Optimization of bacterial biorefineries for sustainable biodiesel production and flue gas reduction: a holistic approach to climate change mitigation and circular economy

Abstract

The primary obstacles to addressing the current climate change problem include a rise in worldwide energy consumption, a restricted availability of fossil fuels, and the escalating carbon emissions associated with fossil fuels. Consequently, there is a pressing need to investigate sustainable alternatives to fossil fuels. Biorefineries present a potentially viable avenue for the sustainable production of fuel, as they employ a range of technologies to convert biomass into biofuels. This research aims to examine the cultivation of bacterial biomass and biodiesel production using a biorefinery approach. This process achieves a removal efficiency of 96, 93, and 98% for CO2, SO2, and NO, respectively, and a bacterial biomass of 274 g cultivated in a 20 L integrated bioreactor. The biomass entails extracting lipids (58% w/w) to generate biodiesel (91% w/w). The metabolic pathway followed by bacteria to reduce flue gas and produce lipids was analyzed to improve the production of lipids and biodiesel. A life cycle assessment was performed to assess the environmental impacts during the process. Implementing alternative and safe chemicals can potentially mitigate the adverse effects of processes and GWP100. The techno-economic analysis aimed to systematically examine the capital investment required to set up a bacterial biorefinery as compared to conventional fuel refineries. The findings indicated that the bacterial biorefinery had a net present value of $193 per litre of biodiesel produced. A bacterial biorefinery holds promise in fostering a circular economy characterized by sustainable practices and systems that aim to minimize waste, optimize resource utilization, and encourage the reuse and recycling of materials.

Graphical abstract: Optimization of bacterial biorefineries for sustainable biodiesel production and flue gas reduction: a holistic approach to climate change mitigation and circular economy

Supplementary files

Article information

Article type
Communication
Submitted
30 Oct 2024
Accepted
25 Jan 2025
First published
21 Feb 2025

Sustainable Energy Fuels, 2025, Advance Article

Optimization of bacterial biorefineries for sustainable biodiesel production and flue gas reduction: a holistic approach to climate change mitigation and circular economy

R. J. Barla, S. Gupta and S. Raghuvanshi, Sustainable Energy Fuels, 2025, Advance Article , DOI: 10.1039/D4SE01516A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements