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e-structure coding for advanced
protein engineering via a multimodal diffusion
transformer†
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Ziqiang Cao,d Shihao Feng,*b Jun Zhang*b and Yi Qin Gao *ab

Modern protein engineering demands integrated sequence–structure representations to tackle key

challenges in designing, modifying, and evolving proteins for specific functions. While sequence-based

methods are promising for generating novel proteins, incorporating structure-oriented information

improves the success rate and helps target corresponding functions. Therefore, rather than relying solely

on sequence or structure-based approaches, a consensus strategy is essential. Here, we introduce

ProTokens, machine-learned “amino acids” derived from structural databases via self-supervised

learning, providing a compact yet information-rich representation that bridges sequence and structure

modalities. Instead of treating sequences and structures separately, we build PT-DiT, a multimodal

diffusion transformer-based model that integrates both into a unified representation, enabling protein

engineering in a joint sequence–structure space, streamlining the design process and facilitating the

efficient encoding of 3D folds, contextual protein design, sampling of metastable states, and directed

evolution for diverse objectives. Therefore, as a unified solution for in silico protein engineering, PT-DiT

leverages sequence and structure insights to realize functional protein design.
Introduction

Computation-aided protein engineering, encompassing the
design, modication, and evolution of proteins for specic
functions, is invaluable in scientic research and medical
development.1–4 Successfully designing functional proteins can
lead to the creation of benecial therapeutic or industrial
biomolecules, such as antibodies and enzymes.5–10 However,
there is ongoing debate about whether sequence-based or
structure-based approaches are more effective for in silico
protein engineering.11 Structure-oriented approaches are oen
considered more “informative”, as the function of proteins is
largely determined by their three-dimensional (3D) structures.
Yet, accurately describing protein structures remains a signi-
cant challenge due to the redundancy and irregularity of atomic
coordinates, which are difficult to design and edit because of
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symmetry and physical constraints. In contrast, sequences—
combinations of amino acids—offer compact and machine-
friendly representations that are compatible with most
computational models, including large language models
(LLMs). Although models like ESM12,13 and ProteinBERT14 have
achieved remarkable success in sequence-based protein
modeling, the connection between functions and sequences
oen remains ambiguous, as biologically, proteins must be
correctly folded to perform their functions effectively. For
example, sequence-based representations fail to distinguish
different functional conformations of proteins,15,16 which are
crucial for their proper functionality.

Although structure prediction models like AlphaFold17–19 and
RoseTTAFold20 have demonstrated their ability to map sequences
to structures, the quality of their folding largely relies on homol-
ogous sequences and structural templates. On the other hand,
inverse folding models such as ProteinMPNN6 can design
sequences that stabilize and accommodate given backbone
structures, but their generalizability to rare and novel folds
remains to be tested. Consequently, the modality difference of
protein representations causes signicant divergence in the
research paradigms of proteins, particularly in the realm of protein
design. Thus, bridging the gap between sequence and structure
modalities remains a signicant challenge and limits applications
such as the generation of diverse and novel de novo proteins.13,21

Aiming to provide a unied perspective on protein
sequences and structures, we developed here ProTokens.
Chem. Sci.
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Conceptually, ProTokens represent a novel set of “amino acids”
learned and extracted from protein structure databases through
self-supervised learning. As machine-learned amino acids,
ProTokens offer compact informative representations of protein
structures. They possess the technical advantages of sequence
representations, being compact for storage and convenient for
use as input/output in computational models. Furthermore,
through a sophisticatedly designed training strategy, ProTokens
are as informative as foldable 3D protein structures. Protein
structures are efficiently compressed into sequences of ProTo-
kens, which can then be accurately and reliably “folded” back
into their corresponding structures.

By harnessing the computational convenience of sequence-
like representations and the functional relevance of structure-
awareness, ProTokens naturally bridge the gap between
sequence-based and structure-based methodologies in protein
engineering. By combining natural amino acids with ProTo-
kens, we train a diffusion transformer22-based model PT-DiT, to
model the joint probability of protein sequences and structures.
Leveraging this generative objective, we found PT-DiT to be
a versatile tool for protein engineering at both the sequence and
structure levels, enabling design with residue-wise protein
contexts for tasks such as contextual inverse folding and func-
tional site scaffolding. Similar to protein language models,
generative pre-training of PT-DiT yields a powerful latent
representation that jointly and faithfully embeds sequences and
structures. Utilizing zero-shot or few-shot learning on this
representation, PT-DiT's capabilities extend to sampling meta-
stable states in protein dynamics, rediscovering naturally
occurring or de novo “evolutionary” intermediates in remote
homologs, and directing the evolution of proteins towards
specic objectives.

Results
Generative, differentiable ProToken and PT-DiT architecture
for protein sequence–structure co-engineering

Our contributions are twofold: (1) we propose and pretrain
a structure-aware amino-acid-like representation, ProToken,
that compresses the foldable protein structures to 512 tokens
with high delity (reconstruction TM-score > 0.90) (Fig. 1a); and
(2) we unify the representations of protein sequences and
structures, enabling integrated protein engineering in a shared
sequence–structure space through a diffusion transformer
model PT-DiT (Fig. 1b and c).

ProTokens are learned via a vector-quantized autoencoding23

framework trained on a backbone reconstruction task using 3D
structural data from metastable conformations of foldable
proteins (Fig. 1a). Each residue in a given structure is mapped to
a discrete ProToken selected from a constrained codebook,
capturing residue-level structural features. Notably, the input to
the encoder consists solely of backbone atom coordinates (N, CA,
C, O), ensuring that the ProToken representation encodes
sequence-agnostic geometric information. Unlike naturally occur-
ring amino acids, ProTokens can be readily decoded into atomistic
coordinates. During training, ProTokens that capture different
local and global structural features remain distinguishable, with
Chem. Sci.
the training objective driving ProTokens representing similar
conformations closer together in latent space. This strategy yields
a more nuanced representation of conformational ensembles.
Once trained, ProTokens enable efficient compression, storage,
alignment, and comparison of protein structures.

PT-DiT aims to engineer protein sequences, structures, or
both from a unied generative perspective, regardless of
whether sequence or structural information is initially available
(Fig. 1b). Built upon a pretrained twin-tower embedding model,
we use ProTokens (structure-aware embeddings) and natural
amino acid embeddings as dual-channel representations of
proteins. The structure embeddings are derived from protein
backbone structures via the ProToken encoder, while the
sequence embeddings are computed using a PCA-compressed
of AlphaFold2 (ref. 18) or ESMFold12 embeddings. The ProTo-
ken embeddings and sequence embeddings are concatenated
into a joint representation for each residue, which serves as the
input to train a diffusion-based generative model, PT-DiT (see
Methods). Drawing inspiration from image diffusion methods
such as RePaint24 and probability ow ordinary differential
equations,25 PT-DiT models the joint distribution of protein
sequences and structures, enabling a wide range of tasks
including de novo design, scaffolding, metastable state
sampling, and directed evolution. In contrast to traditional
approaches that treat sequences and structures as separate
modalities19,26 linked only by computational folding or inverse
folding, PT-DiT integrates both into a unied representation.
This integration enables protein engineering in a joint
sequence–structure space, streamlining the design process and
facilitating the derivation of specialized functions.

