rules; modifications include
summing atomic numbers rather than comparing sorted lists of atomic numbers, and disre-
garding bond orders. Compared to our previous work, we have re-implemented the sorting
algorithm to comply with the following priority rules:

1. Sort according to atomic number in descending order.

2. If (1) is not unique, for each atom with the same priority (A*):

i. Go to bound and yet not included atoms and sum up atomic numbers. Set the
priority of A* according to the sum of the atomic numbers.

ii. If (2i) did not give an unambiguous result expand the shell of each atom A* by
one bond.

iii. Repeat (2ii) until a unique order is found.

3. If no unique order is found in (2) and all bound atoms are included, then sort atoms
according to the CM5 charges in descending order.

Machine learning model

After introducing the target values and feature vectors, we now divide the MCA and MAA
datasets into training and held-out test sets using a binned split approach, with 85 % of
the data allocated for training and 15 % reserved for testing. Specifically, this results in a
training and held-out test set of 553,228 and 97,629 atomic sites for the MCA model and
454,001 and 80,118 atomic sites for the MAA model. The binned split ensures that the
distribution of target values as well as the partitioning of functional groups is consistent
across both sets as seen in the Supporting Information.

For predicting MCA and MAA values, we train a light gradient boosting machine
(LightGBM) regression model for each property.36 The LightGBM model is chosen based
on previous benchmark studies of several ML models in combination with the atom-based
feature vectors.30 The hyperparameters for LightGBM models are obtained using a
tree-structured Parzen estimator (TPE) as implemented in Optuna version 2.5.0.37 This
Bayesian optimization method efficiently explores a large hyperparameter space to identify
the configurations that minimize the root mean square error (RMSE). For each set of
hyperparameters as well as the final model training, we conduct a 5-fold cross-validation to
ensure a robust model performance. The cross-validation involves a stratified split of the
binned training set, which helps maintain the distribution of target values across the folds,
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and we apply random shuffling to avoid any bias in the data. This ensures that the model
is evaluated on diverse subsets of the data, providing a more comprehensive assessment of
its predictive performance. After the final model training, we only retain the model with
the lowest RMSE from the 5-fold cross-validation.

In addition, we train a random forest regression model with 200 estimators as imple-
mented in scikit-learn.38 By accessing the trained estimators in the random forest model, we
can obtain a target prediction for all 200 decision trees and calculate a standard deviation.
This standard deviation is then used to estimate the prediction uncertainties of the final
LightGBM model and to forecast out-of-sample data points where running the QM-based
workflow would be recommended. The performance of this uncertainty estimation approach
is evaluated using error-based calibration following the work of Rasmussen et al.39 Error-
based calibration is an uncertainty quantification (UQ) metric proposed by Levi et al.40

based on the principle that the root mean square error (RMSE) should directly correlate
with the root mean variance (RMV). To explore the local relationship between the predicted
uncertainties (σ) and errors (ϵ = ypred − ytrue) of the ML predictions (ypred) compared to
the QM calculations (ytrue), the two properties are sorted and binned according to the
uncertainty. For each bin containing Nbin samples, RMSE and RMV are calculated as
follows:

RMSE =

√
1

Nbin

∑
i

ϵ2i RMV =

√
1

Nbin

∑
i

σ2
i (4)

A plot of RMSE against RMV should ideally yield a straight line with a slope of one and
an intercept of zero.

Additional ML models for predicting the MCA and MAA values and estimating un-
certainties have also been explored including ensemble models and k-nearest neighbor
models with k={1,10}. The performance of these methods is provided in the Supporting
Information.
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Results and Discussion
In this section, we begin by assessing the performance of the two ML models and the ability
to provide a confidence value for ML predictions. Following this, we will explore potential
applications such as using chemical selectivity predictions to post-filter retrosynthetic routes
and evaluating the chemical stability of esters and carbamates towards hydrolysis reactions.
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Figure 2: Correlation plots comparing the QM-calculated and ML-predicted MCA and MAA
values for held-out test sets. The color grading represents the density of data points, while
the black dashed line represents the linear regression. The calculated MCA and MAA values
are obtained at the r2SCAN-3c SMD(DMSO)//GFN1-xTB ALPB(DMSO) level of theory.

