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ic reaction on ligand-protected
metal nanoclusters†

Vikas Tiwari and Tarak Karmakar *

Monolayer protected metal nanoclusters (MPC) show great potential for catalysis, highlighting the need for

unraveling their mechanistic intricacies to enhance catalyst performance. However, due to their inherent

complexity, an in-depth understanding of how nanoclusters facilitate chemical transformation has

remained elusive. In this work, we employed a combination of classical molecular dynamics (MD) and

quantum mechanics/molecular mechanics (QM/MM) MD simulations, augmented with the on-the-fly

probability-based enhanced sampling (OPES) method, to elucidate substrate binding to the MPC and

a chemical reaction on the MPC surface. We investigated the oxidation of amino alcohol to oxazolidine,

catalyzed by a peptide ligand functionalized Au25 gold nanocluster, as a prototypical example. Classical

MD simulations unveiled the crucial role of solvent and peptide-based ligands in substrate binding, while

QM/MM simulations elucidated the mechanistic pathway and provided insight into the free energy

landscape of the chemical reaction. This work demonstrates a computational workflow that can be

applied to study similar MPC-catalyzed chemical reactions.
Introduction

Monolayer-protected metal nanoclusters (MPCs) have garnered
considerable attention in recent years due to their unique
structural and electronic properties that lie at the interface
between molecules and nanoparticles.1 These nanoclusters
consist of a precisely dened metal core, typically composed of
gold, silver, copper, or other transition metals, which is stabi-
lized by a monolayer of organic ligands such as thiols, phos-
phines, or peptides. Owing to strong quantum connement
effects and discrete energy levels, MPCs exhibit molecule-like
behavior with atomic-level precision in both structure and
reactivity.2 This combination of atomic precision, tunable
ligand environments, and size-dependent electronic properties
endows MPCs with distinctive features that set them apart from
conventional metal nanoparticles. These properties have
enabled MPCs to nd versatile applications in elds such as
catalysis, energy conversion, sensing, and bioimaging.3–5

Among these, the application of MPCs as catalysts has attracted
signicant attention due to their atomic precision important for
catalytic efficiency, product selectivity, and ability to ne-tune
electronic properties.6,7 MPCs have been employed across
of Technology, Delhi, 110016 New Delhi,
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a wide range of catalytic domains, including electro-catalysis,8–10

heterogeneous catalysis,11,12 photo-catalysis,13,14 and enzyme-
mimic catalysis.15 Various metal (Au, Ag, Pt, Cu, etc.) nano-
clusters have been found to mimic natural enzymes such as
peroxidase, catalase, and superoxide dismutase.16–22

An important advantage of MPCs as catalysts is their stability
under a wide range of conditions. They retain structural integ-
rity under high temperatures and across varying pH levels,
which makes them attractive for practical catalytic applica-
tions.23 Moreover, their modular design allows ne-tuning of
catalytic behavior by altering core composition, ligand identity,
and solvent interactions. This synthetic tunability provides
a powerful platform for the rational design of catalysts targeting
specic chemical transformations. Despite their widespread
utilization as a catalyst, a comprehensive understanding of how
MPCs catalyze chemical reactions has remained elusive.24,25 An
in-depth understanding of MPC-catalyzed chemical reaction for
designing and synthesizing new MPCs with tuneable ligand
properties for specic chemical transformations producing
valuable chemicals and pharmaceutically relevant molecules.5,7

Computer simulation is a convenient tool to decipher the
atomistic and dynamic details of a chemical reaction. However,
the inherent complexity of MPCs makes it challenging to study
chemical reactions on MPC surfaces.26,27 In our work, we
investigated a rather complex reaction – photocatalytic oxidative
cyclization of an amino alcohol, catalyzed by a peptide ligand-
protected Au25(S–DOP)18 reported by Isozaki et al.28 (DOP
signies dendritic ornithine peptide). Here the MPC plays
a dual role: rst, as a photocatalyst, where the gold core (Au25)
absorbs visible light, exciting oxygen from its ground state (3O2)
Chem. Sci.
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to the rst excited state (1O2),29 initiating the oxidation of amino
alcohol. Second, the peptide ligands create an enzyme-like
active binding site on the MPC, facilitating efficient catalysis.
Taking this as a stereotypical example, we employed classical
MD and QM/MM MD with enhanced sampling simulations to
investigate the chemical reaction on the MPC.
Results and discussion
Ligand dynamics

Before delving into the mechanistic details of the reaction, it is
crucial to understand the dynamics of the MPCs in solution. To
this end, we carried out classical MD simulations of a single
Au25(S–DOP)18 molecule in explicit chloroform (CHCl3) and
tetrahydrofuran (THF) solvents for 1 ms each. The MPC ligands
exhibited contrasting dynamical behaviors in these two
solvents. In the less polar solvent (CHCl3), ligand aggregation
was observed, resulting in an exposed gold surface and a non-
uniform distribution of ligand density around the gold core
(Fig. 1c). Conversely, in the more polar solvent (THF), the
ligands interacted with the solvent molecules, leading to
a much more uniform distribution around the gold core
(Fig. 1d, see Video S1† for comparative dynamics in both
solvents). The interactions are mostly mediated by hydrogen
bonds (H-bonds); thus, more H-bonds indicate stronger ligand–
ligand interactions. H-bond analysis in DMF revealed that on
average ∼15–20 H-bonds were observed between the ligands,
while in CHCl3, this number increased to ∼30–35, resulting in
a non-uniform ligand distribution (Fig. 1e). Additionally, in
DMF, ∼15–20 H-bonds were also observed to form between the
MPC ligands and the solvent molecules (Fig. 1f), which further
Fig. 1 (a) 2D representation of MPC functionalized with DOP–SH ligand
structure of MPC in CHCl3, (d) representative snapshot showing the struct
nitrogen-blue, carbon-grey, hydrogen-white), (e) Kernel density estimat
KDE of the distribution of H-bond counts between the ligands and DM
presence of CHCl3 and DMF, (h) radial distribution function (RDF) analysis
the simulation.

Chem. Sci.
weaken the MPC's ligand–ligand interactions. Further, root
mean square uctuations (RMSF) values for the MPC ligands
are higher in the case of DMF compared to CHCl3 (Fig. 1g),
indicating that the ligands stabilize each other in CHCl3 while
they are more dynamic in DMF. Moreover, the radial distribu-
tion function (RDF) calculated for solvents around the MPC
center reveals a stronger correlation in CHCl3 than in DMF,
indicating a more dened active site in CHCl3 (Fig. 1h). This
differential ligand dynamics in the two solvents impacts
substrate binding, which we shall discuss in the latter section.
Substrate binding

To understand the effect of ligands and the solvents on
substrate binding, we chose three systems for studying
substrate binding: (a) Au–DOP–CHCl3, (b) Au–DOP–DMF, and
(c) Au–PET–CHCl3. The choice of DOP–SH and PET (2-phenyl
ethanediol) ligands in our study is inspired by the experimental
observation of the relative efficiency of DOP and PET as dis-
cussed in ref. 28. Two factors chiey impact the overall catalytic
efficiency – substrate binding and the chemical reaction, espe-
cially its cyclization step.

