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lecular image representation
learning using foundation models†

Yonatan Harnik, a Hadas Shalit Peleg,a Amit H. Bermano*b and Anat Milo *a

Deep learning (DL) in chemistry has seen significant progress, yet its applicability is limited by the scarcity of

large, labeled datasets and the difficulty of extracting meaningful molecular features. Molecular

representation learning (MRL) has emerged as a powerful approach to address these challenges by

decoupling feature extraction and property prediction. In MRL, a deep learning network is first trained to

learn molecular features from large, unlabeled datasets and then finetuned for property prediction on

smaller specialized data. Whereas MRL methods have been widely applied across chemical applications,

these models are typically trained from scratch. Herein, we propose that foundation models can serve as

an advantageous starting point for developing MRL models. Foundation models are large models trained

on diverse datasets capable of addressing various downstream tasks. For example, large language

models like OpenAI's GPT-4 can be finetuned with minimal additional data for tasks considerably

different from their training. Based on this premise we leveraged OpenAI's vision foundation model, CLIP,

as the backbone for developing MoleCLIP, a molecular image representation learning framework.

MoleCLIP requires significantly less molecular pretraining data to match the performance of state-of-

the-art models on standard benchmarks. Furthermore, MoleCLIP outperformed existing models on

homogeneous catalysis datasets, emphasizing its robustness to distribution shifts, which allows it to

adapt effectively to varied tasks and datasets. This successful application of a general foundation model

to chemical tasks highlights the potential of innovations in DL research to advance synthetic chemistry

and, more broadly, any field where molecular property description is central to discovery.
Manuscript

The fast-paced eld of deep learning (DL) provides new oppor-
tunities in chemical research due to the exquisite ability of DL
frameworks to capture complex relationships.1–3 Nevertheless,
a signicant barrier for expanding the application of DL in
chemistry is the limited availability of large and reliable
molecular datasets, which would ideally contain millions of
datapoints.3–5 This data availability issue is compounded by the
requirement for labeled datasets, in which reliable chemical
property values and reaction outcomes are associated with each
molecule.5,6 In certain unique cases these challenges can be
resolved by producing large amounts of simulated data;7,8 yet
this is not relevant to most chemical applications where
experimental data is required. Consequently, recent years have
seen a push toward self-driving laboratories (SDL) to produce
consistent and reliable data through high-throughput experi-
mentation (HTE).9–11 However, these platforms are not yet
versity of the Negev, Beer Sheva, Israel.

sity, Tel Aviv, Israel. E-mail: amberman@

tion (ESI) available. See DOI:

the Royal Society of Chemistry
widely available, and the creation of millions of samples is still
restrictive. The process of extracting key features that represent
the data, known as featurization, is also restrictive because
dening and extracting predictive molecular descriptors for
a large dataset is resource intensive and oen necessitates
a high degree of experience with chemical systems.12–14

Molecular representation learning (MRL) seeks to decouple
these data and labeling challenges to enable DL applications for
chemistry.15,16 In MRL, the featurization and prediction tasks
are separated into two distinct stages using different datasets.
The rst stage, referred to as pretraining, focuses on training
a deep encoder that serves to convert molecular data into
general-purpose features.3 The pretraining phase is typically
performed on large datasets of unlabeled molecules by self-
supervised learning. This pretrained encoder can then
generate features for specic prediction tasks—a process also
known as transfer learning.17 Thus, MRL bypasses the need to
use large, labeled datasets. Beyond its substantial efficiency in
terms of time and resources, this approach leverages the ability
of DL to identify hidden patterns, potentially reducing human
bias.

In the MRL workow, molecules are introduced to the model
through molecular formats such as graphs, strings, or
images.15,16 Graphs, in which nodes represent atoms and edges
Chem. Sci., 2025, 16, 10833–10841 | 10833
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represent bonds, have garnered the most attention as an input
representation for MRL due to their intuitive and compact
depiction of molecules.18–22 Among the graph-based MRL
frameworks, the most prevalent are geometrical models in
which the pretraining stage is focused on spatial properties
such as bond lengths and bond angles.18,19 String representa-
tions, such as SMILES and SELFIES, have also been broadly
applied in DL for chemistry because they are lightweight,
compact, and easy to handle.23 MRL frameworks that rely on
molecular string representations oen employ transformers
due to their efficiency as encoders.24–27 Molecular images have
been paid less attention compared to graphs and strings,28,29

perhaps because images represent molecules by sparsematrices
of pixels, making them less explicit and compact. However,
a signicant and overlooked advantage of developing molecular
representation models with images as their input is the ability
to leverage a vision foundation model as a powerful backbone.