We introduce a probabilistic framework to clarify the
methodology underlying structure-informed representations
(see the ESI†), establishing the basis for the ProToken and PT-
DiT algorithms. To ensure uniqueness, compactness, and
sufficiency of the ProToken code, we incorporate alignment and
uniformity loss functions27 (Fig. S1†). A test set was curated for
the reconstruction task, enabling evaluation of our protein
tokenization module's performance and generalizability using
structures from CASP1428 and the RCSB database,29 and AFDB30

dark clusters identied by Foldseek.26 TM-score31 and LDDT32

were computed between the reconstructed and original struc-
tures (see Methods) to benchmark performance. We subse-
quently demonstrate PT-DiT's feasibility for traditional tasks
such as inverse folding and contextual backbone design. We
then comprehensively benchmark PT-DiT's performance across
three main applications: (a) metastable conformation
sampling, validated by molecular dynamics simulations and
experimental data; (b) de novo protein sequence design via
latent space interpolation between remote homologs; and (c)
directed evolution using a state-of-the-art active learning pipe-
line, benchmarked with EVOLVEpro.33
ProTokens are concise representations of metastable protein
structures

To demonstrate the efficacy of ProTokens in 3D structure
representation, particularly for backbone conformations, we
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic overview of protein engineering with ProTokens. (a) PT-DiT workflow. The protein tokenization module employs a twin-tower
embeddingmodel, which pre-trains embeddings in both sequence and structure modalities. The quantizationmodule compresses the structure
embeddings. The denoising diffusion module, the core of PT-DiT, models the joint probability of sequences and structures, enabling the co-
engineering of protein sequences and structures. (b) Comparison of sequence and structure integration in protein engineering approaches.
Traditional methods treat sequences and structures as separate entities, connecting them through additional folding and inverse folding models
(left panel). In contrast, our approach uses neural amino acids (ProTokens) to extend the vocabulary of naturally occurring amino acids, offering
a more informative, joint representation of sequences and structures. This allows the projection of both into a unified space for seamless
integration. (c) ProTokens and PT-DiT as versatile tools for protein engineering, enabling tasks such as functional site scaffolding, multi-
conformational structure sampling, de novo protein design, and in silico directed evolution.
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use the quality of reconstructed protein backbone structures as
the evaluation metric. Notably, ProTokens are the rst set of
tokens specically designed to represent and reconstruct
protein structures without relying on sequential or evolutionary
information. Therefore, to ensure a fair and comprehensive
benchmark, we curated four test sets from diverse resources.
These sets comprise 513 experimentally resolved structures
from the RCSB database and CAMEO34 (excluding structures
released aer the training set cutoff), 87 from CASP14, 44 from
CASP15, and 33 842 high-quality rare structures from AFDB
© 2025 The Author(s). Published by the Royal Society of Chemistry
(details in the ESI†). The median reconstruction TM-scores
(rTM-scores) across these sets are as follows: 0.97 for the
RCSB and CAMEO set, 0.98 for CASP14, 0.97 for CASP15, and
0.98 for AFDB (Fig. 2a). For comparison, ESM3 achieves an
average rTM-score of 0.91 for proteins in CASP15, as reported in
previous studies.35

We further validated ProToken's reconstruction perfor-
mance on disconnected domain assemblies from CASP14 and
CASP15, as well as multimers from the AF2Complex36 bench-
mark sets. Notably, multi-domain and multimer folds were not
Chem. Sci.
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Fig. 2 Performance of ProTokens on reconstruction test datasets. (a) The rTM-score distribution of ProToken reconstruction across 513, 87, 45,
and 33 842 samples for RCSB, CASP14, CASP15 and AFDB dark cluster datasets, respectively. (b) The rTM-score distribution of 34 487 protein
samples in four reconstruction test datasets with different sequence lengths and radii of gyration. The red arrow indicates the example protein
(PDB ID 7RRO) which ProToken fails to reconstruct. The color denotes the rTM-score of each sample. (c) The reconstructed protein structure of
7RRO (cyan) and ground truth structure (gray). (d) The rLDDT distribution of all residues in four reconstruction test datasets across seven types of
secondary structures. (e) rTM-score of ProToken reconstruction across 50 conformation pairs from PDBFlex. The color denotes the minimum
rTM-score of each reconstruction pair, which intends to show the worst ProToken reconstruction performance towards the conformation pairs.
(f) The comparison between the BLOSUM-like matrix of ProTokens (low right) and similarity matrix of ProTokens (upper left). The color denotes
the normalized BLOSUM value and cosine similarity, respectively. The Spearman correlation coefficient of each ProToken is calculated and
histogrammed on the left. The ProToken index from 256 to 384 is specially zoomed in for ease of pattern recognition. (g) The PT-score of each
pair of the 42 protein set is calculated and compared to the TM-score. The color denotes the value of the PT-score and TM-score. The third
cluster is specially zoomed in and Spearman correlation coefficient of the TM-score and PT-score is 0.94 over these 19 protein similarity
rankings. The box plots in panels (a) and (c) are defined by themedian as the centre line, first and third quartiles as the box edges and 1.5 times the
inter-quartile range as the whiskers.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/6
/2

02
5 

11
:5

4:
00

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
included during training. The median rTM-scores for the
CASP14 and CASP15 domain assemblies are 0.96 and 0.926,
respectively (Fig. S2D†), and the median rTM-score for multi-
mers is 0.891 (Fig. S2E and F†). These ndings indicate that
ProTokens can robustly generalize and accurately reconstruct
a wide variety of protein structures, including challenging
domain assemblies and multimers.

To further evaluate ProTokens' capacity to represent diverse
protein conformations, we assessed reconstruction perfor-
mance across proteins of varying shapes (dened based on the
radius of gyration) and sequence lengths in four test sets
Chem. Sci.
(Fig. 2b). Reconstruction quality remained consistent across
different lengths and shapes (Fig. S2A–C†), except in cases of
extreme conformations such as highly extended, near-linear
forms (Fig. 2c). We also examined ProTokens' reconstruction
performance for seven secondary structure classes. The median
reconstruction LDDT (rLDDT) exceeded 0.90 for all classes, with
‘alpha helix’ and ‘strand’ exceeding 0.95 (Fig. 2d). These nd-
ings indicate that ProTokens do not preferentially favor or
discriminate against particular folds or secondary structure
features, whether global or local, making it a more generalizable
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and reliable tool to treat different protein folds or local envi-
ronments in downstream tasks.