Machine learning model performance

The performance of the two atom-based ML models for estimating nucleophilicity and
electrophilicity, through the prediction of MCA and MAA values, is shown in Figure 2.
The results show a strong correlation between QM-calculated and ML-predicted MCA and
MAA values with Person correlation coefficients of 0.97 and 0.95, respectively. Note, that
the color grading represents a 2D histogram of MCA and MAA values, showing that these
values are mainly centered around the black regression line. The RMSE on the held-out
test sets is 17.45 kJ/mol for the MCA model and 22.08 kJ/mol for the MAA model, with
corresponding MAE values of 11.93 kJ/mol and 15.32 kJ/mol. These values are consistent
with the 5-fold cross-validation results with RMSE of 17.56 ± 0.05 kJ/mol and 22.17 ± 0.03
kJ/mol for the MCA and MAA model, respectively.

As seen in Figure 2, a few data points result in relatively large errors exceeding 100
kJ/mol, specifically 136 for MCA dataset and 241 for MAA dataset. To detect such outliers
and estimate the uncertainties of the LightGBM model predictions, we have explored
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different UQ methods such as the random forest standard deviation, the ensemble model
standard deviation, and the average feature vector distance (Manhattan or Euclidean) to
the k={1,10} nearest data points in the training set as seen in the Supporting Information.
These UQ methods are validated using the error-based calibration metric by Levi et al.40

following the work of Rasmussen et al.39 The results clearly show that the most reliable
uncertainty estimates are obtained using the random forest standard deviation as seen in the
Supporting Information. The error-based calibration plots for the MCA and MAA held-out
test sets using the random forest standard deviation are shown in Figure 3 highlighting a
direct relationship between the RMSE and RMV with R2 > 0.99.
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Figure 3: Error-based calibration plots for the MCA and MAA held-out test sets. The
uncertainty estimates are based on the standard deviation of 200 decision trees from the
random forest regression models trained on the MCA and MAA training sets. For well-
calibrated uncertainties, the root mean square error (RMSE) vs. root mean variance (RMV)
plot should follow a straight line with a slope of one and an intercept of zero.

The linear regression equations in Figure 3 can be used to convert the predicted uncertainties
from the random forest model into an estimated error of the LightGBM model predictions.
However, as the data is binned according to the uncertainty, the results only reflect the
general trend of a higher predicted uncertainty leading to a higher probability of a large
predicted error. Thus, a high predicted uncertainty can still result in a low error. The main
objective of the uncertainty predictions is therefore not to accurately estimate errors, but
rather to serve as a tool for identifying potentially incorrect property predictions, where it
would be advisable to run the QM-based workflow. To achieve this, we define estimated
error cutoffs based on the amount of QM calculations we allow to compute for the held-out
test set. For estimated errors above 25 kJ/mol for MCA and 30 kJ/mol for MAA, we permit
around 10 % of the held-out test set with the highest predicted uncertainties to be processed
using the QM-based workflow. Returning to the data points with true errors exceeding 100
kJ/mol, we can identify 110 out of 136 outliers for MCA (81 %) and 164 out of 241 for MAA
(68 %) using these estimated error cutoffs. Reducing the cutoffs to 20 and 25 kJ/mol (∼ 25
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% of the held-out test set) will increase the detection rate to 93 % for MCA and 82 % for
MAA, while cutoffs of 15 and 20 kJ/mol (∼ 45 % of the held-out test set) allow the detection
of 100 % for MCA and 92 % for MAA as seen in Figure 4.
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Figure 4: Correlation plots comparing the QM-calculated and ML-predicted MCA and MAA
values for held-out test sets with the effect of removing predictions having an estimated error
above the specified cutoff. The color grading represents the density of data points, while the
black dashed line represents the linear regression. The calculated MCA and MAA values are
obtained at the r2SCAN-3c SMD(DMSO)//GFN1-xTB ALPB(DMSO) level of theory.