Foundation models have emerged as a prominent eld of AI
in recent years.30 These are models that were trained on large
and varied datasets and can address various downstream tasks
by transfer learning. The main factor that sets foundation
Fig. 1 Overview of MoleCLIP conceptual framework, workflow, and d
pretraining. (b and c) Illustration of the two pretraining tasks used in Mole
CLIP as a foundationmodel and it is further pretrained by structural classifi
for property prediction. The encoder is initialized from the pretrained we
network trained from scratch for each task. (e) Three classes of catalysis-r
evaluation of MoleCLIP's performance.

10834 | Chem. Sci., 2025, 16, 10833–10841
models apart is their scale—their pretraining requires excep-
tionally large datasets and computational resources typically
beyond the reach of most research groups. However, once
foundation models are generated and openly shared, they can
be netuned at very low computational cost for different
downstream tasks. Thus, we hypothesized that foundation
models might serve as an advantageous starting point for MRL
pretraining as part of a sequential workow. Conceptually, this
workow would employ a general-purpose foundation model,
which would undergo pretraining with molecular inputs, and
would then be netuned for specic chemistry-related tasks
(Fig. 1a).

To the best of our knowledge, no existing methods have
leveraged foundation models as the initial backbone for
molecular encoders. A few studies have used foundationmodels
indirectly, for example, pretrained large language models
(LLMs) have been employed to couple molecular representa-
tions with information extracted from textual chemical
descriptions.31–33 We propose that building MRL models that
are initialized from the weights of general-purpose foundation
models, rather than trained from scratch on molecular data,
ata. (a) The benefit of using foundation models as starting points for
CLIP. The weights of the MoleCLIP encoder are initialized from OpenAI
cation and contrastive learning. (d) Illustration of the finetuning process
ights, and the decoder is a lightweight multi-perceptron (MLP) neural
elated molecules and their respective properties that were used for the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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would lower the volume of molecular data required for pre-
training. This strategy is very useful in a eld such as chemistry,
where data availability relies on experiments. More importantly,
the use of foundation models can contribute to the model's
robustness to distribution shis, which is the ability to main-
tain performance on new tasks or domains that differ from
those used in training.30,34 This robustness arises from the
extensive diversity of the foundation training data, which
enables the model to capture a wide range of patterns.

Reliance on foundation models is feasible when their input
is identical to the MRL encoder's input, and their architecture is
similar. Applying this strategy to graph based MRL is currently
impractical because general-purpose graph foundation models
are still in their infancy.35 It is also not trivial to use large
language models (LLMs) as the foundation for string based
MRL because the grammar of the chemical language, which
could broadly be dened as chemical reactions, processes and
properties,36 is not inherently structured as a natural language.
Based on these considerations, vision foundation models are
currently an especially attractive starting point for MRL because
image encoders do not require any modication to process
images of molecules.

Herein, we test these ideas through the introduction of
MoleCLIP, an MRL framework that accepts images of molecules
as inputs and adopts a visual transformer architecture initial-
ized with weights from OpenAI's CLIP (Contrastive Language-
Image Pretraining) model, which was trained on a dataset of
400 million image and text pairs (Fig. 1b and c).37 We found that
MoleCLIP could be trained in a few-shot manner on signi-
cantly less molecular pretraining data compared to frameworks
trained solely on molecules. MoleCLIP was evaluated on prop-
erty prediction of MoleculeNet benchmarks38 (Fig. 1d) and
homogeneous catalysis datasets (Fig. 1e). It achieved compa-
rable performance to state-of-the-art (SOTA) MRL models on
MoleculeNet benchmarks despite being pretrained on consid-
erably lower volumes of molecular data (see ESI Section S2c(i)†).
On homogeneous catalysis datasets at the small data-size
regime, MoleCLIP presented superior performance compared
to ImageMol, which is currently the only reported image-based
MRL model, and comparable to superior performance
compared with GEM, a graph-based SOTA model. Moreover, we
demonstrated the robustness to distribution shis granted to
MoleCLIP by relying on a vision foundation model.
Pretraining

