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Sustainable Aviation Fuel Production via the Methanol Pathway: 
A Technical Review 

Ali Elwalily,ab Emma Verkama,a Franz Mantei,a Adiya Kaliyeva,a Andrew Pounder,a Jörg Sauerb and 

Florian Nestlera*  

Due to the compatibility towards today’s aviation infrastructure, sustainable aviation fuels (SAF) are expected to contribute 

to a significant reduction of this sector’s CO2 emissions. The methanol pathway represents a synthesis-based route for 

producing SAF that can utilize various feedstocks, including electrolytically produced H2 and atmospheric CO2 through a 

power-to-liquid (PtL) process, which can be implemented at large-scale. The process is considered advantageous compared 

to other routes, primarily in terms of yield and low levels of byproduct formation, and is projected to efficiently produce jet 

fuel (C8–C16). This review analyzes the state of science for the entire process chain consisting of methanol synthesis, 

methanol-to-olefin conversion, oligomerization, and hydrogenation. Here, special attention is drawn to the respective 

feedstocks, reaction systems, reactor design and process layouts to highlight technology-specific challenges to be 

considered. After individually reviewing the sub-processes, their interfaces are analyzed to derive research demands on the 

process side. 

 

1 Introduction 

With an estimated total emission of 0.8 GtCO2, the aviation 

sector accounted for over 2% of the global anthropogenic 

carbon dioxide (CO2) emissions in 2022.⁠

1,2 These emissions are 

projected to triple by the year 2050, provided that no counter 

measures are taken.⁠

3,4 The primary source of these emissions is 

the combustion of fossil-based jet fuel during flight operations 

accounting to about 2.5 kg of CO2 per litre of jet fuel.⁠

5 Despite 

the global decrease of fuel consumption per passenger of 23% 

between 2005 and 2017, i.e. from 4.4 L per 100 km to 3.4 L per 

100 km, this efficiency gain is counterbalanced by the projected 

annual growth in passenger numbers of 4.3%.⁠

6,7 In addition to 

CO2, significant emissions from global aviation include nitrogen 

oxides (NOx), water vapor, soot, sulfate aerosols, and increased 

cloudiness due to contrail formation.⁠

8,9 Both CO2 and non-CO2 

emissions contribute to net surface warming and anthropogenic 

climate changes,10 with approximately one-third of the radiative 

forcing attributed to CO2 and the other two-thirds caused by 

particulate emissions and water vapor forming contrail cirrus 

clouds.11,12 

The climate impact of aviation could be mitigated by adopting 

new technologies, such as electric or hydrogen (H2) fuelled 

aircrafts.13 However, electrification of aviation faces significant 

challenges due to the low energy-density of batteries. 

Currently, 50 kg of batteries are needed to supply the same 

amount of energy as 1 kg of jet fuel, complicating their adaption 

for long-distance flights.14 Due to its low volumetric energy 

density and difficult handling, hydrogen fuelled aircrafts also 

require further research and development to address 

challenges regarding onboard storage of hydrogen, restricted 

flight ranges, as well as comprehensive updates to aviation 

infrastructure and aircraft designs.15 Given the current state of 

the aviation industry and the operational fleet, it is hardly 

possible to find alternatives to liquid jet fuels, possessing high 

energy densities and a short implementation interval.16 

Sustainable aviation fuels (SAFs) are commonly referred to as 

kerosene-type fuels that can be produced from renewable 

energy sources.17 SAFs are identified as viable drop-in 

replacements and blendstocks for fossil-based jet fuel, capable 

of mitigating the environmental impact by decreasing fossil CO2 

and other GHG emissions. Indeed, the International Air 

Transport Association (IATA) has recognized SAF production as 

the most promising short-term strategy to reduce CO2 

emissions in the aviation sector.18 Additionally, the production 

of SAF could contribute to meeting the increasing global 

demand for jet fuel while enhancing energy security and 

reducing reliance on fossil fuels.19 

SAF can be categorized based on their production routes and 

the type of feedstocks with the primary distinction between 

biological and non-biological origin, as shown in Figure . For SAF 

to be commercially permitted for usage, it must be certified by 

the ASTM D7566 Standard Specification for Aviation Turbine 

Fuel Containing Synthesized Hydrocarbons, set by the American 
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Heidenhofstr. 2, 79110 Freiburg, Germany. 

b. Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 
Eggenstein-Leopoldshafen, Germany. 