To explore the limits of our ML models, we now evaluate them on a challenging non-drug-
like dataset from Tavakoli et al. 41 containing both neutral compounds and compounds with
a non-zero formal charge (see Figure 5). The ML models suffer from large errors for the
small molecules with a non-zero formal charge (i.e. protonated or deprotonated molecules),
which can be explained by the fact that the ML training sets only contain neutral drug-
like molecules. However, we can detect most of these data points using the error estimates
with cutoffs of 25 and 30 kJ/mol for MCA and MAA, respectively, and all of them with
strict cutoffs of 15 and 20 kJ/mol for MCA and MAA, respectively. The Pearson correlation
between the QM-calculated and ML-predicted MCA and MAA values goes from 0.68 to 0.99
for MCA and 0.82 to 0.95 for MAA. This further validates the ability to reliably identify
outliers and shows that lower estimated errors reflect greater confidence in the predicted
properties.
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Figure 5: Correlation plots comparing the QM-calculated and ML-predicted MCA and MAA
values for a non-drug-like dataset from Tavakoli et al. 41 with the effect of removing predic-
tions having an estimated error above the specified cutoff. The ML models are only trained
on neutral drug-like molecules, and the bright triangles indicate compounds with a non-
zero formal charge. The number of included data points in grey (N) is specified in each
plot along with the total number of neutral compounds (•) and compounds with a non-zero
formal charge (▼). The calculated MCA and MAA values are obtained at the r2SCAN-3c
SMD(DMSO)//GFN1-xTB ALPB(DMSO) level of theory.

Selectivity predictions for computer-assisted retrosynthesis

Over the past few years, significant progress has been made in computer-aided synthesis
planning (CASP) leading to highly promising tools for accelerating the synthesis of chemical
compounds and providing valuable feedback to generative models on the synthesizability of
suggested molecules. However, one of the major challenges for CASP tools is their ability
to account for chemical selectivity.42,43 A recent paper even emphasizes the need for incor-
porating expert knowledge (i.e. reaction rules) into data-driven CASP tools to address the
selectivity problems. Although different reaction conditions can alter the chemical selectivity
and such "condition matching would require an extensive study by expert chemists and would
likely only be applicable for extremely simple reaction types".43 As an alternative to reaction
rules, we suggest using MCA and MAA values to assess the relative reactivity between reac-
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tion sites. This approach is demonstrated in Figure 6 for reaction examples where predicting
the selectivity poses a challenge for data-driven methods.42,43
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(b) N-Cbz Protection:

(c) Carbonyl Reduction: ML MAA [kJ/mol] 168 (16) 140 (17)

ML MCA [kJ/mol] 487 (10) 433 (16)

ML MAA [kJ/mol] 252 (24) 245 (10)

Figure 6: Reactions (a-b) from Joung et al. 42 and (c) from Strieth-Kalthoff et al. 43 , where
predicting the selectivity can be a challenge for data-driven reaction prediction models. Note
that only the recorded products are shown. The values in the parentheses are the estimated
errors used to detect outliers, where running the QM-based workflow would be recommended.
However, all values are below the predefined cutoffs of 25 and 30 kJ/mol for MCA and MAA,
respectively.

For example, in a Suzuki coupling reaction involving two competing aryl halides as seen in
Figure 6a, a Graph2SMILES model from the Coley group can recover pathways for both
bromo- and chloro-coupling products. However, the model incorrectly ranks the bromo
product as more likely, even though the chloro product is the recorded outcome.42 As this
reaction relies on the electrophilicity of the carbon atom adjacent to the halide for reacting
with a palladium catalyst, we use our MAA ML model to find the most electrophilic site.
As seen in Figure 6a, the MAA ML model successfully predicts the recorded chloro-coupling
product given the higher MAA value of 252 kJ/mol for the chloro site compared to 245
kJ/mol for the bromo site.

In another example, we explore an N-Cbz protection reaction using benzyl chlorofor-
mate as seen in Figure 6b. Here, Joung et al. 42 have shown that both a Weisfeiler-Lehman
difference network (WLDN) and a Transformer model can correctly predict the recorded
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product. In our approach, we will use the MCA ML model to identify the most nucleophilic
site in N-(1-Naphthyl)ethylenediamine. Using the MCA values, we can successfully predict
the primary amine as the most reactive site with an MCA value of 487 kJ/mol compared
to 433 kJ/mol for the secondary amine.