The pretraining phase of MoleCLIP was performed on molecular
image inputs generated by RDKit, which is a commonly used
open-source package for cheminformatics.39 The dataset selected
for pretraining was ChEMBL-25, comprised of 1.9 M bioactive
drug-like molecules.40 During the molecular pretraining phase,
the model was trained by two simultaneous tasks: structural
classication (Fig. 1b) and contrastive learning (Fig. 1c). We
selected these two tasks because they are complementary in
addressing structural and image-related considerations for
producing a molecular latent space, which is a vectorial space
that captures the essential features of the input data.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The rst task involved supervised classication of the
molecules to structural classes, a task adopted from Image-
Mol,29 a SOTA image-based MRL framework. The molecules
were assigned structural ngerprints, which are low-
computational cost, bit-vector molecular feature sets, and K-
means clustering was performed across the dataset (see ESI
Section S2a†). Then, pseudo-labels were assigned to each
molecule based on their corresponding clusters. During this
pretraining task, the model learned to classify each molecule to
its structural pseudo-class (see Fig. 1b). The contrastive task
followed SimCLR (Simple framework for Contrastive Learning
of visual Representations), which entails creating augmented
versions of each unlabeled image, for example by noise addi-
tion, rotation, or cropping.41 Beyond these classical augmenta-
tion methods, generation-level augmentations could also be
added to MoleCLIP by changing font types, font sizes, and line
widths when generating the images by RDKit (for details see ESI
Section S2b†). Both the original and augmented images were
introduced to the model, which was trained to minimize the
proximity in the latent space between pairs of images of the
samemolecule and to maximize the distance between images of
different molecules (see Fig. 1c).
Finetuning

MoleculeNet benchmarks have been extensively used for
molecular property prediction and drug discovery and are
considered as standard for MRL evaluation; however, they
exhibit certain biases.42 These benchmarks consist of a diverse
array of molecules containing various structural motifs; thus,
are not well suited for evaluating model performance on narrow
structural domains. Moreover, Deng et al. have highlighted the
issue of excessive focus on assessing model performance by
scaffold splitting in MoleculeNet benchmarks, where the
molecular scaffolds that are most abundant are placed in the
training set, and the less common scaffold motifs are placed in
the validation and test sets.42 Whereas this method ensures
generalizability across different structural groups, it creates
a bias towards models that perform well on inter-structural
predictions. In practice, structurally similar molecules can
exhibit signicantly different potency or reactivity, a phenom-
enon known as an activity cliff, which poses a major challenge
in molecular property prediction.43 Homogeneous catalysis
datasets are particularly prone to contain molecules within
narrow structural domains and are oen limited to tens of
samples.44 Based on these considerations, in addition to eval-
uating MoleCLIP on four MoleculeNet benchmarks, we tested it
across four catalysis-related datasets of varying sizes containing
molecules with either experimental or computational labels
(Fig. 1e).

As the rst catalysis case study, we chose a dataset of dual-
hydrogen bond donors (DHBDs), a class of organocatalysts
known for their effectiveness in a range of enantioselective
reactions.45 We selected 6994 combinatorically enumerated
DHBD molecules from OSCAR, a comprehensive repository of
organocatalysts by the Corminboeuf group.46 The target prop-
erty for netuning by MoleCLIP was the density functional
Chem. Sci., 2025, 16, 10833–10841 | 10835
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Fig. 2 Comparison to state-of-the-art (SOTA). Performance of MoleCLIP on MoleculeNet benchmarks compared to SOTA models. Baseline
evaluationswere performed using fixed representations (extended connectivity fingerprints). Evaluations were conducted using scaffold splitting,
with error bars representing standard deviation based on three repeats. Despite lower pretraining data volume (presented in Table S4†), MoleCLIP
achieves comparable performance to the reported performance metrics of SOTA models.
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theory (DFT) computed gap between the highest occupied and
lowest unoccupied molecular orbitals (HOMO/LUMO gap)
extracted from OSCAR.