Next, we assessed ProToken's ability to capture alternative
conformations by reconstructing proteins with multiple states
from 50 PDBFlex37 clusters that span local RMSDs of 2.0 Å to 53
Å. The results indicate a median rTM-score of 0.98 across all
conformations, with a minimum of 0.88, demonstrating that
the structural differences before and aer reconstruction are
preserved with high delity (Fig. 2e). These results suggest that
ProTokens are distance-preserving for protein conformations,
and therefore they can distinguish different conformations with
high resolution. Although the training set does not contain
explicit examples of identical sequences with different meta-
stable structures (details in the ESI†), the ability to distinguish
such conformations emerges during training, driven by the
structural diversity present in the dataset and the discriminative
capacity of the ProToken encoder.

Because distinct conformations of the same protein
sequence map to different ProToken sequences, we examined
how ProToken representations correspond to protein struc-
tures. Specically, we computed a BLOSUM38 (blocks dub-
stitution matrix) for ProTokens based on residue pairs with
similar local environments (details in Methods and the ESI†).
We then compared these BLOSUM values with the cosine
similarity of each pair of ProToken embeddings (Fig. 2f). An
average Spearman's correlation coefficient of 0.62 indicates
a close connection between the ProToken representation space
and local structural environments.

Inspired by Foldseek26 and MMseqs,39 we implemented
a ProToken-based BLOSUM using the Needleman–Wunsch
algorithm40 to derive the PT-score. We randomly sampled three
dark cluster centers of AFDB. For each center, we gather all the
similar structures in the RCSB database using Foldseek, which
results in 42 proteins in total. We then computed both TM-
scores and ProToken similarity scores (PT-scores) for each
structure pair (Fig. 2g). Higher PT-scores correlate with higher
TM-scores, indicating that the PT-score not only differentiates
similar from dissimilar structures but also captures quantita-
tive differences relative to a reference. Thus, the PT-score serves
as a promising metric for structure searching, clustering, and
analysis algorithms, particularly in applications such as
studying long-range allosteric interactions41 and protein pocket
identication.42
Generative pretraining of ProTokens on a unied perspective
of sequences and structures

ProTokens convert 3D protein structures into discrete tokens in
a 1D vector space, allowing deep learning frameworks to more
readily model the joint probabilities of sequences and struc-
tures. Building on this, we trained a diffusion transformer, PT-
DiT, using a generative pre-training objective that integrates
ProToken embeddings with sequence embeddings derived from
ESM-2 (ref. 12) and AlphaFold2 (ref. 18) (see Methods), respec-
tively. As a result, PT-DiT functions not only as a dedicated
protein design model but also as a versatile tool for a wide array
of protein engineering applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
To illustrate PT-DiT's co-generation capabilities, we show-
case three representative de novo generation cases featuring
distinct geometries: helix bundles (Fig. 3a), b-barrels (Fig. 3b),
and other complex folds (Fig. 3c). The TM-scores comparing the
ESMFold-predicted structures (derived from the generated
sequences) to the generated structures (scTM-scores in Fig. 3a–
c) are 0.94, 0.88, and 0.85, respectively. These examples high-
light PT-DiT's ability to concurrently design protein sequences
and structures with diverse geometries, while preserving self-
consistency between each generated sequence–structure pair.

Similar to training-free image editing, PT-DiT can perform
“inpainting” on masked ProTokens or sequence embeddings by
leveraging the unmasked regions (Fig. 3d). One notable appli-
cation is contextual backbone design. As a proof of concept, we
employed PT-DiT for CDR (complementary determining region)
graing (Fig. 3e). Given a specied CDR3 sequence and struc-
ture, PT-DiT simultaneously generates both antibody sequences
and their corresponding structures. Validation with ESMFold
reveals one generated sequence–structure pair that achieves
a scTM-score of 0.82 and a sequence identity of 0.84 compared
to a known human-derived antibody, while preserving the CDR3
conformation in the newly generated protein. We also showcase
several examples of ligand-binding pocket scaffolding (Fig. S3†).
These proof-of-concept results indicate that PT-DiT can design
functional proteins that retain and integrate crucial functional
motifs, underscoring its potential in functional protein
engineering.
Structure interpolation captures intermediate metastable
states in protein dynamics

By pretraining PT-DiT, we learned a compact latent space for
both ProToken and sequence embeddings, facilitating protein
sequence and structure manipulation in a differentiable
domain (Fig. S4†). Consequently, PT-DiT is able to interpolate
between two metastable conformations of the same protein
sequence, revealing cryptic intermediate states that are other-
wise difficult to elucidate via standard protein dynamics. Given
that PT-DiT is pretrained on a large set of foldable protein
sequences and structures (see Methods) and learns a latent
space assumed to follow a Gaussian distribution with a convex
probabilistic density function, latent vectors interpolated
between two metastable structures are expected to represent
intermediate states with high probability and low free energy.43

We benchmarked our interpolated conformations against
a long-duration molecular dynamics (MD) simulation of Abel-
son tyrosine kinase (Abl) binding to the cancer drug imatinib,44

in which imatinib binding triggers a switch in the activation
loop (A-loop). We analyzed the 10 ms MD trajectory using Time-
lagged Independent Component Analysis (TICA),45,46 reducing
the protein's conformational landscape to a two-dimensional
space (Fig. 4a). Clustering these trajectories revealed three
metastable states: I, II, and III (Fig. 4b).

Interpolation between these states was performed using PT-
DiT, and the resulting intermediate structures were projected
onto the TICA subspace (Fig. 4a, le). Between the three cluster
centers, we identied an intermediate state with a low free
Chem. Sci.
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Fig. 3 Showcasing protein sequence and structure engineering through PT-DiT. (a–c) Co-generation of protein sequences and structures for
different protein folds: the a-helix-dominated structure (a), b-strand-dominated structure (b), and complex folding structure (c). (d) The
inpainting workflow of PT-DiT, where a partial sequence or structure is inputted, encoded into latent space, inpainted through the DiT inpainting
process, and then decoded into a full sequence and structure. (e) Structures of CDR3 grafting results, including ground truth (gray), generated
structures (green, salmon, and cyan), and structural alignments to the ESMFold-refolded structure (wheat) and the ground truth structure (gray).
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energy region as seen from its location on the free energy
surface (Fig. 4a and b). We also interpolated between the open
(PDB ID 1OPJ) and closed (PDB ID 2F4J) X-ray crystal structures
of Abl44 (Fig. 4a, right). The pseudo-trajectory in latent space
traverses low free energy regions along the principal compo-
nents dened by TICA, suggesting that the intermediate states
sampled by PT-DiT are physically plausible.

Beyond aligning with theMD simulation trajectory, PT-DiT is
designed to capture intermediate states that can be
Chem. Sci.
experimentally observed. We illustrate this by examining the
transition of UDP-N-acetylmuramoyl-L-alanine:D-glutamate
ligase (MurD) from its open conformation (PDB ID 1E0D)47 to its
closed conformation (PDB ID 3UAG).48 The pseudo-trajectory
generated by PT-DiT reveals domain 3 rotating around its
hinge with domain 2 (Fig. 4c and S5†). Notably, one interme-
diate structure closely resembles the semi-open conformation
identied by X-ray crystallography (TM-score = 0.94, PDB ID 5
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc02055g


Fig. 4 PT-DiT performance in metastable state sampling compared with MD simulations and experiments. (a) Free energy surface in TICA
coordinates (IC1 and IC2) derived fromMD simulations of Abl binding to imatinib. Conformational cluster centers (I, II, and III) are extracted from
the trajectories, with scatter points showing the TICA projections of interpolated states: from I to II (yellow), II to III (green), and I to III (red) on the
left. On the right, scatter points (green) represent the TICA projections of interpolated states between two experimentally resolved Abl structures
(PDB IDs 1OPJ and 2F4J). (b) Protein structure illustration of metastable states during Abl binding to imatinib, sampled by PT-DiT, with the active
loop region highlighted in salmon. (c) Closed, intermediate, and open states of MurD. Structures sampled by PT-DiT (colored yellow, salmon, and
cyan for closed, intermediate, and open states, respectively) are superimposed with their corresponding crystal structures (gray). (d) Distribution
of the collective variable defining the “hinge”motion betweenMurD domains, as observed in MD trajectories (orange) and interpolated structures
(blue). The dashed red, green, and blue lines correspond to the experimentally resolved structures of the closed, intermediate, and open states,
respectively. (e) Sampled structures of the inactive state R2 (salmon), and the active states R3 (blue) and R4 (green) of mOR. PT-DiT-generated R2
and R4 structures are superimposed with their corresponding crystal structures (gray). Ensembles of the attached fluorescent molecules (HO-
1427) on residues R173 and R182 are displayed. (f) Predicted distribution of distances between fluorescent molecules in R2 (red), R3 (blue), and R4
(green), with average distances shown as dashed lines.
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A5E),49 proposed as a stable intermediate state during MurD's
ligand-driven conformational change.

To further check the validity of the interpolated MurD
conformations we introduce an angular collective variable, q
(details in Fig. S5†), based on previous MD studies of MurD's
conformational dynamics.50 The distribution of q values for the
interpolated structures encompasses most of the range
observed in both MD simulations and crystal structures
(Fig. 4d). These ndings indicate that PT-DiT can reliably
generate experimentally validated intermediate conformations,
thus offering a rapid alternative for sampling intermediate
states of interest for experimental studies.
© 2025 The Author(s). Published by the Royal Society of Chemistry
To further explore PT-DiT's capacity to elucidate hidden
states in protein conformational transitions, we examined the
m-opioid receptor (mOR) system. Previous studies indicate that
G-proteins bind to an open pocket formed by the outward
movement of transmembrane helix 6 (TM6).51 Double electron–
electron resonance (DEER) experiments classify the structural
ensemble into four populations (R1–R4), distinguished by
differing distances between TM6 and TM4. Both active and
inactive states of mOR (PDB IDs 6DDF and 4DKL, respec-
tively)52,53 exhibit an approximately 10 Å shi between TM6 and
TM4. While R2 and R4 have been validated by X-ray crystallog-
raphy (Fig. 4e, le and right), R3 remains unresolved. To
Chem. Sci.
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Fig. 5 PT-DiT performance in evolution-like protein discovery and directed evolution. (A) Sequence identity of interpolated proteins compared
to ubiquitin (PDB ID 1D3Z) and SUMO (PDB ID 1U4A). The sequence from platform1 shows a 94% identity with NEDD8 (PDB ID 3DBH). (B)
Structural alignment of the rediscovered ubiquitin-like sequence from platform1 (gray) with structures of 1D3Z (cyan) and 1U4A (green). (C)
Sequence identity of interpolated proteins with respect to two carbonic anhydrases (PDB IDs 3DCW and 3JXG) from different species, high-
lighting platform1 and platform2. (D) Structural alignment of platform1 and platform2 (gray) with structures of 3DCW (cyan) and 3JXG (green).
The sequence of platform1 shows 96% identity with another carbonic anhydrase (PDB ID 1AZM), while platform2 represents a de novo sequence
modeled on the carbonic anhydrase backbone. (E) Overview of directed evolution with PT-DiT based on an active learning algorithm. (F)
Proportion of PT-DiT, ESM2, and their combination achieving the highest top activity and highest median activity in the proposed sequences,
with each method using 10 rounds of active learning and 10 variants per round. (G–I) High-activity candidate percentages across 10 rounds of
simulated directed evolution for different DMS datasets. Panels (G), (H–I) show the results for PT-DiT, ESM2, and the combination of PT-DiT and
ESM2, respectively.
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address this question, we interpolated structures between R2
and R4 using PT-DiT, producing an intermediate conformation,
R30, whose TM4–TM6 distance closely matches the experimen-
tally inferred value for R3 (Fig. 4f, ESI†). R30 thus serves as
a structural model for the unknown active state R3, providing
a foundation for further biological analysis and design.
Sequence interpolation discovers evolutionary and novel
sequences between structural homologs

Sequence interpolation between structural homologs can also
be performed in PT-DiT's latent space, analogous to structure
interpolation. The trajectory between two sequences that
Chem. Sci.
stabilize a given structure can reveal novel variants capable of
stabilizing the same fold.

Small ubiquitin-like modier (SUMO) proteins, which cova-
lently bind to target proteins to modulate their functions, share
structural similarities with ubiquitins but exhibit distinct
functional outcomes. Despite having nearly identical backbone
structures, human ubiquitin (PDB ID 1D3Z)54 and human
SUMO-3 C47S (PDB ID 1U4A)55 share only 16% sequence iden-
tity (12 out of 76 residues), classifying them as remote homo-
logs. To explore other potential remote homologs that preserve
this common backbone, we performed interpolation in PT-DiT's
latent space between 1D3Z and 1U4A. Throughout the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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interpolation pathway, the backbone structure remained largely
unchanged while the sequence content evolved. Notably,
sequence identity varied in a non-linear manner, forming
a “platform” along the interpolation trajectory (Fig. 5A). One
intermediate sequence from this platform (Fig. 5B, gray) has
only 61% and 20% sequence identity to 1D3Z and 1U4A,
respectively, but exhibits a 96% sequence identity to human
NEDD8 (PDB ID 3DBH)56—another ubiquitin-like protein that
shares the same structural scaffold. These ndings underscore
PT-DiT's ability to encode the full range of sequence variation
that supports a common backbone structure.

