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nal hydrogen-bond shift
predictions with multicomponent DFT†

Mart́ı Gimferrer, ‡ Lukas Hasecke, ‡ Margarethe Bödecker
and Ricardo A. Mata *

In this work we explore the use of multicomponent methods for the computational simulation of

anharmonic OH vibrational shifts. Multicomponent methodologies have become popular over the last

years, but still are limited in their application range. However, by enabling the simultaneous quantum

treatment of protonic and electronic wave functions/densities, they hold promise for the treatment of

anharmonic effects and proton vibrations in general. This potential has only been probed but not fully

realized so far. This study investigates the performance of Nuclear-Electronic Orbital Density Functional

Theory (NEO-DFT) in the prediction of water OH shifts upon complexation with organic molecules. We

make use of the HyDRA database, expanded to 35 hydrogen-bonded monohydrates of small organic

molecules, and evaluate a range of DFT functionals, both hybrid and double-hybrid. We introduce

a robust prediction strategy based on common ingredients available when running conventional DFT and

NEO-DFT calculations, which for the first time reduces the root mean square deviation (RMSD) values

below 10 cm−1 for the set. Double-hybrid functionals in combination with a DFT treatment of the proton

of interest is found to be particularly promising. The new systems added to the HyDRA dataset are

presented and used as an extra test to the methodology.
Introduction

Vibrational spectroscopy is an extremely widespread and
popular approach for the study of molecular clusters and
interactions in general.1–3 With wide applications ranging
from interstellar medium4,5 to molecular adsorption on
surfaces/porous materials,6,7 each molecule carries unique
signatures that can be tracked through the use of infrared
absorption/emission techniques. However, in order to identify
said ngerprints and understand how these are inuenced by
molecular interactions, electronic structure calculations and/
or other computational approaches are oen times
essential.8–11

In an attempt to put the predictive power of computational
methodologies to the test, two of the authors co-organised
a double-blind challenge, focusing on the vibrational spectra
of hydrates. The “Hydrate Donor Redshi Anticipation”
(HyDRA) challenge presented 10 hydrate test systems to be
computed under a time limit.12,13 The target observable was the
wavenumber downshi of the OH donor band of water, as it
forms hydrogen bonds to selected organic molecules. A set of
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training systems was provided as well, in order for participants
to ne-tune or test their methodologies. A total of 20 submis-
sions were registered, showing the strengths and weaknesses of
different approaches. In the end, among the top performing
methods one could count simple harmonic predictions along-
side machine learning protocols. A few lessons could be
extracted from the challenge. First of all, the computational
effort of the different approaches did not necessarily correlate
with the quality of the nal results. Particularly in the case of
full or partially anharmonic corrected approaches, the results
oen times deviated signicantly from the experimental
observations. This was in line with the observations made in
a previous challenge on the furan-methanol dimer, whereby
anharmonic corrections gave contrasting results.14,15 One could
also observe that it was a hard task to reach below a 10 cm−1

accuracy for the water shis. In fact, none of the submissions
was able to reach a root-mean square deviation (RMSD) below
that value.13 We expect further improvements in new versions of
the challenge, as participants further hone their protocols. But
beyond the challenge, the data can be repurposed as a bench-
mark for the evaluation of new approaches.

We begin by presenting the HyDRA dataset in its rst
version. It includes both training and test systems used in the
challenge, plus additional systems which were collected/
submitted since its start. It consists in total of 35 hydrogen-
bonded monohydrates of small organic molecules with
diverse complexities, and for which experimental redshis of
Chem. Sci.
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the symmetric OH stretching vibration have been measured in
the jet-cooled gas phase. In this work, we will make use of these
experimental data points to benchmark multicomponent DFT.
Within the Nuclear-Electronic Orbital Density Functional
Theory (NEO-DFT), electrons are treated quantummechanically
with other groups of fermions. Typically, these will be protons
of chemical interest. In this case, the hydrogen nuclei are no
longer represented by point charges, but instead through Kohn–
Sham orbitals. The electronic and protonic subsystems are
solved through two separate Fock matrices, coupled through
Coulomb interactions as well as electron–proton correlation (if
included).16,17 We compare a variety of DFT functionals,
including both hybrid and double-hybrid types, in conjunction
with NEO-DFT. We detail a methodology for predicting vibra-
tional shis as a function of proton density displacements and
compare it to other HyDRA challenge submissions. Our nd-
ings demonstrate that, within the NEO-DFT framework, one can
effectively and accurately account for anharmonic effects. This
capability is essential for the high-accuracy computational
evaluation of spectroscopic vibrational shis, particularly for
hydrate systems. Finally, we make use of the newly introduced
systems in the dataset to expand our testing of the model.
Fig. 1 (a) Numerical summation of proton density from a NEO(epc-
17.2)-B3LYP calculation in the ACE system. The values are obtained by
summing slab grid values (0.01 bohr step sizes) for a fixed position
along the bond. The x-axis presents this position as the shift from the
classical proton position Re (positive values are closer to the acceptor
atom). (b) 1DMorse potential as defined in eqn (1), with the dissociation
energy De and the minimum position Re shown. The first states for the
Morse oscillator are equally displayed (n# 5). In both cases, the density
for the ground state will be shifted away from the minimum Re due to
the anharmonicity of the potential.
Proton charge centroids and level
transitions