The substrate-bound state was obtained from an OPES
simulation in which the substrate molecule was drawn from the
solution to the MPC surface (Fig. S2 and Video S2, see ESI
Section 1.2.2† for details). The active site for substrate binding
was characterized by the presence of six Au atoms: three inner
gold atoms forming a triangle (orange) and three outer gold
atoms forming a second triangle (pink) positioned above the
inner triangle (Fig. S3†). Subsequently, a set of 25 independent,
unbiased MD simulations was carried out starting from the
, (b) structure of DOP–SH ligand, (c) representative snapshot showing
ure of MPC in DMF (color code: gold-yellow, sulfur-green, oxygen-red,
ion (KDE) of the distribution of H-bond counts between ligands and (f)
F solvent, (g) root mean square fluctuation (RMSF) of MPC's ligands in
. RMSF, H-bond, and RDF analysis were performed for the last 50 ns of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Pictorial representation of MPC–substrate complex (inset:
zoomed-in picture of substrate bound to MPC), (b) average resident
time of Au–DOP–CHCl3, Au–DOP–DMF, and Au–PET–CHCl3
systems (*18 simulations out of 25 had 100% retention time), (c) KDE
analysis of important distances from classical MD simulation.
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substrate-bound state for a maximum simulation time of 100
ns, and the trajectories were analyzed to calculate the residence
time of the substrate at the binding site (Table S1 and Fig. S5†).
The average residence time of the substrate in the Au–DOP–
CHCl3 system was found to be approximately 85 ns (18 out of 25
simulations rendered 100% residence time), which is signi-
cantly higher than the other two systems with resident times
ranging from 3 to 12 ns (Fig. 2b). One of the simulations having
100% residence time was extended up to 1 ms and was analyzed
for COM(Au)–COM(substrate) distance, which came out to be
∼7 Å (Fig. 2c, blue curve). The higher residence time in the Au–
DOP–CHCl3 system is attributed to the facile H-bonding inter-
actions between the substrate and DOP ligands (Fig. 2c, orange
curve). In contrast, the Au–PET–CHCl3 system exhibited no H-
bonding and substrate connement due to the small size and
hydrophobic nature of the PET ligand. For the Au–DOP–DMF
system, the extensive H-bonding interactions between the
ligands and the solvent, as well as between the substrate and the
solvent, led to a lower residence time (Fig. 2b). These ndings
are consistent with experimental observations in ref. 28. Our
study demonstrates that the differential dynamics of ligands in
various solvents signicantly affect the substrate binding,
which is crucial for the subsequent chemical reaction, espe-
cially the cyclization step.
Fig. 3 (a) A representative snapshot from the equilibrium QM/MMMD
simulation showing the interactions among the substrate, oxygen
molecule, and the MPC ligand, (b) time evolution of root mean square
deviation (RMSD) calculated using heavy atoms from the MPC's core
and ligand interacting with the substrate, the substrate itself, and the
oxygen molecule, (c) time evolution of the distance between the
center of mass (COM) of the substrate and the COM of the gold core,
and (d) time evolution of the distance between the nitrogen atom of
the substrate and one of the oxygen atoms of the oxygen molecule.
QM/MM simulation

Now we shi our attention from classical MD to the hybrid QM/
MM MD simulation to model the chemical reaction occurring
inside the binding pocket on the MPC. The reaction occurs in
two steps. In the rst step, oxygen is activated from its triplet
(3O2) ground state to the singlet (1O2) excited state via direct
photosensitization by the MPC. It is well known that the optical
© 2025 The Author(s). Published by the Royal Society of Chemistry
band gap of Au25(SR)18 is larger (∼1.3 eV) than the energy of 1O2

(0.97 eV) which allows efficient energy transfer to 3O2.29 In the
second step, the amino alcohol substrate cyclizes in the pres-
ence of a singlet oxygen to give the nal product. Here we have
focused on modeling the cyclization step; therefore, we directly
take singlet oxygen along with amino-alcohol substrate inside
the MPC's binding pocket (Fig. 3a). For QM/MM MD simula-
tions, the substrate and singlet oxygen were included in the QM
region (Fig. S6a†) and treated at the density functional theory
(DFT) level, while the MPC and surrounding solvent molecules
were modeled using molecular mechanics (MM). To accurately
describe the chemical reaction, we employed the BLYP func-
tional,30,31 augmented with Grimme's D3 dispersion correction32

and Becke–Johnson damping.33,34 A double-z valence polarized
(DZVP) basis set was used for the QM atoms. The plane-wave
expansion was carried out with a density cut-off of 600 Ry,
and core electrons were represented using Goedecker–Teter–
Hutter (GTH) pseudopotentials.35

To begin, we carried out a 50 ps unbiased QM/MM MD
simulation to ensure proper binding of the substrate within the
MPC's active site and to allow the system to reach equilibrium
(Fig. 3a). In this context, a 50 ps QM/MM simulation is generally
considered to be signicantly long and oen adequate for
equilibrating a system.36–39 The root mean square deviation
(RMSD) analysis conrmed structural equilibration (Fig. 3b).
The resulting trajectory was subsequently analyzed to charac-
terize key interactions among the substrate, MPC, and the
oxygen molecule (Fig. 3b–d, S7a and b†). Throughout the
simulation, both the substrate and the oxygen molecule
remained stably conned within the binding pocket of the
MPC. This was supported by monitoring the time evolution of
Chem. Sci.
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the distance between the center of mass (COM) of the substrate
and the COM of the gold atoms in the MPC (Fig. 3c), which
indicates stable binding. These results indicate that the system
is well-equilibrated, and thus, we did not extend the simulation
further. In any case, here our main focus is not on the unbiased
simulation; rather, we are interested in sampling the chemical
reaction, for which we apply enhanced sampling simulations
that allow us to sample much longer timescales within afford-
able computational resources.