Finally, we explore a carbonyl reduction reaction with NaBH4, where the distinction
between aldehyde and ketone is familiar to chemists but can be challenging to infer from
literature examples.43 The reaction proceeds via a nucleophilic addition of borohydride to
the carbonyl carbon, which therefore depends on the electrophilicity of the carbonyl group.
Hence, we use the MAA ML model to predict the most electrophilic site of the reactant. As
seen in Figure 6c, we can successfully predict the aldehyde as the most reactive site given
the higher MAA value of 168 kJ/mol compared to 140 kJ/mol for the ketone.
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Figure 7: Retrosynthetisis predictions for Ciprofloxacin using Manifold by PostEra with the
ML-predicted MCA values (green) and MAA values (blue) in units of kJ/mol. Only the
most nucleophilic and electrophilic sites are highlighted. The values in the parentheses are
the estimated errors used to detect outliers, where running the QM-based workflow would
be recommended. However, all values are below the predefined cutoffs of 25 and 30 kJ/mol
for MCA and MAA, respectively.

Having demonstrated that our ML models can successfully predict chemical selectivity in
challenging examples, we now explore how the ML models can improve retrosynthetic route
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predictions by identifying potential selectivity issues. Figure 7a shows a synthetic pathway
for Ciprofloxacin generated using Manifold by PostEra.44 All structures are presented in
their major protonation state as determined by MarvinSketch based on the expected reaction
conditions. The predicted pKa values and protonation states at different pH levels are shown
in the Supporting Information. For the first reaction step in Figure 7a, the ML models predict
the most nucleophilic and electrophilic sites to be in the quinoline derivative. This could lead
to an undesired product where the quinoline derivative reacts with itself instead of reacting
with piperazin-1-ium as proposed by Manifold. The second most nucleophilic site is the
neutral nitrogen atom in piperazin-1-ium with an MCA value of 438 kJ/mol compared to
462 kJ/mol for the most nucleophilic site. As a result, this could lead to low yields of the
target product, if this reaction occurs. The chemoselectivity of the second reaction step is
correct according to the ML predictions. The assumption here is that triflate acts as a good
leaving group forming a cyclopropyl cation, which will have the highest MAA value. The
most nucleophilic site is the nitrogen atom in the quinoline derivative highlighted in green
in Figure 7a. However, as this route has potential selectivity issues, we suggest a modified
retrosynthetic route as shown in Figure 7b. Here, the two reaction steps are switched around
such that the nucleophilic substitution with amine is the first reaction step and the Buchwald-
Hartwig amination is the second reaction step. In this modified retrosynthetic route, the
ML-predicted MAA and MCA values agree with the suggested chemoselectivity. In fact, the
second reaction step in Figure 7b combining fluoroquinolonic acid and piperazine is reported
in the literature with a high yield of around 90 % under acidic conditions.45,46
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Figure 8: Correlation plots comparing QM-calculated and ML-predicted MAA values against
experimental hydrolysis half-lives of 29 esters and carbamates under neutral pH.47 The red
circles indicate a connectivity change during the geometry optimization and are therefore
excluded from the analysis. The calculated MAA values are obtained at the r2SCAN-3c
SMD(DMSO)//GFN1-xTB ALPB(DMSO) level of theory. The data points marked in or-
ange have an estimated error above the predefined cutoff of 30 kJ/mol.
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Figure 9: Correlation plots comparing QM-calculated and ML-predicted MAA values against
experimental hydrolysis rates for 33 esters and carbamates under basic conditions.48–50

The calculated MAA values are obtained at the r2SCAN-3c SMD(DMSO)//GFN1-xTB
ALPB(DMSO) level of theory. All of the predicted MAA values have estimated errors
below the predefined cutoff of 30 kJ/mol.