Another category of organocatalysts selected for evaluation
was N-heterocyclic carbenes (NHCs). We curated a dataset of 95
NHC catalysts that were used in experimental settings.47 The
model was netuned to predict DFT-calculated natural pop-
ulation analysis (NPA) charges (further details on the data
collection and DFT calculations are available in the ESI Section
S3a(iii)†). We chose to model NPA charges across the C–H bond
of NHC pre-catalysts and across the C–C bond of a reactive
intermediate common to numerous NHC-catalyzed reactions
known as the Breslow intermediate.48

The last class of molecules we examined were organo-
phosphines, which are widely used in transition-metal-
catalyzed reactions as ligands to control reactivity and selec-
tivity. For this class, two experimental datasets were selected.
The rst was produced by the Doyle group using HTE and
consisted of 90 phosphine ligands and the target property was
the yield each phosphine affords across ve Ni-catalyzed Suzuki
reactions (ESI Section S3a(iv)†).49 A second dataset produced by
the Sigman group was focused on the prediction of enantiose-
lectivity across 37 different phosphines used as ligands for a Pd-
catalyzed Suzuki reaction (ESI Section S3a(v)†).50

We compared the performance of MoleCLIP with established
MRL frameworks and ngerprints-based baseline evaluation.
Evaluating models against xed representations such as
ngerprints provides a solid baseline for assessing MRL capa-
bilities.42 Unlike learned representations, which are dynami-
cally optimized during netuning to capture task-relevant
molecular features, xed representations are predened and are
10836 | Chem. Sci., 2025, 16, 10833–10841
not adapted to specic downstream tasks. On MoleculeNet
benchmarks, MoleCLIP achieved comparable performance to
several SOTA MRL models despite being pretrained on signi-
cantly less molecular data (see Fig. 2 and ESI Table S4†). The
ability of MoleCLIP to achieve competitive performance across
the benchmarks, even with limited training data, can be
attributed to its initialization with CLIP as a foundation model.
We presume this stratied workow—from CLIP weights to
pretraining on molecular images, and nally to netuning for
downstream tasks—enabled MoleCLIP to effectively leverage
a general-purpose image model for chemical applications.

On the catalysis datasets, MoleCLIP was compared to two
representative MRL models: ImageMol,29 an image-based
framework, and GEM,19 a graph-based framework. For refer-
ence, a baseline using a xed ngerprint representation was
also included (see also Table S5†). Despite being pretrained on
signicantly smaller volumes of molecular data (Fig. 3a),
MoleCLIP demonstrated superior performance in most cases
(Fig. 3b). Focusing on the three smaller datasets—NHCs,
phosphines-yield, and phosphines-selectivity—each consisting
of only a few dozen samples, MoleCLIP consistently out-
performed ImageMol. It also achieved comparable or better
performance than GEM, with a statistically signicant
improvement observed on the phosphines-selectivity dataset
(Fig. 3b). Notably, MoleCLIP achieved this level of performance
compared to GEM, even though GEM benets from explicit
geometric information that is not available to MoleCLIP.

We attribute MoleCLIP's improved performance to its ability
to generalize effectively when transitioning from a diverse array
of molecules in the pretraining stage to a narrower domain of
structurally andmechanistically similar molecules in netuning.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Catalysis-related datasets. (a) The total number of pretraining samples is calculated as the product of the number of epochs and the
number of molecules in the dataset. This comparison highlights the differences in the amount of data seen during pretraining across MoleCLIP
(1.9 million samples, 4 epochs), ImageMol (10 million samples, 12 epochs), and GEM (20 million samples, 20 epochs). (b) Performance
comparison of MoleCLIP, ImageMol, and GEM on the catalysis datasets. Baseline evaluations were performed using fixed representations
(extended connectivity fingerprints). A mean absolute error (MAE)metric was used for all the datasets. Evaluations were conducted using random
splitting, with error bars representing a 95% confidence interval. MoleCLIP consistently outperforms ImageMol on all datasets and surpasses GEM
on three out of four. We note that the performance difference between MoleCLIP and GEM on the phosphine-yield and NHCs dataset is not
statistically significant.
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MoleCLIP's capacity to perform better on downstream tasks in
domains that differ from its original training could be dened as
robustness against distribution shis, which we attribute to its
reliance on a foundation model as a backbone.
Domain-focused pretraining