As mentioned in the previous section, we are interested in
establishing correlations between the NEO-DFT position of
a quantum proton and the anharmonic corrections to the
fundamental OH stretch band. In order to illustrate how the two
quantities are related, we will make use of a 1D-Morse potential.
The analytic expressions for energies and other expectation
values have been provided by Tipping and Ogilvie.18 The
following discussion draws from the expressions provided by
these authors.

We express the Morse potential with a depth of De and
minimum at Re (see Fig. 1) as

V(R) = De[1 − e−a(R−Re)]2. (1)

The dimensionless anharmonicity parameter S−1 is dened
with

S ¼ 1

a

�
8mDe

ħ2

�1=2

; (2)

for a Morse oscillator with reduced mass m. It is possible to
express the fundamental transition (n = 0 / 1) as well as the
density centroid for the oscillator in the ground state (n = 0) on
the basis of this anharmonicity parameter. The fundamental
transition is given by

E1 � E0 ¼ 4De

�
1

S
� 2

S2

�
; (3)

while the position of the density centroid relative to Re can be
truncated to second order in S−1
Chem. Sci.
Dx ¼ R� Re z
1

a

�
3

2S
þ 26

24S2

�
: (4)

If we compare the two expressions (eqn (3) and (4)) we
observe that they scale proportionally to rst order. In second
order, the trends are opposite (difference in signs for the S−2

terms). This line of discussion ignores that the depth and shape
of the potentials can have a differentiated effect. Whether
a linear relationship can be expected will depend on the system
under study. But this simple 1D-model already helps to illus-
trate how the two quantities can be correlated, and why we
expect to obtain information about anharmonic corrections to
the fundamental OH stretch band through the NEO-DFT
centroid. In Fig. 1 we also present the NEO-DFT computed
density for one of the systems under study and how it is slightly
shied from the minimum position.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Experimental wavenumbers in cm−1 of the hydrogen-bonded
OH stretching fundamentals for water in the 35 monohydrates of the
training,12 test13 and first extension set21 of the HyDRA database.
Structural formulae, CAS registry numbers and acronyms are given for
the acceptor molecules. In cases of experimentally observed anhar-
monic resonances, deperturbed wavenumbers are shown.22 Raw
wavenumbers are available from ref. 21.
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Introducing the HyDRA dataset

When water forms a hydrogen-bonded dimer with a hydrogen
bond acceptor molecule, the symmetry of the symmetric and
antisymmetric OH stretching modes is broken. For water in
molecular clusters, the two OH stretching vibrations can be
described as in-phase and out-of-phase vibrations. The major
contribution to the in-phase OH stretching is the stretching of
the OH hydrogen-bonded to the acceptor molecule (OHb).
Because of its high IR activity and its sensitivity to the hydrogen
bond strength, the OHb stretching fundamental can provide
experimentally well accessible and valuable information about
competing conformations in hydrogen-bonded dimers. By
subtracting the absolute OHb wavenumber of the molecular
cluster from the water monomer symmetric stretching funda-
mental (3657 cm−1),19 the hydrogen bond-induced redshis can
be calculated.