Prediction of hydrolysis rates for determining chemical stability

Another application of the presented ML models is to determine chemical stability by
applying the MAA values to predict hydrolysis half-lives or rates of esters and carbamates.
Figures 8 and 9 show the correlation between MAA values and experimental hydrolysis half-
lives and rates of esters and carbamates under neutral and basic conditions, respectively.47–50

The MAA values are obtained for the neutral species without adjusting the protonation
state to the reaction conditions, and only the maximum MAA value is used if multiple ester
and carbamate groups are present in the same molecule. The results in Figure 8 show the
correlation between QM-calculated and ML-predicted MAA values against experimental
hydrolysis half-lives of 29 esters and carbamates under neutral pH. Unfortunately, 15 of
the QM calculations resulted in connectivity changes during the geometry optimizations as
indicated by the red circles in Figure 8a. The reasons for the connectivity issues include
hydrogen transfers, cyclization, and fragmentation of the starting structure. Consequently,
the MAA values are generally too high for the MAA calculations with connectivity issues,
and these results are therefore excluded from the analysis as seen in Figure 8a. In contrast,
the ML model does not encounter this problem as the molecular geometries are optimized
using MMFF. The Pearson correlation coefficient for all 29 compounds using the ML model
is -0.87 compared to the QM-calculated MAA values with a Pearson correlation coefficient
of -0.82 for the 14 compounds without connectivity issues. As seen in Figure 8b, two of the
ML-predicted MAA values had an estimated error above the predefined 30 kJ/mol cutoff.
However, both of these data points are in good agreement with the regression line.
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For the base-promoted hydrolysis of 33 esters and carbamates shown in Figure 9, the Pearson
correlation coefficients between the experimental hydrolysis rates and the QM-calculated or
ML-predicted MAA values are 0.84 and 0.78, respectively. This reflects a strong correlation
for both methods, although the slope of the regression line for the QM calculations is slightly
steeper than for the ML-predicted MAA values, leading to greater separation between data
points for the QM-calculated MAA values. All of the ML-predicted MAA values had an
estimated error below the predefined cutoff of 30 kJ/mol, thus no outliers were identified.

The strong correlations in Figures 8 and 9 show the potential of using the ML-predicted
MAA values to predict the hydrolysis half-lives or rates of esters and carbamates despite
the relatively small range in MAA values. Thus, supporting the use of the MAA ML model
to guide the design of esters and carbamates by making them less prone to undesired
hydrolysis reactions and thereby improving their chemical stability.

Conclusions and Outlook
We present two atom-based machine learning (ML) models for estimating nucleophilicity
and electrophilicity by predicting methyl cation affinities (MCAs) and methyl anion affinities
(MAAs). The ML models are trained on quantum chemistry (QM)-calculated data of
neutral drug-like molecules generated with our recently introduced QM-based workflow.22

Thus, the ML models are designed to replicate QM-calculated MAA and MCA values,
while significantly reducing the computational costs. The Pearson correlation coefficients
between the QM-calculated and ML-predicted MCA and MAA values for the held-out
test set are 0.97 and 0.95, respectively. In addition, the ML models are accompanied by
uncertainty quantification (UQ) predictions, which enable the detection of out-of-sample
data points. This UQ approach is intended to inform about when it is recommended to run
the QM-based workflow to obtain reliable results. For example, we show that the approach
can detect data points from small non-drug-like molecules with a non-zero formal charge,
which resulted in large errors due to the molecules being quite different from the underlying
training data.