We next investigated whether this interpolation strategy
could produce de novo sequences. Carbonic anhydrases (EC
4.2.1.1), which catalyze the reversible conversion of carbon
dioxide and water into carbonic acid, play a vital role in regu-
lating pH and the acid–base balance in biological systems.
Specically, we performed interpolation between a human
carbonic anhydrase (PDB ID 3DCW)57 and a homolog from Mus
musculus (PDB ID 3JXG),58 which share 31% sequence identity.
The resulting trajectory showed uneven changes, forming two
“stable sequences” (Fig. 5C). The rst stable sequence aligns
with human carbonic anhydrase I (PDB ID 1J9W)59 at 93%
sequence identity. Intriguingly, the second sequence has no
close natural homologs in the UniRef100 database60 (maximum
sequence identity 64%). Nonetheless, both ESMFold and
AlphaFold3 condently fold this sequence into the same back-
bone as 3DCW and 3JXG (Fig. S6†), demonstrating its ability to
stabilize the carbonic anhydrase scaffold. These ndings show
that PT-DiT's unied sequence–structure representation not
only reveals potential remote homologs but also generates novel
sequences, presenting a fresh paradigm for protein design.
Directed evolution in compact protein sequence–structure
space

Controlled evolution has proven valuable for protein functional
engineering,61,62 but exploring the vast mutation space of protein
sequences can be both time-consuming and costly. As demon-
strated above, the latent space of PT-DiT offers a compact and
informative representation of both protein structures and
sequences, potentially reducing the space to search in and facili-
tating controlled evolution for function enhancement.

Here, we use 12 Deep Mutational Scanning (DMS) datasets
demonstrated in EVOLVEpro33 to simulate directed evolution,
focusing on how different protein representations inuence
evolutionary outcomes. Unlike protein language models (PLMs)
that rely solely on sequence- or MSA-based representations, we
benchmark PT-DiT embeddings—which learn from both the
structure and sequence independently—against the ESM2-15B
baseline within EVOLVEpro. This integrated approach is ex-
pected to incorporate more structural information into the
latent vector space. We also concatenate PT-DiT embeddings
with ESM2-15B embeddings to form unied embeddings and
explore whether these different embeddings complement or
conict with each other.

The results indicate that PT-DiT embeddings perform
comparably to ESM2-15B embeddings across all 12 DMS
© 2025 The Author(s). Published by the Royal Society of Chemistry
datasets (Fig. 5F–I and S7A–F†). For top-1 activity predictions,
the unied embeddings achieve 75% of the best outcomes,
while PT-DiT and ESM2-15B respectively yield 17% and 8%.
When evaluating median activity, unied embeddings achieve
58%, PT-DiT 33%, and ESM2-15B 9%, respectively. Notably, PT-
DiT excels in systems involving signal transduction (Fig. S7E†),
viral replication (Fig. 5G), and enzymatic activities (Fig. 5I),
where incorporating structural information is thought to be
crucial for capturing the functional impact of mutations.

Although PT-DiT may underperform ESM2-15B in certain
high-activity prediction scenarios, combining embeddings from
both models does not compromise overall accuracy (Fig. 5H). In
contrast, this combined strategy improves the proposal rate for
high-activity variants (Fig. 5I), enhancing both median and top
activities among the predicted variants. Given that ESM2-15B
embeddings in EVOLVEpro are 5120-dimensional whereas PT-
DiT embeddings are only 40-dimensional, these ndings
underscore the compactness and efficacy of PT-DiT embed-
dings, suggesting the latter to be both more tractable and better
suited for downstream biophysical applications.

Conclusions

By compressing 3D structures of proteins into amino-acid-like
sequences, ProTokens have demonstrated their ability to bridge
the gap between sequence and structure modalities in protein
engineering (Fig. S8†). As “machine-learned” amino acids,
ProTokens represent an expanded vocabulary of natural amino
acids, striking a better balance between informativeness and
compactness. ProTokens are nearly as compact as amino acids;
a vocabulary of a mere 512 terms is sufficient to encode and
refold almost all existing protein folds, including novel and rare
folds typically identied as “dark” clusters63 (details in ESI, Fig.
S9†). On the other hand, ProTokens are more informative than
amino acids. They can not only be easily “folded” (decoded) back
into original structures with a lightweight module, without the
need for sequence alignment and structural templates (whereas
folding with amino acids requires cumbersome sequence
processing and folding algorithms), but can also distinguish
between different conformational states of a protein. These states
are oen degenerate in the representation of amino acid
sequences, making ProTokens a ner descriptor of structures
and thus more closely related to the functions of proteins.

From the perspective of the pretraining model of proteins,
sequences and structures are interconnected in two fundamental
ways: structures are linearized into sequences of neural amino
acids, while from another viewpoint, amino acids represent
nature's own strategy for compressing and storing protein
structures. Consequently, leveraging ProTokens enables the
convenient training of this foundational model, PT-DiT, to
capture the joint probability of sequences and structures.
Through generative pre-training, PT-DiT not only facilitates the
co-design ofmatching sequences and structures but also supports
the tailored design of proteins based on specic contexts,
enhancing its versatility as a tool for protein engineering.

Furthermore, PT-DiT generates latent representations of
proteins (both sequences and structures) that form a more
Chem. Sci.
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structured space, facilitating higher-level abstractions of the
protein universe. We discovered that perturbing, interpolating,
and evolving proteins in this latent space give rise to numerous
applications. For example, interpolating between two confor-
mations of the same protein helps identify potential interme-
diate states of protein dynamics. These encrypted
conformational states may offer new insights into the possible
mechanisms by which proteins perform their functions.
Simultaneously, we observed that interpolating between two
sequences sharing a common backbone structure aids in
identifying other sequences that can also stabilize it. Redis-
covering naturally occurring sequences may reveal evolutionary
pathways, while the discovery of de novo sequences offers a new
methodology for protein design. Furthermore, the compact and
organized latent space proves suitable for evolving proteins to
enhance their activities toward specic objectives. Through
adaptively learning activity proles of mutations across
multiple rounds of experimental feedback, PT-DiT yields high-
activity candidates among both selected and proposed vari-
ants (more details in ESI, Fig. S10 and S11†).

The experiments performed in this study showed that
unifying sequence and structure modalities of proteins using
ProTokens is highly benecial. From a physical standpoint, we
verify the hypothesis that while the spaces of protein structures
are inherently large, the metastable states can be considered
countable and discretizable. We further developed efficient
algorithms to discretize and represent these metastable states
as machine-learned neural amino acids. Technically, compared
to redundant and complex structural representations such as
atomic coordinates or surface meshes, ProTokens provide
a more compact and regular format for protein structures,
making them more machine-friendly and suitable for compu-
tational models in structural biology. Furthermore, this amino-
acid-like representation naturally integrates with protein
sequences, enabling joint modeling of both the sequence and
structure.

By mapping the structure to ProTokens, we have demon-
strated that structure comparison and protein design benet
signicantly from the compactness and convenience ProTokens
provide. Moreover, by utilizing ProTokens in a latent space that
organizes proteins to accommodate a generative objective,
applications such as directed interpolation and evolution
naturally emerge, signicantly facilitating protein engineering.
However, there are certain limitations to our approach. First,
ProTokens, while effective, are far from an optimal code for
proteins. In practice, we have observed a “degeneracy” in which
highly similar structures may be encoded into different ProTo-
ken sequences. This degeneracy can hinder several downstream
applications by increasing model confusion and suggests the
potential for a more compact representation and further
compression. Second, the exploration of PT-DiT's possible
applications is still in its early stages. Many promising avenues
remain to be explored, such as large-scale structural sampling,
evolutionary analysis, functional annotation, and performing
Bayesian optimization of protein physicochemical properties
based on latent space representations. Future efforts will focus
Chem. Sci.
on improving compression rates and expanding the scope of
applications for PT-DiT.

Methods
Datasets

In this study, we curated multiple datasets for a variety of tasks,
enabling us to benchmark both ProTokens' protein recon-
struction capabilities and PT-DiT's versatile downstream
applications. Here, we describe the reconstruction validation
datasets, molecular dynamics (MD) trajectory datasets, and
experimental datasets in detail. Additional information is
provided in the ESI.†

The reconstruction validation datasets. To prevent valida-
tion data leakage from the training set, we curated four single-
domain validation datasets. The rst comprises structures from
the RCSB database released between October 13, 2021 and
March 15, 2022, as well as CAMEO targets released between
October 16, 2021 and February 12, 2022. These proteins were
ltered at 40% sequence identity and restricted to sequences
with fewer than 1536 residues, yielding 513 ground truth
structures. The second and third datasets come from CASP14
and CASP15, respectively, encompassing all single-domain
proteins with experimentally determined structures—87
proteins for CASP14 and 45 for CASP15. The fourth dataset is
derived from the AFDB database, which contains 711 705 “dark
clusters” identied by Foldseek, potentially enriched with novel
protein folds. Following Foldseek's data processing pipeline, we
selected 33 842 clusters with average AlphaFold2 prediction
condence scores (pLDDT) greater than 90, retaining only the
highest-condence member from each cluster. These dark
cluster structures can be accessed at the AlphaFold DB website
(https://alphafold.ebi.ac.uk/), and a complete list of names is
available at https://afdb-cluster.steineggerlab.workers.dev/.

The multi-domain reconstruction task is evaluated using the
CASP14 and CASP15 multi-domain datasets, which include
domain annotations published on the CASP website. This
process yields 17 multi-domain samples for CASP14 and 13 for
CASP15. The multimer reconstruction task is assessed using the
benchmark dataset of AF2Complex. More details of multi-
domain and multimer datasets can be found in the ESI.†

The MD trajectory dataset of Abl and MurD. We used pub-
lished results from unguided molecular dynamics (MD) simu-
lations on Anton64 to generate the trajectory of Abl tyrosine
kinase binding to imatinib. These simulations revealed an
unexpected local instability in the C-terminal lobe of Abl during
drug binding, making the system well-suited for sampling
metastable conformations with PT-DiT. Conformations extrac-
ted from trajectories of 100 ms, 100 ms, 3 ms, 2.6 ms, 1.7 ms, and
1.7 ms were employed for time-lagged independent component
analysis (TICA) and structure clustering, saving frames at 1000
ps intervals with a simulation timestep of 2.5 fs.

For MurD, we used MD trajectories from a previous study in
which simulations were performed with Amber ff14SB under
NAMD, using a 2 fs timestep for a total of 200 ns. All confor-
mations from this trajectory were included in the variable
analysis; during the course of the simulation, MurD
© 2025 The Author(s). Published by the Royal Society of Chemistry
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transitioned from its closed to open state. The collective vari-
able for MurD was dened based on the centers of mass of three
residue selections: residues 120–230, 230–299, and 299–437.

Experimental dataset. The experimental data used in this
study comprise several experimentally resolved protein struc-
tures and 12 Deep Mutational Scanning (DMS) datasets. The
experimentally determined structures include (1) the active and
inactive conformations of Abl, (2) open, closed, and interme-
diate conformations of MurD, (3) the active and inactive states
of the m-opioid receptor, (4) remote homolog structures of
ubiquitin and SUMO, and (5) remote homolog structures of
carbonic anhydrases. All structures can be accessed in the RCSB
Protein Data Bank (RCSB PDB) under their respective PDB IDs.
The DMS datasets encompass 12 experimental investigations
targeting DNA-binding proteins, RNA-binding proteins, viral
spike proteins, RNA-guided nucleases, and kinases. These same
datasets have also been employed by EVOLVEpro to benchmark
downstream biological tasks. More details can be found in
Table S1.†
ProTokens

Overview. ProTokens are residue-wise discrete tokens for
encoding of proteins' metastable states. In the landscape
theory,65 a metastable state is a basin on the free-energy surface
that remains stable over an observation time (sobs) longer than
the local relaxation time (srelax) but shorter than the state's
overall lifetime (slife). Under these conditions, the protein
primarily explores local uctuations within that basin rather
than transitioning to others. By analogy, amino acids can be
considered as a highly compressed set of tokens that dene the
folded state at sobs z sfold, where sfold is the folding/unfolding
timescale of a protein (Fig. S12†). Our ProTokens extend this
concept to ner timescales, producing a rich yet still discrete
representation that can capture functional conformational
variations and be reliably mapped back to 3D coordinates.
Building on ProTokens, a unied perspective is achieved for
understanding the sequence and structure modalities in
protein science, which are traditionally viewed as separate
domains. Detailed discussion of probabilistic tokenization
theory can be found in the ESI.†

Model architecture. A VQ-VAE based network named Pro-
Token Distiller is designed to tokenize the metastable structure
x of proteins. The ProToken Distiller includes three main
components: the encoder fq, the tokenizer hq, and the decoder
gf (details in ESI, Fig. S13†).

The encoder fq is a parameterized SE(3)-invariant mapping
that transforms a protein structure x with Nres residues into a ds
dimensional single representation s˛ℝNres�ds and a dp dimen-
sional pair representation p˛ℝNres

2�dp ; derived from its distance
matrix and backbone dihedrals. Inspired by the EvoFormer and
structure module in AlphaFold2, we form a scalable “sandwich-
like” transformer module comprising 2, 4, and 2 layers of Evo-
Former, ResiDual transformer, and EvoFormer, respectively.
These layers are designed to update single representations and
pair representations, and co-update single and pair represen-
tations sequentially. Subsequently, a structure module is
© 2025 The Author(s). Published by the Royal Society of Chemistry
utilized to enhance the encoder's structure-awareness by
aggregating information from the processed s, p and the raw
structure x, and nally output a d dimensional representation
fq;rðxÞ˛ℝd for each residue r (1 # r # Nres).

For the tokenizer hq, we employ vector quantization (VQ)23

techniques commonly used in image tokenization. The VQ
module dynamically maintains and updates a “codebook” {ci},
ci˛ℝd; which serves as cluster centers in the vector space. Each
input vector fq,r(x) is assigned to the nearest code ci in the
codebook via a nearest neighbor search:

zx;r ¼ arg min
ci˛fcig

kfq;rðxÞ � cik22 (1)

Here, the ProToken for residue r is dened as the code zx,r = ci
and the corresponding “token index” i. The decoder gf(z) maps
the ProToken sequence zx = (zx,1, zx,2, ., zx,Nres

) back to the
input structure, such that gf(zx) z x. Similarly, the decoder
consists of a “sandwich-like” transformer of identical size to the
encoder, followed by a structure module that “folds” the
structure from the single and pair representations.

Training of ProTokens. The training objective is simply to
reconstruct the structure from the encoded ProTokens, i.e.,
gf(hq(fq(x))) z x. Since reconstructing the structure from Pro-
Tokens closely resembles protein folding, we adopted the
Frame Aligned Point Error (FAPE)18 and the structure violation
loss used in AlphaFold2 as the reconstruction loss. Additionally,
as in standard VQ models, a commitment loss is implemented
to regularize the codebook and embedding vectors.

In most protein engineering scenarios, it is essential to
represent protein metastable states dened on a functional
timescale, where sobs = sfunc < sfold. To this end, we use struc-
tures from the RCSB database as the training set, as they are
oen regarded as functionally relevant conformations of
proteins. Metastability implies that the structural ensemble
{x}s�sobs should be tokenized into the same set of ProTokens,
with irrelevant uctuations at s � sobs treated as noise. To
mimic the distribution of structural uctuations, we augment
the structural data by applying perturbations (details in the
ESI†). Additionally, we apply an alignment loss27 to constrain
the embedding vectors of two structures x and x0 belonging to
the same metastable state:

L alignmentðqÞ ¼ Ex;x
0 kfqðxÞ � fq

�
x

0�k
2

2 (2)

To further optimize the representation, a uniformity loss is
introduced to encourage the code distribution to be as uniform
as possible, ensuring efficient use of the latent space,

L uniformityðqÞ ¼ log Ex1 ;x2�pdata

�
exp

�
�kfqðxÞ � fq

�
x

0�k
2

2

��
(3)

Details on the design rationale of the models and training
algorithms are provided in the ESI.†

PT-score algorithm. Similar to Foldseek,26 to obtain the
substitution matrix for homologous structural domains, we
performed extensive data augmentation on the training set.
Specically, we utilized AlphaFold2, using the ground truth
Chem. Sci.
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structure of the protein as a template, without adding multiple
sequence alignments (MSAs) and enabling dropout during
structure prediction. We then ltered out the high quality
perturbation samples where the TM-score of the perturbed
structure and true structure is above 0.8. The Local Distance
Difference Test (LDDT) between the predicted and the true
structures was conducted and residues with LDDT scores
greater than 80 were selected. The corresponding structural
code pairs were counted to compute the BLOSUM matrix. In
parallel, we used the Needleman–Wunsch algorithm to calcu-
late the similarity and alignment of two ProToken representa-
tions, yielding a PT-score. The Needleman–Wunsch algorithm
was implemented using a custom Python package.
PT-DiT

Training of PT-DiT. Based on ProTokens, we represent
proteins with vectors z = (zx, zs), where zx denotes residue-wise
ProToken embeddings (dim = 32) distilled from backbone
structures, as dened in eqn (1), and zs represents residue-wise
amino acid embeddings (dim = 8), reduced via principal
component analysis (PCA) from ESM2 and AlphaFold2 embed-
dings. This embedding strategy can be formulated as the
Cartesian product of ProTokens (tokenized backbone struc-
tures) and sequences, forming a homogeneous and interactable
space for both sequence and structure modalities. Thus, the
probabilistic model p(zx, zs) captures the joint likelihood of
sequences and structures. Aer zx, zs are generated according to
p(zx, zs), the backbone coordinates of the protein are decoded
from zx using the ProToken decoder, while the protein sequence
is decoded from zs via nearest-neighbor search.

By virtue of the regularity of the compact vector space p(zx,
zs), adapting diffusion models to generate proteins is as
straightforward as generating images or videos. We employ
standard denoising diffusion probabilistic models (DDPMs),66

where the noise prediction model 3q(zt, t) is trained to reverse
a Markov diffusion process qðztjzt�1Þ ¼ N ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� bt
p

zt�1; btIÞ;
which is equivalently dened by the following transition func-
tion of probability,

qðztjz0Þ ¼ N
	 ffiffiffiffiffi

at

p
z0; ð1� atÞI



;at ¼ 1� bt;at ¼

Yt
s¼1

as

The architecture of 3q(zt, t) follows that of diffusion trans-
formers, utilizing 24 transformer layers with a hidden size of
512 to predict noise from the perturbed protein embedding zt.
The following “noise-matching” loss is dened for training,

L ðqÞ ¼ Ez0 ;t�U½0; T �; 3�N ð0;IÞ
h
k3� 3qðzt; tÞk2

i
;

zt ¼
ffiffiffiffiffi
at

p
z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
3

Aer training, the (x, s) pair can be generated via the
ancestral sampling scheme of DDPM, which samples the
backward diffusion process, dened as:
Chem. Sci.
pqðzt�1jztÞ ¼ N

�
1ffiffiffiffiffi
at

p
�
zt � btffiffiffiffiffiffiffiffiffiffiffiffiffi

1� at

p 3qðzt; tÞ
�
; btI

�

Alternatively, other samplers based on stochastic differential
equations or ordinary differential equations can also be
applied.25 The model architecture closely follows that of diffu-
sion transformers, and state-of-the-art image diffusion models
proven to scale effectively in image generation. Moreover, PT-
DiT is highly adaptable to the latest advancements in both
training and sampling techniques developed for image diffu-
sion models, as we made minimal modications to the model
architecture and training algorithms.