Notably, we observed a persistent interaction between the
nitrogen atom of the substrate and one of the oxygen atoms
(denoted as O2) of the oxygen molecule, maintaining an average
distance of approximately 2.0 Å (Fig. 3d, blue curve). This close
contact likely results from the donation of a lone pair of elec-
trons from the nitrogen atom to the empty p* orbital of the
singlet oxygen, consistent with previous reports on singlet
oxygen reactivity.40 In addition to this interaction, O2 was also
found to form a H-bond with a hydrogen atom (H1) from one of
the peptide ligands, contributing to the stabilization of the
oxygen molecule within the binding site (Fig. S7a†). Moreover,
the other oxygen atom in the O2 molecule (denoted as O1)
engaged in a H-bond with a hydrogen atom (H) covalently
bonded to the hydroxyl group of the substrate (Fig. S7b†). These
non-covalent interactions collectively help stabilize the reactive
conguration of the substrate and oxygen molecule within the
MPC binding pocket, setting the stage for the ensuing chemical
transformation.

To model the chemical reaction on the MPC surface and
compute the associated free energy prole, we employed the on-
the-y probability enhanced sampling (OPES) method.41 In our
simulations, we have used a surrogate approach of the path
collective variable (s) implementation by Leines and Ensing42,43

to dene the bias for the OPES simulation and monitor the
reaction progress (Fig. 4a). A curve, s(s) represents the average
transition path that connects the reactant state R and product
Fig. 4 (a) Chemical reaction showing transformation of reactant (R) to
product (P) via intermediate (I), (b) depiction of distances used as
descriptors for path CV, (c) graph showing the evolution of distance
descriptors along the number of nodes (M).

Chem. Sci.
state P. The parameter s(d), where d = di a set of descriptors
indicates the progress along the path from R (reactant) to P
(product) such that s(0) ˛ R and s(1) ˛ P. In our case, we used
seven distance descriptors as shown in Fig. 4b. The initial guess
path (sg(sg)) was obtained using a one-dimensional Harmonic
Linear Discriminant Analysis (HLDA)44 CV (Fig. 4). This guess
path in the di space consists of M nodes (23 in our case) rep-
resented as sg(sg)/ {sj}, with j= 1, 2,.,M. The progress along
the average transition path is given by

sðdÞ ¼ m

M
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv1$v3Þ2 � jv3j2

�
jv1j2 � jv2j2

�r

2Mjv3j2
� ðv1$v3Þ � jv3j2

2Mjv3j2
(1)

where v1, v2 and v3 are dened as, v1= sm− d, v2= d− sm−1, and
v3= sm+1− sm; sm is the closest path node, and sm+1 and sm−1 are
its neighboring nodes.

Path-metadynamics42 was performed using the OPES meta-
dynamics41 with ‘s’ as the path collective variable (pCV). The
evolution of the distance descriptors with respect to the number
of nodes is given in Fig. 4c. Additionally, we applied a restrain
potential on the distance from the path js(s(dk))− dkj, where k is
the MD step, to efficiently sample the transition from the
reactant to product and avoid sampling of less probable high
energy states.

Multiple back-and-forth transitions between the reactant
and product states were observed in the OPES simulation
(Fig. S8 and Video S3†). To ensure better free energy conver-
gence and accuracy, we conducted three independent OPES
metadynamics simulations and plotted the average free energy
prole and the error associated with it in Fig. 5a. The free energy
prole converged smoothly, as shown in the free energy differ-
ence (DG) vs. simulation time plot (Fig. S11†). Furthermore, to
assess the impact of a larger QM region, we performed another
QM/MMMD simulation that incorporates a small portion of the
ligand, particularly the region containing the peptide –NH–

group and a few gold and sulfur atoms in the QM region (Fig.-
S6b†). The integrated Molecular Orbital Molecular Mechanics
(IMOMM)45 method was used to link atoms in the QM region
with atoms in the MM region. However, this inclusion did not
signicantly affect the free energy prole (Fig. 5a, red curve).
Further, we selected 200 structures along the reaction pathway
of the larger QM region. To rene the analysis, we expanded the
larger QM region to include all gold and sulfur atoms (S–CH2) in
the QM region and recalculated the QM/MM energies. The
correlation plot showed reasonable consistency between the
two QM region energy evaluations (Fig. S12†). This manifests
that the QM model used in our study is sufficient to obtain the
reaction proles.