The potential of the ML models is demonstrated through their accurate predictions
of both chemical selectivity and reactivity. For example, we show that the ML models
can successfully predict chemical selectivity in cases that are typically challenging for
data-driven computer-aided synthesis planning (CASP) tools to learn. As a result, we
propose to integrate these ML models into CASP tools to flag reaction steps that can lead
to low yields or undesired products. The proposed synthetic routes can then be ranked
based on the number of flags to ensure the selection of the most reliable synthetic pathways.
It is important to note, however, that integrating these ML models into CASP tools would
require additional information about the individual reaction steps. This includes information
about the reaction condition and the reaction mechanism. Information that is usually
available in the underlying data of the CASP tools, but typically not provided. For example,
a factor like pH can affect the protonation state of a molecule, which can be crucial for
the reaction to proceed and have a great impact on the nucleophilicity and electrophilicity
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estimates. To address this, the MCA and MAA models would have to be accompanied
by a pKa predictor to accurately determine the correct protonation state under the given
reaction conditions. Alternatively, the CASP tools would need to provide the reactants in
their actual protonation state instead of the neutral canonical form. Information about
the reaction mechanism is another important factor for evaluating the chemical selectivity
and determining the properties that drive the reaction. For example, if the reaction
involves a catalyst, a single proposed reaction step could involve multiple key steps that
influence selectivity such as the formation of a catalyst-substrate complex to unlock the
true reaction site. Furthermore, knowledge about leaving groups is also important, as this
can significantly impact the predicted MCA and MAA values. Unfortunately, the current
CASP tools typically lack this level of reaction details and mechanistic insights. However,
novel approaches for determining reaction mechanisms using ML have recently emerged,42

which could be a step in the right direction for making CASP tools truly selectivity-aware
through the use of MCA and MAA values. In terms of reactivity predictions, we show that
the ML-predicted MAA values can be used to estimate the hydrolysis half-lives or rates of
esters and carbamates to guide the chemical design toward more stable compounds.

Future improvements include the use of different protonation states of the molecules
in the datasets to expand the applicability domain of the ML models. This will affect the
calculated atomic CM5 charges, and can therefore be easily incorporated by adding new
data to the existing datasets. Additionally, the UQ approach could be leveraged to guide the
inclusion of new data based on the estimated errors through an active learning procedure.
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Overview of the QM-based workflow for dataset generation:

Generate 20 conformers using RDKit

Run GFNFF-xTB
ALPB(DMSO) optimizations

Check input/output connectivity
and flag if mismatch

Run GFN1-xTB
ALPB(DMSO) optimizations

Run single-point r2SCAN-3c
SMD(DMSO) calculations

using ORCA

Identify the lowest energy
conformer

1
2

39

48

5
6

7

10

Extract conformers with relative
energies ≤ 10 kJ/mol

Select unique conformers using
Butina clustering (RMSD > 0.5 Å)

Check input/output connectivity
and flag if mismatch

Check convergence and
flag if error

Run a set of SMIRKS to generate
possible MCA and MAA products

Input SMILES

Calculate MCA and MAA for all nucleophilic
and electrophilic sites, respectively

Figure S1: Flowchart describing the automated QM-based workflow for generating the QM-
derived dataset with calculated methyl cation affinities (MCAs) and methyl anion affinities
(MAAs).

S2

Page 24 of 41Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
5/

20
25

 1
0:

53
:2

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SC07297A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc07297a


Dataset exploration and train/validation/test splitting:

MCA: 47,921uniquemoleculeswith 650,857unique sites

Figure S2: Distribution of MCA values colored according to the SMARTS patterns used to
detect the atom sites. The different categories are organized in descending order based on
their frequency in the dataset.

Figure S3: Distribution of MCA values colored according to the binned split of the MCA
values.
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Figure S4: Distribution of categories within each dataset as a result of the binned split of
MCA values.
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MAA: 47,440uniquemoleculeswith 534,119unique sites

Figure S5: Distribution of MAA values colored according to the SMARTS patterns used to
detect the atom sites. The different categories are organized in descending order based on
their frequency in the dataset.

Figure S6: Distribution of MAA values colored according to the binned split of the MAA
values.
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Figure S7: Distribution of categories within each dataset as a result of the binned split of
MAA values.
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Machine learning models:

Table S1: Performance of different MCA regression models on the held-out test set.

Name RMSE [kJ/mol] MAE [kJ/mol] R2

LightGBM 17.45 11.93 0.94
RandomForest 18.89 12.66 0.93
1-NearestNeighbor 31.08 18.55 0.82
10-NearestNeighbor 31.30 20.03 0.82

Table S2: Uncertainty quantification metrics for the LightGBM MCA model on the held-out
test set. The simulated values (ρsim

rank and NLLsim) are the averages of 1000 simulated sets
of test errors based on the predicted uncertainties. RF std: The standard deviation of the
decision tree predictions in the random forest model. Ensemble std: The standard deviation
between the predicted values of the four ML models listed in Table S1. 1NNP{1,2} and
10NNP{1,2}: The Minkowski distance with P={1,2} to the 1 or 10 closest data points in
the training set based on the 1-nearest neighbor or 10-nearest neighbor model.