The HyDRA database is a growing experimental database of
hydrogen-bonded water OH stretching vibration (OHb) wave-
numbers in vacuum-isolated monohydrate complexes20 at low
temperature.21 At this point in time, the database contains 35
1 : 1 complexes of water with a small organic molecule (Fig. 2). It
was initially created in the context of the rst HyDRA blind
challenge,12,13 in which computational spectroscopy was chal-
lenged to blindly predict experimentally measured OHb wave-
numbers of 10 test set systems. For this, a training set
consisting of 10 hydrogen-bonded monohydrates was provided
together with the literature-known and experimentally well-
characterized OHb wavenumbers.12 The goal was to curate
a training and a test set that is diverse in terms of complexation
redshis and different functional groups. Furthermore, in all
HyDRA-systems, water is the proton donor in the lowest energy
structure. Until the submission of the quantum-chemical
predictions, the experimentally measured OHb wavenumbers
of the test set systems were kept secret. Aer the evaluation of
the HyDRA blind challenge, the training and test set data were
made available.21 The database is now extended by 15 additional
experimentally unambiguously characterized OHb wave-
numbers of hydrogen-bonded monohydrates (extension set I).
The hydrogen bond acceptors are: fully deuterated (D6) acetone
(ACD),22 cycloheptanone (CHP),22 cyclohexanone (CHX),22 4,4-
dimethylcyclohexanone (GMC),22 (−)-fenchone (FEN),22 20-uo-
roacetophenone (OFA),22 40-uoroacetophenone (PFA),23 2-uo-
robenzaldehyde (OFB),23 4-uorobenzaldehyde (PFB),23 methyl
glycolate (MGL),23 pinacolone (PIN),22 tert-butyl alcohol (TBA),23

2,2,6,6-tetramethylcyclohexanone (AMC),24 3,3,5,5-tetrame-
thylcyclohexanone (BMC),22 and the TEMPO radical (TMP).24

The HyDRA database is designed to provide experimental
data which allows a straightforward comparison to quantum-
chemical calculations. Therefore, the molecular aggregates are
measured in a supersonic jet expansion,25 in which molecules
and molecular clusters are vacuum-isolated and cooled to
temperatures below 20 K.12 Through this approach, environ-
mental and thermal effects on the conformations and vibra-
tions are minimized. The 35 systems include 33 closed-shell
and two open-shell systems (DBN26 and TMP24). Currently, the
© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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hydrogen bond-induced redshis of the in-phase OH stretching
wavenumbers in the database range from 8 cm−1 (H2O–TFE) to
203 cm−1 (H2O–PYR).13

For many monohydrate clusters, anharmonic reso-
nances22,24,27 are observed, when two vibrational states of the
same symmetry are in energetic proximity. In this kind of
anharmonic resonances, a bright state shares intensity with
a dark state, and both states split energetically. Assuming that
the dark state has negligible intrinsic intensity, the deperturbed
OHb wavenumber can be determined as the intensity centroid
of the resonance signals.22 In the HyDRA database, anharmonic
resonances have been experimentally observed for 11 mono-
hydrated systems: ACE, ACD, APH, CHP, CHX, GMC, FEN, PIN,
AMC, BMC and TMP.21 In Fig. 2, the deperturbed band positions
of the OHb stretching fundamental are shown.

Computational details

All Kohn–Sham Density Functional Theory (KS-DFT) calcula-
tions were performed with the Gaussian16 soware (revision
A03).28 Geometry optimizations were carried out using the
hybrid density functionals B3LYP29 and PBE0,30 and the double-
hybrids B2PLYP31 and DSD-PBEP86,32,33 coupled with the def2-
TZVPP full electron basis set.34 In all cases, Grimme's D3
dispersion correction with Becke–Johnson (BJ) damping was
included in the calculations.35,36 For convergence, tight thresh-
olds were employed (opt = tight keyword in Gaussian16).
Vibrational frequency calculations to conrm zero imaginary
frequencies (minima) on the potential energy surface, and to
extract the value of the frequency associated with the donor OH
stretching, were performed at the same levels of theory.

Initial geometries for optimization for the test and training
sets of the HyDRA challenge were extracted from the LS3
submission, the best overall submission that provided
geometric (xyz) data, except for PCD. For the latter, the LS1
conformer was used. The reason for this choice is discussed in
the original paper.13 For the newly included systems in the
HyDRA database, initial xyz coordinates were obtained using
a Python script that combines the SMILES molecular repre-
sentation (extracted from entering the CAS number in Pub-
Chem) and RDkit. Then, a water molecule was manually
introduced into the system, and conformer analysis was per-
formed with CREST (version 3.0.2) using the sampling of non-
covalent complexes and aggregates (NCI mode).37 With this,
several plausible conformers within a range of 6 kcal mol−1

were obtained, reoptimized at the B3LYP/def2-TZVPP level of
theory, and ranked by energy (electronic + zero-point vibrational
energy, DH0). Conformers with relative energies within
1 kcal mol−1 were reoptimized using the 4 different DFT func-
tionals used in the study, selecting as the “best” candidate the
lowest in energy by all of them (coincided in all cases).

All single-point NEO-DFT calculations were carried out by
employing our NEO program suite implemented in the Molpro
2024.2 package.38–42 For the electronic part, the B3LYP func-
tional was employed for all B3LYP and B2PLYP optimized
structures and the PBE0 functional for the PBE0 and DSD-
PBEP86 ones.29,30 In all calculations, and analogously to the
Chem. Sci.
geometry optimizations, D3 dispersion correction with Becke–
Johnson damping was included.35,36 To account for the elec-
tronic–nuclear correlation, the epc-17.1 and epc-17.2 func-
tionals were used in this work.43,44 In all our multicomponent
calculations, the quantum nuclear subsystem includes only the
proton involved in the hydrogen-bonded water OH stretching
vibration. The basis functions for the quantum proton are
placed at the Born–Oppenheimer optimized positions and the
expectation value is computed based on the self-consistently
obtained nuclear NEO-DFT density. As electronic basis set, the
def2-TZVPP basis set together with the def2-QZVPP-JKFIT
density tting basis set were utilized while the PB4-F2 basis
set together with the even tempered 10s10p10d10f tting basis
set, with exponents ranging from 2

ffiffiffi
2

p
to 64, was employed as

the nuclear basis set.34,45,46 Additional calculations were carried
out with larger basis sets, namely the def2-QZVPP electronic
and PB6-F nuclear basis sets, employing the same density tting
basis sets as mentioned before.34,46 We set a threshold of 10−8

a.u. for the energy difference within the electronic and nuclear
subcycles, the gradient as well as the difference in the density
between the individual self-consistent eld (SCF) iterations of
both subsystems. The global threshold for the absolute NEO
energy as sum of all contributions is set to 10−7 Hartree. To
accelerate the convergence within the SCF subcycles the direct
inversion in the iterative subspace (DIIS), starting aer the rst
iteration with a maximum of 10 Fock matrices as basis to
extrapolate, is employed.47,48 All NEO-DFT calculations utilize
the standard grid 3 (SG-3) of Dasgupta and Herbert for
numerical integrations.49 It should be noted that the NEO-DFT
calculation is not the computational bottleneck in our compu-
tational protocols. It is faster to run than the analytical Hessian
calculation which is needed for the harmonic frequency values.

Results and discussion
HyDRA challenge systems

Let us start by revisiting the HyDRA challenge from the
perspective of multicomponent DFT methods. To reiterate, the
HyDRA challenge involves assessing the accuracy of computa-
tional protocols in determining the vibrational shi of the
donor OH stretching from vibrational spectroscopy. We will
denote this quantity as Dnexp, where
Dnexp ¼ n½OHdimer

b � � n½OHH2O
s �. The value of n½OHH2O

s � is deter-
mined as 3657 cm−1.19 The values for the dimers were the
deperturbed wavenumbers. The original challenge presented 20
hydrate systems, with 10 (nine of which are closed-shell)
forming the training set (with experimental Dnexp values
provided), and the remaining 10 designated as a test set (blind
challenge).12

Initially, we evaluated the geometry and purely harmonic
(PH) shis, Duharm, for both training and test sets using four
electronic KS-DFT functionals of different nature: two hybrid
(B3LYP and PBE0) and two double-hybrid (B2PLYP and DSD-
PBEP86). In all cases, dispersion corrections have been
included by means of Grimme and coworkers D3 scheme with
Becke–Johnson (BJ) damping parameters. For further technical
details, we guide the reader to the Computational details
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc02165k


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/1
/2

02
5 

4:
58

:0
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
section. The raw data for the obtained shis is gathered in Table
S1.† The root mean square deviation (RMSD) values calculated
between Duharm and Dnexp were 36.3 cm

−1 and 52.7 cm−1 for the
hybrid functionals B3LYP and PBE0, respectively, while the
double-hybrids yielded signicantly lower values: 24.2 cm−1 for
B2PLYP and 19.2 cm−1 for DSD-PBEP86 (see Table S2†). This
improvement in accuracy can be attributed to the incorporation
of MP2-like correlation into the functional expressions. It is
important to remark that low RMSD values are not expected
from PH methods since anharmonicity effects are not accoun-
ted for. More accurate results would be mere error compensa-
tion, and not physically grounded.