Algorithms for protein engineering. By unifying the
perspectives of sequences and structures and projecting these
two modalities into a joint embedding space, various tasks in
protein engineering can be interpreted as an “inpainting”
problem.24 Inverse folding involves lling in sequence embed-
dings with designated structure embeddings, while structure
prediction or sampling corresponds to generating structure
embeddings using sequence embeddings as context. Further-
more, contextual design can be achieved by inpainting the
remaining sequences and structures, given that the sequences
and/or structures of part of the residues (oen functional
regions) are provided. Many methodologies have been devel-
oped to leverage pre-trained image diffusion models for image
inpainting, most of which can be directly adapted to PT-DiT. In
our experiments, we applied the RePaint algorithm,24 where
each step involves harmonizing the context and non-context
regions under specic noise levels.

By leveraging the RePaint strategy, although PT-DiT is
trained to model the joint probability distribution of entire
protein sequences and structures, it can be directly applied to
many conditional generation tasks in protein engineering
without the need for additional training or ne-tuning. Math-
ematically, PT-DiT combined with RePaint algorithms solves
the conditional generation problem p(zx, zsjzcx, zcs), where zcx and
zcs represent context ProTokens and amino acid embeddings,
respectively. For example, in the inverse folding task, zcx = zx
corresponds to the full ProToken sequence derived from input
backbone structures, while zcs =B. For scaffolding, zcx, z

c
s encode

the structure and sequence information of the functional site
that is preserved during generation.

To demonstrate how PT-DiT with the RePaint algorithm can
gra specic functional motifs onto a different scaffold, we use
the CDR3 of antibodies as an example. The procedure proceeds
as follows: as shown in Fig. 3e, we rst crop the CDR3 from an
antibody heavy chain with a known structure (PDB ID 5JXE).67

Since loop-like conformations are ubiquitous in protein struc-
tures, merely specifying a CDR3 loop as context cannot ensure
the generated structures belonging to the family of antibodies
which exhibit specic structural constraints. Therefore, we need to
precondition the contextual ProTokens towards antibody-like
structures. Specically, we rst select a human germline struc-
ture as the template, and then replace its CDR3 region with the to-
be-graed loop by superimposition. The backbone of this articial
graed structure is encoded into backbone tokens, among which
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc02055g


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/6
/2

02
5 

11
:5

4:
00

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the CDR3 loop is cropped and set as context along with its
sequence. The lengths of the anking FWRs and CDRs can be
sampled according to the distribution of the human germlines,
while we set them the same as in 5JXE for simplicity. Through
inpainting sampling, we can obtain ProTokens that can be deco-
ded to all-atom structures containing the target CDR3 loop as well
as the amino acid sequence for the entire chain.

Denition of latent representations. Mathematically, the
forward and backward diffusion processes of DDPMs can be
continuously formulated as the following forward and back-
ward stochastic differential equations (SDEs):25

dz ¼ �1

2
btzdtþ

ffiffiffiffi
bt

p
dwt

dz ¼
�
� 1

2
bðtÞz� bðtÞVz log ptðzÞ

�
dtþ

ffiffiffiffiffiffiffiffi
bðtÞ

p
dwt

where bt denes the forward Markov chain of DDPM
ðqðztjzt�1Þ ¼ N ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� bt
p

zt�1; btIÞÞ; wt denotes a standard
Brownian motion, and Vz log pt(z) represents the score function
of marginal distribution at t, which is approximated by the
neural networks. Furthermore, these SDEs can be equivalently
transformed into a probability ow ordinary differential equa-
tion (PF-ODE),68 which conserves the marginal distribution of
z(t) at each time step t ˛ [0, 1],

dz ¼
�
� 1

2
bðtÞz� 1

2
bðtÞVz log ptðzÞ

�
dt

Therefore, a DDPM is also a latent generative model, where
a deterministic one-to-one mapping between the input vectors
z(t = 0) and the latent vectors z(t = 1) is constructed by solving
the initial value problem (IVP) using any black-box ODE solvers,
such as Euler and Runge–Kutta solvers.

The strategy used to interpolate between two proteins in
latent space is straightforward. Aer mapping protein A and
protein B (represented as zA(0) and zB(0)) into latent vectors
(using the explicit 4th order Runge–Kutta method), zA(1) and
zB(1), we obtain their intermediate latent vectors via linear
interpolation:

zl(1) = (1 − l)zA(1) + lzB(1)

Subsequently, the intermediate proteins (zl(0)) are obtained
by solving the backward IVP.
Statistical analysis

rTM-score and rLDDT. The TM-score is widely used to eval-
uate the fold similarity between two protein structures. Two
protein folds with a TM-score above 0.5 are usually considered
as the same fold. To evaluate the structure decoded by the
ProTokens of the protein with its original ground truth struc-
ture, we use this score to show the structure difference and
specially call it the rTM-score. The Local Distance Different Test
(LDDT) is another method commonly used for evaluating the
© 2025 The Author(s). Published by the Royal Society of Chemistry
residue-wise structure difference of two proteins. The LDDT
score between the structure decoded from the ProTokens and
its original ground truth structure (rLDDT) is calculated to show
explicit structure reconstruction performance of ProToken. The
rTM-score is calculated using the official code (https://
zhanggroup.org/TM-score/). rLDDT is calculated with custom
python code.

scTM-score. As a co-generation method of the protein
structure and sequence pair, we use the TM-score matrix
between the ESMFold predicted structure of the generated
sequence and the generated structure to evaluate the self-
consistency of the structure and sequence pair and speci-
cally call it the scTM-score for ease of recognition.

Data availability

The training sets used in this study are publicly available at
https://p.cbi.pku.edu.cn/psp/. All the information for
experimental datasets is listed in Table S1.† All data used and
showed in this study are available at the https://doi.org/
10.17605/OSF.IO/E9T8W repository.69 The ProToken and PT-
DiT code is available at https://github.com/issacAzazel/
ProToken under Apache 2.0 license. A Colab notebook for
ProToken encoding and decoding process is provided at
https://colab.research.google.com/drive/
15bBbfa7WigruoME089cSfE242K1MvRGz for ease of use. We
also provide several notebooks for downstream tasks
mentioned above like directed evolution (https://github.com/
issacAzazel/ProToken/blob/main/example_scripts/
latent_space.ipynb), de novo design (https://github.com/
issacAzazel/ProToken/blob/main/example_scripts/
de_novo_design.ipynb), CDR3 graing (https://github.com/
issacAzazel/ProToken/blob/main/example_scripts/
repaint.ipynb), and conformation sampling for ease of use.
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