Name R2 a b Amis ρrank ρsim
rank NLL NLLsim

RF std 0.997 0.60 4.04 0.09 0.36 0.49 4.17 4.26
Ensemble std 0.899 0.42 11.31 0.12 0.31 0.67 7.76 3.51
1NNP1 0.901 16.09 13.29 0.49 0.29 0.84 - -
1NNP2 0.931 43.97 12.96 0.50 0.29 0.85 - -
10NNP1 0.981 11.89 12.09 0.48 0.27 0.80 56590.80 -0.29
10NNP2 0.987 33.29 11.68 0.49 0.26 0.79 351632.51 -1.15

Table S3: Uncertainty quantification metrics for the RandomForest MCA model on the held-
out test set. The simulated values (ρsim

rank and NLLsim) are the averages of 1000 simulated
sets of test errors based on the predicted uncertainties.

Name R2 a b Amis ρrank ρsim
rank NLL NLLsim

RF std 0.992 0.75 1.91 0.08 0.44 0.49 4.17 4.26
Ensemble std 0.906 0.53 11.03 0.13 0.36 0.67 7.80 3.51
1NNP1 0.906 20.11 13.51 0.49 0.33 0.84 - -
1NNP2 0.940 55.10 13.10 0.50 0.33 0.85 - -
10NNP1 0.984 14.66 12.14 0.49 0.31 0.80 53016.10 -0.29
10NNP2 0.989 41.07 11.64 0.49 0.30 0.79 335682.87 -1.15
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Figure S8: Left: Error-based calibration plots for the MCA held-out test set using the LightGBM MCA
model and RF std. Middel: Distribution of errors according to their Z-value (Zi = εi

σi
) compared with a

Gaussian distribution of width one. Right: The miscalibration area (Amis) for the error distribution.
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Figure S9: Same as Figure S8, but using the RandomForest MCA model in combination with RF std.
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Figure S10: Same as Figure S8, but using the LightGBM MCA model in combination with
Ensembel std.

Figure S11: Same as Figure S8, but using the LightGBM MCA model in combination with
1NNP1.

Figure S12: Same as Figure S8, but using the LightGBM MCA model in combination with
1NNP2.
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Figure S13: Same as Figure S8, but using the LightGBM MCA model in combination with
10NNP1.

Figure S14: Same as Figure S8, but using the LightGBM MCA model in combination with
10NNP2.
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Table S4: Performance of different MAA regression models on the held-out test set.

Name RMSE [kJ/mol] MAE [kJ/mol] R2

LightGBM 22.08 15.32 0.91
RandomForest 24.67 16.78 0.88
1-NearestNeighbor 35.47 24.30 0.74
10-NearestNeighbor 31.30 20.03 0.76

Table S5: Uncertainty quantification metrics for the LightGBM MAA model on the held-out
test set. The simulated values (ρsim

rank and NLLsim) are the averages of 1000 simulated sets
of test errors based on the predicted uncertainties. RF std: The standard deviation of the
decision tree predictions in the random forest model. Ensemble std: The standard deviation
between the predicted values of the four ML models listed in Table S4. 1NNP{1,2} and
10NNP{1,2}: The Minkowski distance with P={1,2} to the 1 or 10 closest data points in
the training set based on the 1-nearest neighbor or 10-nearest neighbor model.

Name R2 a b Amis ρrank ρsim
rank NLL NLLsim

RF std 0.995 0.61 4.34 0.10 0.36 0.47 4.42 4.56
Ensemble std 0.927 0.49 13.65 0.12 0.31 0.64 8.21 3.79
1NNP1 0.825 14.22 18.60 0.49 0.24 0.84 - -
1NNP2 0.848 39.43 18.23 0.50 0.24 0.84 - -
10NNP1 0.962 9.41 18.07 0.49 0.19 0.79 124289.26 -0.26
10NNP2 0.968 26.13 17.75 0.49 0.18 0.78 730210.69 -1.12

Table S6: Uncertainty quantification metrics for the RandomForest MAA model on the held-
out test set. The simulated values (ρsim

rank and NLLsim) are the averages of 1000 simulated
sets of test errors based on the predicted uncertainties.