For each system, the numerical discrepancy between Duharm

and Dnexp directly reects the amount of anharmonicity asso-
ciated with the formed hydrogen bond (H–OH) upon hydration
as well as the method error (DFT functional and basis set used).
We will argue that double-hybrid functionals should reduce the
latter signicantly, to the point that the harmonic approxima-
tion errors dominate. Multicomponent DFT calculations that
treat the H-atom as a quantum particle intrinsically account for
both harmonic and anharmonic effects. This is evidenced by
the shi/polarization of the density of the quantum hydrogen
atom, henceforth proton density, relative to its classical atomic
position. This shi, termed DxH, is evaluated by calculating the
displacement of the expectation value (centroid) of the proton
density (xH) from its classical nuclear position (RH): DxH = jxH –
Fig. 3 Linear fit for the training set (9 closed-shell systems) constraine
in cm−1. Note that the x-axis scale changes significantly depending o
functionals.

© 2025 The Author(s). Published by the Royal Society of Chemistry
RHj. Subtracting the shi (equally evaluated) from an isolated
water molecule to that within the system allows for a direct
comparison with the anharmonic effects neglected in conven-
tional DFT calculations:

DxH = jxH − RHj − jxH,H2O − RH,H2Oj. (5)

The obtained proton density depends on the choice of the
electron–proton correlation functional. The most widely used
LDA-type functionals are the epc-17.1 and epc-17.2 functionals
developed by Hammes–Schiffer and coworkers.43,44 Those were
recently benchmarked by Yang et al.50 by calculating vibrational
spectra from constrained NEO molecular dynamics. It was
found that the epc-17.1 functional produces results similar to
Born–Oppenheimer DFT while the epc-17.2 functional or NEO-
DFT without any electron–proton correlation reproduce the
main features of the experimental spectra. For our work, we
compare the difference in the obtained expectation values of
both epc functionals and without electron–proton correlation in
Fig. S1† for the training and test sets. In line with the results of
Yang et al., we nd that the results obtained with epc-17.1 are
rather featureless and somewhat close to the Born–Oppen-
heimer proton positions. The epc-17.2 results exhibit larger
deviations from the classical positions and a robust correlation
with the frequency shis. A similar distribution is found if no
electron–proton correlation is invoked within the NEO-DFT
d to cross the [0, 0] at the different levels of theory. RMSD provided
n the method applied, with a much shorter range for double hybrid

Chem. Sci.
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method. However, even though the centroid values are largely
unaffected by removing electron–proton correlation, the overall
nuclear density does change severely as shown by Tao et al.51

Therefore, we restrict ourselves in this work to the use of the
epc-17.2 electron–proton correlation functional. In Fig. 3, we
illustrate the linear correlation between DxH (y-axis) derived
from NEO-DFT calculations (for details, see Computational
details section) and theDuharm− Dnexp values (x-axis) calculated
at the different levels of theory. Importantly, the linear regres-
sions have been constrained to intercept the origin (0, 0). This is
the reference value for the isolated water molecule, in order to
keep consistency with the quantity denition (eqn (5)). This
tting strategy allows for the prediction of Duharm − Dnexp
values for any given system and subsequently provides
a correction to the harmonic wavenumbers obtained at the
associated conventional DFT level. The resulting model will be
referred to as Model-9 (9 training points).

Applying our model to the training set yielded RMSD values
lower than 10 cm−1, regardless of the functional employed.
Among them, B2PLYP resulted in the lowest RMSDwith a value of
4.8 cm−1. Interestingly, DSD-PBEP86 also provided relatively low
errors despite presenting amodest R2 of 0.57. This is attributed to
overall lower Duharm − Dnexp values compared to those derived
from other functionals. As previously mentioned, the difference
between the harmonic computed values and the experimental
shis cannot be solely attributed to anharmonic effects. It also
carries the deciencies of the level of theory chosen for the
harmonic prediction. From the assumption that double-hybrid
functionals are more robust in the description of the potential
energy surface, it makes sense that our model correction is best
carried by B2PLYP-D3(BJ) and DSD-PBEP86-D3(BJ).