Building upon the success of continued pretraining, we
hypothesized that MoleCLIP's performance might be further
improved by adding a domain-focused pretraining step. Buried
volume values (Fig. 4a) have been found as strong predictors of
phosphine activity cliffs;49 therefore, we speculated that
a sequential strategy with an additional pretraining step
focused on predicting buried volumes could improve model
accuracy. This pretraining step was performed on a dataset of
1540 molecules along with their respective DFT-calculated
buried volumes from the Kraken database curated by the Sig-
man and Aspuru-Guzik groups (see ESI Section S4b† for further
details).51

The resulting model, which we refer to as MoleCLIPBV, was
evaluated against the phosphine yield and selectivity datasets.
In both cases, MoleCLIPBV outperformed MoleCLIP's primary
model (see Fig. 4a). We note that even in the absence of this
additional continued training step, MoleCLIP not only exceeded
ImageMol and GEM (see Fig. 3b), but its mean absolute error
(MAE) was below the 1 kcal mol−1 chemical accuracy limit,
which is considered the standard for realistic chemical predic-
tions.52 Nevertheless, this example emphasized the capacity of
domain-related knowledge to signicantly improve prediction
accuracy (from an MAE of 0.95 to 0.82 kcal mol−1, see Fig. 4a).
Moreover, it illustrates the power of deploying a well-designed
stratied workow, going from a very general model, and
gradually adding pretraining steps on smaller datasets with
more accurate labels and an increasing relevance to a specic
© 2025 The Author(s). Published by the Royal Society of Chemistry
target. This outcome represents a promising future direction for
rening pretraining workows to better align with prediction
targets in a broad range of domains.
Robustness to distribution shis

To support our claim that MoleCLIP is more robust to distri-
bution shis, we set out to evaluate how it would handle
molecular images that represent the data in a manner that was
not introduced during pretraining. The letter R is oen used in
images of molecules as a general surrogate for functional
groups, which are common atomic or molecular motifs;
however, these groups are explicitly provided when training ML
models. Therefore, replacing functional groups by the letter R in
the input images could serve as an exquisite example of
a distribution shi during netuning on the target datasets.
Namely, the model has seen images of molecules during pre-
training but has never encountered an R as a substituent.

For this analysis, we selected the two regression MoleculeNet
benchmarks, FreeSolv and Esol. We replaced functional groups
in the datasets with numbered R-groups (Fig. 4b) and per-
formed model netuning using MoleCLIP and ImageMol (see
ESI Section S4a† for further details). As expected, the accuracy of
both models declined on the R-modied datasets (Table S6†).
However, a clear trend emerged when comparing the relative
performance of MoleCLIP and ImageMol, with MoleCLIP
exhibiting a signicantly smaller accuracy drop. This highlights
MoleCLIP's resilience to new image types, supporting our claim
that its robust foundation enables it to effectively handle
distribution shis.
Model limitations

The use of image-based representations in the MoleCLIP
framework poses several inherent limitations. First, images are
Chem. Sci., 2025, 16, 10833–10841 | 10837
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Fig. 4 Added value of stratified pretraining. (a) Illustration of the domain-specific continued pretraining methodology: the prediction of DFT-
calculated buried volume values for a set of phosphine molecules was added to MoleCLIP as a pretraining stage. The domain-focused model,
MoleCLIPBV, showed statistically significant superior performances on phosphine yield and selectivity prediction dataset compared to the
MoleCLIP primary model. The improvement was from an MAE of 9.5% to 9.1% in yield (a relative gap of 4.2%), and from an MAE of 0.95 to
0.82 kcal mol−1 in DDG‡ (a relative gap of 13.7%). The error bars represent a 95% confidence interval. (b) Analysis of MoleCLIP's robustness to
distribution shifts: MoleCLIP and ImageMol were finetuned on original and R-replaced Esol and FreeSolv datasets. The relative gap in perfor-
mance between MoleCLIP and ImageMol is larger in the R-replaced datasets, indicating MoleCLIP's better robustness to distribution shifts.
Evaluations were conducted using random splitting, with error bars representing a 95% confidence interval.
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less exible than graph-based representations. Whereas graphs
can easily embed additional spatial or chemical knowledge as
atom or bond attributes, images lack a straightforward mech-
anism for encoding such details. Another limitation is
a possible performance drop for very large molecules; however,
we note that large molecules are generally more challenging to
model across all representation types. For image representa-
tions, certain structural regions of very large molecules may
appear blurred or visually ambiguous, which can hinder accu-
rate interpretation of the full molecular structure (see ESI
Section S4d(ii)†). This issue is unlikely to affect most of the
practical chemical space yet remains a relevant concern.
Another limitation of image-based workows is that, compared
to more compact formats such as SMILES strings or molecular
graphs, image les are usually heavier, presenting challenges in
terms of storage, memory usage, and training efficiency.
Despite these limitations, the ability to leverage powerful
foundation models, together with the prevalence of molecular
images in the chemical literature, makes image-based repre-
sentations a highly practical and promising approach for
molecular representation learning.
Prior biases in the face of new evidence53