The reaction occurs in two steps, the rst step having a free
energy barrier of∼5 kcal mol−1. In this step, one oxygen atom of
1O2 takes one hydrogen from the carbon adjacent to the
nitrogen atom. The transition state (TS_1) is stabilized via H-
bonding with the MPC ligand as shown in Fig. 5d. The inter-
mediate (I) reacts via the attack of oxygen (O) on the sp2 carbon
along with the transfer of proton (H) to –OOH, leading to the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Free energy profile along the s-component of the path collective variable, (b) depiction of the substrate and an interacting ligand, (c)
evolution of important distances along the reaction coordinate, (d) snapshots of important intermediates and transition states involved in the
reaction.
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formation of a cyclized product, oxazolidine and H2O2. The
evolution of important distances as a function of the reaction
coordinate is depicted in Fig. 5b and c. In the intermediate I, O2

begins to interact strongly with the substrate's hydrogen (H),
and the substrate's oxygen (O) interacts with the ligand's
hydrogen (H1). Fig. 5d shows important geometries along the
reaction pathway. A slight difference in the distance evolution
was observed between the small and large QM regions
(Fig. S10†), which is expected due to the stochastic nature of
molecular simulations. Furthermore, substrate–ligand interac-
tions are inherently dynamic, uctuating within a range char-
acteristic of the reactant, intermediate, and product states.
These variations reect the exible nature of the system.
Conclusion

In conclusion, we have developed an advanced modeling
approach to study the chemical reactions catalyzed by
monolayer-protected metal nanoclusters (MPCs). Utilizing
classical molecular dynamics simulations, we explored the
ligand dynamics of MPCs in different solvents. The differential
reaction rates observed with MPCs protected by a simple ligand
(PET) compared to a peptide-based ligand (DOP–SH) were
attributed to variations in the substrate's residence time on the
MPC's surface. Further, we used the hybrid QM/MM technique,
combined with an enhanced sampling method, OPES with path
collective variable (pCV) to model the reaction on MPC's
surface. The detailed QM/MM modeling provided crucial
insights into how the ligand stabilizes the transition state and
intermediates. The use of a surrogate model of the path
collective variable allowed for efficient sampling of the overall
mechanism and accurate determination of the free energy
© 2025 The Author(s). Published by the Royal Society of Chemistry
surface. While the converged free energy prole provided the
free energy barrier corresponding to the cyclization step,
obtaining the reaction rate from it remains challenging. This is
due to the limitation of accurately determining the pre-
exponential factor in the rate constant equation. Moreover,
even if one succeeds, a direct comparison of the computation-
ally obtained rate with the experimentally reported one is
difficult, since the former corresponds to the cyclization step
while the latter refers to the overall reaction rate. Nevertheless,
this study offers a comprehensive understanding of the role of
MPCs as catalysts and the effects of ligands and solvents on
their catalytic performance. The workow we developed not
only deepens our understanding of MPC-catalyzed reactions but
also provides a robust framework that can be applied to other
complex catalytic systems.

Computational details
Classical MD simulation

Classical MD simulations were carried out using GROMACS
2021.4 soware46 patched with plumed 2.8.0 code.47,48 Nano-
Modeler49,50 server was used to generate the topology of MPCs,
which uses empirical force-eld parameters for bonded and
non-bonded interactions of gold–sulfur motifs generated by
Pohjolainen et al.,51 and Heinz et al.,52 respectively. The ligands
and solvents were modeled using the general AMBER force eld
(GAFF).53 Further details of the systems, force elds, and
simulation methods are provided in the ESI.†

QM/MM MD simulation

All QM/MMMD simulations were performed using CP2K 2022.1
soware.54 The system was rst minimized using the steepest
Chem. Sci.
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descent algorithm, followed by equilibration at 300 K in the
NVT ensemble for 50 ps of NVT equilibration at the DFT level
(BLYP-D3(BJ)/DZVP). All production QM/MM MD simulations
were carried out at the DFT level in the NVT ensemble, using
a time step of 0.5 fs. Temperature wasmaintained using a Nosé–
Hoover thermostat with a coupling constant of 0.1 ps. Further
details are provided in the ESI.†

Data availability

All input les required to run the simulations presented in this
work can be found in a public GitHub repository (https://
github.com/vikast282/mpc_QMMM) and PLUMED-NEST55 (ID:
24.015).
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