When Model-9 is used to predict Duharm − Dnexp values for
the test set, the RMSD values are 12.7 cm−1 (B3LYP), 12.8 cm−1

(PBE0), 7.2 cm−1 (B2PLYP) and 6.8 cm−1 (DSD-PBEP86). This is
in extremely close agreement with the experiment. All quanti-
ties used to evaluate the RMSDs are collected in Table S1.† It
should be noted that the position of the quantum proton is
Fig. 4 Overall RMSD from the NEO-based model for the test set
(Model-9). Each unit decreased in the number of test values (x-axis)
involves removing the “worst” predicted value. Reference values from
other submissions are represented as colored surfaces: AC2 (red), LS3
(yellow) and PH5 (blue). RMSD provided in cm−1.

Chem. Sci.
determined through a self-consistent eld NEO-DFT calcula-
tion, no optimization procedure is used. In order to verify
whether or not this position is inuenced by our choice of
protonic basis set, all calculations were repeated with an even
larger protonic (PB6-F) as well as electronic (def2-QZVPP) basis
set.46 The results indicate no quantitative difference as shown in
Tab. S3.

To assess the performance of our model in further detail, we
present in Fig. S2† the system-specic prediction errors for
Duharm − Dnexp, comparing these results to the best purely
harmonic submission (PH5) from the HyDRA challenge. The
error is dened as the deviation to the experimental value.
Overall, the NEO-based model displays impressive performance
given that the errors (in absolute value) for the double-hybrids
are generally smaller than ca. 10 cm−1 (see Table S4†). The
most problematic systems are DMI, FAH and THF, with
a maximum absolute deviation of 13 cm−1.

In order to compare to the best submissions of the HyDRA
challenge, we opt for a similar diagram as used in the original
publication. We provide incremental RMSD values derived from
removing the worst prediction of the test set (see Fig. 4), and
contrasting them with the results of the best-performing
methods from the HyDRA challenge: PH5, AC2 and LS3.13 The
trends for the PH5 and our model results (with double hybrids)
are notably similar, with the latter showing better accuracy by
approximately 5 cm−1. It also displays better performance to
that of the learning strategy (LS) submissions like LS3, and the
anharmonically corrected protocols like AC2 – the top-
performing methods within the HyDRA challenge with RMSD
values graphically represented as yellow and red surfaces in
Fig. 4, respectively.13 A signicant advantage of our proposed
model over learning strategies lies in its simplicity, resulting
from the direct calculation of the protonic density. This
conrms the robustness of our model with the double hybrid
functionals in producing reliable and accurate results for the
test set, even when using a limited number of tting points (9 in
total). The caveat that should of course be mentioned is that we
are not submitting our estimates blindly. We prot from the
structural sampling already performed by the other groups and
it is unfair to generally compare to blind challenge conditions.
Nonetheless, it is reassuring to observe that the deviations in
the training set are comparable to that of the test.

It is worth noting that for the hybrid GGA functionals B3LYP
and PBE0, removing the constraint from the linear regressions
yields improved ttings (according to the statistical R2 indi-
cator) for the training set. However, this revised model, yields
less satisfactory results when applied to the test set (see Table
S5†), a clear sign of over-tting. Furthermore, we believe the
physical interpretation of calculating vibrational shis is
compromised with such a choice.
Extended HyDRA set

We will now address the prediction of vibrational shis for an
additional suite of 14 new systems included in the HyDRA
database. The dimer with the TEMPO radical is le out, as we
are only considering closed-shell systems. We again employ our
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Error in the predictions using Model-19 for the 14 extra molecular systems (extension set I) included in the HyDRA database. Errors
provided in cm−1.
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model, but a new linear t is constructed using the data from
both training and test sets (Model-19, 19 systems/data points).
The resulting linear t is depicted in Fig. S3,† revealing similar
R2 and RMSD values as those achieved using only the training
set (Fig. 3). This improvement serves to enhance the model's
robustness for future predictions, despite any minor declines in
statistical metrics like R2 or RMSD. However, it should be noted
that the linear ts are only slightly changed from Model-9 (t
with training systems) to Model-19 (t with training + test
systems), see Table S7.†