Name R2 a b Amis ρrank ρsim
rank NLL NLLsim

RF std 0.989 0.81 0.83 0.08 0.45 0.47 4.45 4.56
Ensemble std 0.961 0.69 12.63 0.13 0.37 0.64 8.29 3.79
1NNP1 0.819 19.78 19.62 0.49 0.29 0.84 - -
1NNP2 0.850 54.68 19.14 0.50 0.28 0.84 - -
10NNP1 0.958 13.36 18.83 0.49 0.24 0.79 125471.03 -0.26
10NNP2 0.967 37.15 18.37 0.50 0.23 0.78 735035.43 -1.12
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Figure S15: Left: Error-based calibration plots for the MAA held-out test set using the LightGBM MAA
model and RF std. Middel: Distribution of errors according to their Z-value (Zi = εi

σi
) compared with a

Gaussian distribution of width one. Right: The miscalibration area (Amis) for the error distribution.
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Figure S16: Same as Figure S15, but using the RandomForest MAA model in combination with RF std.
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Figure S17: Same as Figure S15, but using the LightGBM MAA model in combination with
Ensembel std.

Figure S18: Same as Figure S15, but using the LightGBM MAA model in combination with
1NNP1.

Figure S19: Same as Figure S15, but using the LightGBM MAA model in combination with
1NNP2.
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Figure S20: Same as Figure S15, but using the LightGBM MAA model in combination with
10NNP1.

Figure S21: Same as Figure S15, but using the LightGBM MAA model in combination with
10NNP2.
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Figure S22: Correlation plots comparing the QM-calculated and LightGBM-predicted MCA
values for held-out test set with the effect of removing predictions with an estimated error
above 25.0 kJ/mol (corresponding to ∼ 10 % of the MCA held-out test set) based on the
uncertainty predictions of the RandomForest MCA model. The QM-calculated MCA values
are obtained at the r2SCAN-3c SMD(DMSO)//GFN1-xTB ALPB(DMSO) level of theory.
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Figure S23: Correlation plots comparing the QM-calculated and LightGBM-predicted MAA
values for held-out test set with the effect of removing predictions with an estimated error
above 30.0 kJ/mol (corresponding to ∼ 10 % of the MAA held-out test set) based on the
uncertainty predictions of the RandomForest MAA model. The QM-calculated MAA values
are obtained at the r2SCAN-3c SMD(DMSO)//GFN1-xTB ALPB(DMSO) level of theory.
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Figure S24: Correlation plots comparing LightGBM-predicted MCA values and experimen-
tal nucleophilicity parameters for a subset of Mayr’s dataset with the effect of removing
predictions with an estimated error above the specified cutoff. The error estimations are
based on the uncertainty predictions of the RandomForest MCA model.
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Figure S25: Correlation plots comparing LightGBM-predicted MAA values and experimen-
tal electrophilicity parameters for a subset of Mayr’s dataset with the effect of removing
predictions with an estimated error above the specified cutoff. The error estimations are
based on the uncertainty predictions of the RandomForest MAA model.
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Figure S26: Predicted pKa values for the structures related to the synthesis of Ciprofloxacin
according to MarvinSketch.

Figure S27: Protonation states of the structures related to the synthesis of Ciprofloxacin at
pH=5.2 according to MarvinSketch.
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Figure S28: Protonation states of the structures related to the synthesis of Ciprofloxacin at
pH=7 according to MarvinSketch.

Figure S29: Protonation states of the structures related to the synthesis of Ciprofloxacin at
pH=10 according to MarvinSketch.
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The data and code for developing and deploying the ML models as well as obtaining the 
presented results are available at https://github.com/jensengroup/ESNUEL_ML. 
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