In this study we developed a powerful molecular image repre-
sentation learning model using OpenAI's CLIP as a backbone.
Our ndings clearly demonstrate the efficiency of implementing
a stratied learning strategy, which starts with a broad image
10838 | Chem. Sci., 2025, 16, 10833–10841
foundation model, followed by few-shot continuous pretraining
steps on molecular images toward specic downstream targets.
This strategy not only enables high accuracy with minimal data
volumes and computational cost, but it also provides advantages
in handling tasks and data that are different from those used in
pretraining. One might view MoleCLIP's exibility toward shis
in data and tasks as reminiscent of children's ability to assimilate
new information and update their beliefs. Compared to adults,
young children are able to learn a wider variety of linguistic
distinctions,54 are better at distinguishing between faces of non-
human primates,55 excel at imagining new uses for tools,56 and
are more prone to infer initially unlikely causal hypotheses from
a pattern of new evidence.53 In this vein, we speculate that the
large foundationmodel with whichMoleCLIP was initialized can
provide an extensive semantic latent space for embedding new
images. Likewise, the shorter learning phase on a smaller set of
molecular images does not entrench biases with respect to new
downstream tasks and data compared to models trained from
scratch solely on a vast set of molecules. Ultimately, we hope that
the disclosed gains of building upon an image foundationmodel
will illustrate the broad implications of general-purpose foun-
dation models as starting points for DL in chemistry.

Methods
Architecture

MoleCLIP relies on OpenAI's CLIP,37 a visual transformer (ViT)
based foundation model that offers a solid starting point for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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MoleCLIP's continued pretraining phase on molecular images.
Specically, the ViT-B/16 variant of CLIP was used, which
includes 12 transformer encoder layers and processes images
with dimensions of 224 × 224 pixels, utilizing a patch size of 16
× 16 pixels.
Pretraining data

The pretraining of MoleCLIP was performed on molecular
image inputs generated by converting SMILES57 to 224 × 224
images using RDKit.39 ChEMBL-25, comprised of 1 870 421
bioactive drug-like molecules, was used as an unlabeled dataset
for pretraining (see Data availability in ESI†).58 To enhance the
model's ability to embed molecules effectively, two distinct
pretraining tasks were combined during the pretraining phase:
supervised structural classication and self-supervised
contrastive learning. This combination was intended to
enable the model to capture distinctions at the scaffold level, as
well as ner molecular details. To evaluate the individual
contribution of each task toward input data encoding, we
provide an analysis and visualization of the resulting embed-
ding space (see ESI Section 4d(i)†).
Structural classication

Based on a task developed for ImageMol,29 we incorporated
a structural classication pretraining task to teach the
encoder to differentiate between various structural groups
within the embedding space. We extracted 166-bit MACCS
(Molecular ACCess System) ngerprints59 from SMILES using
RDKit for each of the molecules in the dataset.39 We then
employed the K-means algorithm to cluster the molecules
using the ngerprints as features; thus, assigning pseudo
structural classes to the molecules in the dataset. To deter-
mine the optimal number of clusters (K), we tested K values
ranging from 3 to 3000, where the optimal K was identied
using the knee-point detection algorithm.60 The knee-point
curve for the ChEMBL-25 dataset, shown in Fig. S2,† indi-
cated an optimal K value of 300. Inspired by ImageMol, we set
clustering labels for our primary model at K = 300 and K =

3000, aiming to capture both coarse and ne-grained
patterns in the data. As an ablation study, we tested also
a case with clustering labels K = 30 and K = 300 (see ESI
Section 4c(ii)†).