In Fig. 5, we show the prediction error associated with the
NEO-based model for these additional systems. As reference
values of performance from other methodologies are unavail-
able, we focus exclusively on the accuracy of our predictions.
Consistent with the test set analysis (Fig. S2†), the double
hybrid functionals surpass the performance of hybrid func-
tionals. The new Model-19 does demonstrate improved perfor-
mance with B3LYP, approaching the accuracy of double
hybrids. PBE0 consistently yields the least favourable results,
regardless of the number of points used for training. In the case
of B2PLYP, the largest error arises for the FEN hydrate system
with a value of ca. 11 cm−1 (see Table S6†). Given the
Fig. 6 Overall RMSD for the extension set I from Model-9 (left) Model-19
involves removing the “worst” predicted value. RMSD provided in cm−1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
complexities of the additional systems, we conclude that Model-
19 provides satisfactory results. The corresponding tting
parameters for Model-19 are given in Table S7.

Lastly, in Fig. 6 we present the incremental RMSD values
from both Model-9 and Model-19, on the extension set I.
Interestingly, all functionals exhibit a similar trend. The DSD-
PBEP86 and B2PLYP methods yield the lowest prediction
errors, ranging from approximately 6 cm−1 across all 14 systems
down to around 3 cm−1 when considering only 8 systems (in
both cases). The accuracy of Model-19 is impressive, over-
performing Model-9 in all accounts. However, these are
improvements in the range of just a few reciprocal centimeters.
There is not a lot of room for improvement, as one approaches
the experimental uncertainty (around 2 cm−1).

Overall, the NEO-based tting model introduced in this study
demonstrated remarkable performance in combination with
B2PLYP and DSD-PBEP86. The results not only showcase a high
degree of accuracy for the majority of the systems but also exhibit
consistent robustness across the additional 14 hydrated systems
integrated into the HyDRA database. Even with a very small
number of training points, Model-9 was able to deliver predic-
tions with RMSD below 10 cm−1 for 24 hydrate dimers.
(right) points. Each unit decreased in the number of test values (x-axis)

Chem. Sci.
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Conclusions

In this work we present and make use of a rst iteration of the
HyDRA dataset, a collection of experimentally measured red shis
of the in-phase water OH stretching fundamental upon complex-
ation. The latter is comprised of 35 hydrogen-bonded (hydrated)
dimers, building upon the data of the homonymous challenge. In
our calculations, we evaluated various DFT functionals in
conjunction with NEO-DFT. In line with other benchmarks in the
literature, double-hybrid harmonic calculations outperform
hybrid functionals, albeit exhibiting similar trends. We propose
a straightforward scheme to estimate the anharmonicity of the
bonds based on multicomponent theory. The NEO-DFT position
of the quantum proton of interest was used as a measure. We
established a linear relationship between the shi of the quantum
proton relative to its Born–Oppenheimer optimized position.
Different ts were used for different combinations of electron–
electron and electron–proton correlation functionals. In all cases,
the linear correction obtained in this form dramatically improved
the agreement between computational and experimental values.
This is also, to the best of our knowledge, the rst time that
a computational protocol offers an accuracy below 10 cm−1 for the
HyDRA test set (comprised of 10 systems).

The best obtained models, just as with the harmonic
predictions, were derived from the two double hybrid func-
tionals featured in the study (B2PLYP and DSD-PBEP86). The
correction also compensates for some model deciencies, but it
appears to perform best when the latter is reduced. Anharmo-
nicity appears to be well-captured, with the quality of the t
depending only slightly on the specics of the t (e.g., whether
or not the intercept is kept xed) or on the number of points
used for training (the results of Model-9 and Model-19 are
rather similar, see ESI†). The good performance with the HyDRA
test set was repeated for an extended set of 14 hydrate dimers.

These ndings highlight the utility of multicomponent DFT
as a critical tool in computational vibrational spectroscopy.
Aer all, one single-point calculation proves sufficient to
quantify the anharmonicity of an hydrogen bond, based on
these results. The study was constructed solely on reference
experimental data, doing without high-level vibrational anhar-
monic calculations for testing. For the systems sizes featured
these would either not be feasible or even reliable. As demon-
strated in our previous challenges,12–15 the blind computational
prediction of wavenumbers or their shis does not approach
vibrational benchmark standards, error bars close to the spec-
troscopy accuracy of 1 cm−1.

In the future we will explore if such relations still hold for
molecules other than water, and how far such approaches can
be used in cases where mode coupling is observed. The OH
bond remains a staple of spectroscopy and chemical analytics.
The potential for multicomponent methods to be applied in the
routine characterisation of these bonds appears promising.

Data availability

ESI† available: shis of the vibrational wavenumber associated
with the symmetric stretching for each functional including the
Chem. Sci.
experimental shis (Table S1†), harmonic RMSDs on the
HyDRA database for each functional (Table S2†), performance
of Model-9 utilizing the def2-QZVPP/PB6-F basis sets (Table
S3†), individual errors on the test set obtained with Model-9
(Table S4†), performance comparison of the constrained and
unconstrained ansatz of Model-9 on the HyDRA test set (Table
S5†), individual errors on the extension set I obtained with
Model-19 (Table S6†), tting parameters of Model-9 and Model-
19 (Table S7†), data distribution for the training and test set
computed with different electron–proton correlation func-
tionals (epc-17.1, epc-17.2) and without electron–proton corre-
lation (Fig. S1†), errors of the test set systems obtained with
Model-9 in comparison to submission PH5 of the HyDRA
challenge (Fig. S2†), linear t performance of Model-19 on the
training and test set (Fig. S3†). Optimized geometries (xyz les)
and all inputs needed to reproduce the calculations reported,
together with their associated output les, can be found in
GRO.DATA (https://doi.org/10.25625/UZOMEV).

Author contributions

M. G.: data curation, formal analysis, writing – original dra,
writing – review & editing. L. H.: data curation, formal analysis,
writing – original dra, writing – review & editing. M. B.: writing
– review & editing. R. M.: conceptualization, funding acquisi-
tion, writing – original dra, writing – review & editing.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

This work was supported by the Deutsche For-
schungsgemeinscha (DFG, German Research Foundation) –

217133147/SFB 1073, project C03. M. B. and L. H. acknowledge
funding of this research by the DFG via project 389479699/
GRK2455. We want to thank E. Gür who was involved at the
infancy of the project.

References

1 A. Poblotzki, H. C. Gottschalk and M. A. Suhm, J. Phys. Chem.
Lett., 2017, 8, 5656–5665.

2 R. A. Mata and M. A. Suhm, Angew. Chem., Int. Ed., 2017, 56,
11011–11018.

3 S. Bakels, M.-P. Gaigeot and A. M. Rijs, Chem. Rev., 2020, 120,
3233–3260.

4 D. B. Rap, A. Simon, K. Steenbakkers, J. G. M. Schrauwen,
B. Redlich and S. Brünken, Faraday Discuss., 2023, 245,
221–244.

5 A. Calvin, S. Eierman, Z. Peng, M. Brzeczek, L. Satterthwaite
and D. Patterson, Nature, 2023, 621, 295–299.

6 Vibrational Spectroscopy of Molecules on Surfaces, ed. J. T.
Yates and T. E. Madey, Springer, US, 1987.

7 J. Kozuch, K. Ataka and J. Heberle, Nat. Rev. Methods Primers,
2023, 3, 1–19.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.25625/UZOMEV
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc02165k


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/1
/2

02
5 

4:
58

:0
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
8 M. Meuwly, Chimia, 2022, 76, 589.
9 M. Meuwly, J. Phys. Chem. B, 2022, 126, 2155–2167.
10 S. Manzhos and M. Ihara, Phys. Chem. Chem. Phys., 2022, 24,

15158–15172.
11 A. E. J. Hoffman, W. Temmerman, E. Campbell, A. A. Damin,

I. Lezcano-Gonzalez, A. M. Beale, S. Bordiga, J. Hoens and
V. Van Speybroeck, J. Chem. Theory Comput., 2023, 20, 513–
531.

12 T. L. Fischer, M. Bödecker, A. Zehnacker-Rentien, R. A. Mata
and M. A. Suhm, Phys. Chem. Chem. Phys., 2022, 24, 11442–
11454.

13 T. L. Fischer, M. Bödecker, S. M. Schweer, J. Dupont,
V. Lepère, A. Zehnacker-Rentien, M. A. Suhm, B. Schröder,
T. Henkes, D. M. Andrada, R. M. Balabin, H. K. Singh,
H. P. Bhattacharyya, M. Sarma, S. Käser, K. Töpfer,
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