Each molecular image was assigned a structural class
pseudo-label according to the cluster to which it belonged. As
depicted in Fig. 1b, a linear head was added atop the embed-
ding layer to predict the class. The training involved calculating
cross-entropy loss between the model's predictions and the
assigned pseudo-labels. The structural classication loss for
a batch of samples is given by:

LSC ¼ �
XN
n¼1

XC
c¼1

yn;c log
expðxn;cÞPC

i¼1

expðxn;iÞ

where N is the batch size, C is the number of classes, x repre-
sents the predicted values, and y is the pseudo label.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Contrastive learning

Inspired by SimCLR,41 pairs of original and augmented molec-
ular images were generated using RDKit. The model then
encoded both sets, training to minimize the embedding
distance between images of the same molecule while maxi-
mizing the distance between images of different molecules. In
addition to classical augmentation methods such as rotation,
blurring, noise addition, the use of RDKit for image generation
allowed creating of generation-level augmentations, such as
font type, line width, and font size, as detailed in ESI Section
S2b(i).†

During training, the batches were designed to include
molecules from different and similar structural classes. This
approach helped the model distinguish between different and
alike structures. Batches of 32 samples from the same class were
initially created and then randomly combined to form nal
training batches of 256 samples. The contrastive loss was
computed similarly to the method used in CLIP,37 where the
contrastive loss function for a batch of samples (adapted from
Zhai et al.) is dened as:61

LCL ¼ � 1

2N

XN
n¼1

0
BBB@log

exp

�
1

s
Ion $I

a
n

�

PN
i¼1

exp

�
1

s
Ion $I

a
i

�þ log

exp

�
1

s
Ion $I

a
n

�

PN
i¼1

exp

�
1

s
Ioi $I

a
n

�
1
CCCA

where N is the batch size, Io is the normalized embedding of an
original image, Ia is the normalized embedding of an

augmented image, and
1
s
is the temperature scaling factor.

Pretraining process

The encoder was pretrained using four Nvidia-T4 GPUs (64 GB
RAM) over four epochs on the ChEMBL-25 dataset. The training
was performed using the Adam optimizer, with a learning rate
of 5 × 10−6 for the encoder (100 times lower than the CLIP
learning rate to prevent catastrophic forgetting) and a rate of
0.01 for the structural classication linear head. We applied
a weight decay of 0.1 and a batch size of 256. The total loss for
pretraining is dened as the summation of the structural clas-
sication (SC) and contrastive learning (CL) losses:

L ¼ LSC þ LCL

Finetuning

Finetuning was conducted on datasets of property-labeled
molecules, with performance evaluated based on the models'
property prediction capabilities. A 3-layer, 512-dimensional
multilayer perceptron (MLP) was added on top of the pretrained
encoder. The encoder and the MLP head were trained simul-
taneously using different optimized learning rates. MoleCLIP
employed the Adam optimizer throughout all training sessions,
with the following parameters: b1= 0.9, b2= 0.98, 3= 1× 10−6,
weight decay = 1 × 10−5.

For each netuning task, hyperparameter optimization was
performed by exploring a range of learning rates and image
Chem. Sci., 2025, 16, 10833–10841 | 10839
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augmentation intensities. A similar approach was used for
netuning and evaluating GEM and ImageMol, utilizing pre-
trained weights and hyperparameter optimization as provided
by the respective authors. Further details on the datasets used
for netuning, training procedures, augmentations, splitting,
and evaluation protocols are available in ESI Section S3.†

Domain-focused pretraining

The domain-focused pretraining session was performed using
the Kraken dataset, which includes 1540 literature-sourced
molecules and their corresponding DFT-calculated properties.51

This continued pretraining phase was initialized from the
ChEMBL-pretrained weights of the MoleCLIP primary model. It
was executed similarly to a netuning process, where the
MoleCLIP encoder and an additional 3-layerMLP prediction head
(512-dimensional) were trained simultaneously. The focused
pretraining was run for 300 epochs with a constant learning rate
of 5 × 10−6, weight decay of 1 × 10−5, and batch size of 64.
Further details on the domain-focused pretraining process and
the following netuning process are provided in ESI Section S4b.†

Data availability

Code, datasets and results are available at https://github.com/
Milo-group/MoleCLIP. Pretrained model weights are available
at https://zenodo.org/records/13826016. See ESI Data
availability section† for further details.
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