*Email corresponding author: florian.nestler@ise.fraunhofer.de 

Page 1 of 32 Sustainable Energy & Fuels

S
us

ta
in

ab
le

E
ne

rg
y

&
Fu

el
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/6
/2

02
5 

3:
15

:3
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SE00231A

mailto:florian.nestler@ise.fraunhofer.de
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5se00231a


Review Article Sustainable Energy & Fuels 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

Society for Testing and Materials (ASTM).20 The qualification 

process for new candidates of non-petroleum alternative jet 

fuels is specified by ASTM D4054 Standard Practice for 

Evaluation of New Aviation Turbine Fuels and Fuel 

Additives.21,22 Once an alternative jet fuel production route is 

qualified, the standard specification for that jet fuel would be 

added as an annex to ASTM D7566. These ASTM standards 

ensure that the produced SAF possess compatible 

characteristics with the commercially available fossil-based jet 

fuels (Jet A/Jet A-1), specified in ASTM D1655 Standard 

Specification for Aviation Turbine Fuels.23  

Table  compares selected ASTM property requirements for Jet 

A and a selection of alternative jet fuel routes. Notably, stricter 

requirements for alternative fuels have been implemented due 

to various concerns about the specific distinctions between 

synthetic chemical blends with petroleum distillates.24 To date, 

no 100% drop-in SAF process routes have been approved by 

ASTM and most approved production routes have a 50% 

maximum blending limit. This can be attributed to the 

significantly reduced aromatics content in the SAF produced, 

which could affect the seal compatibility of aircraft engines.25 

The aviation industry aims to progress towards the use of 100% 

SAF that comply with safety and operability requirements of the 

ASTM qualification process.26 

In 2024, SAF represented only 0.3% of global jet fuel produce.27 

Large-scale production of SAF faces significant challenges, 

primarily due to their production costs which are estimated to 

be 1.2 to 7 times higher than the market price of conventional 

fossil jet fuel.28,29 The EU council recently adopted the RefuelEU 

aviation initiative designed to stimulate large-scale production 

of SAF and reduce production costs with increasing 

technological maturity.28,29 This initiative includes a new 

regulation mandating a gradual increase of the minimum SAF 

share in jet fuel blends at EU airports from 2% in 2025 to 70% 

by 2050.30 Moreover, it sets targets for renewable fuels of non-

biological origin (RFNBO), starting at 0.7% in 2030, with an 

increase to 35% by 2050. This increase is anticipated to enhance 

the development of synthetic jet fuels, including e-fuels 

produced via Power-to-Liquid (PTL) processes.  

Projected jet fuel demand at EU airports is anticipated to reach 

approximately 46 Mt/a by 2030.31 Currently, the annual 

production capacity of SAF in the EU stands at just over 

1 Mt/a.32 With the inclusion of facilities currently under 

construction, the estimated SAF production capacity for 2030 in 

the EU is projected to be between 3.5 and 3.8 Mt/a,32,33 

potentially aligning with the mandated SAF demand of 6% by 

that year. However, to meet the more ambitious targets of 34% 

by 2040 and 70% by 2050, significant increases in production 

capacity will be necessary. 

The major SAF production routes have been analysed in several 

recent reviews, ⁠

6,13,18,29,34–38 evaluating the interaction between 

policy framework, economic considerations, commercialization 

status, and technical performance. Reviewing the market for 

ASTM certified SAF routes of biofuels and e-fuels, Detsios et al. 

concluded that currently feedstocks of biological origins 

dominate among the various SAF production pathways.18 A 

more extensive review by Khanal et al. provides a detailed 

analysis of SAF production via various biofuel routes.37 

Among ASTM approved SAF production routes, the 

hydroprocessed esters and fatty acids (HEFA) process, currently 

dominates the SAF market with more than 90% of the total 

share.29,39 HEFA jet fuel and HVO diesel are produced via 

hydrotreatment and subsequent isomerization of fats, oils, and 

greases (FOG), or other bio-oils.40 Recent commercial 

developments were made with regard to industrial scale 

production of bio-jet fuel from the Alcohol-to-Jet fuel (ATJ) 

route with a wide range of biogenic feedstocks 41, with a recent 

demonstration plant by Lanzajet at a production scale of 

30,000 t/a.42 Additionally, the ATJ process has been 

demonstrated using isobutanol derived from cellulosic non-

Figure 1 - Main production routes for synthetic jet fuel production.19
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edible crops biomass.43 Up to date, the ASTM D7566 refers to 

ATJ that uses ethanol or isobutanol as feedstock, while 

methanol as a feedstock is not included in the ATJ 

classification.20 

Within Europe, the production of SAF from biological origins is 

strictly regulated, as the feedstock use of food and food crops 

in aviation is limited by EU regulation 2023/2405. ⁠

6,44 

Additionally, the expansion in bio-based jet fuel frequently 

prompts concerns regarding food versus fuel and land-use 

change.18 This underscores the need for further development of 

jet fuel as RFNBO. 

PTL routes, which can lead to the production of electro-

sustainable aviation fuels (eSAF), a type of synthetic aviation 

fuel produced using renewable electricity, offer compelling 

advantages over biofuels due to a greater potential for 

greenhouse gas reduction, as well as a lower land and water 

demand.45–47 Currently, the economic viability of these 

processes is hindered due to the high production costs of green 

H2.48 However, it is expected that these costs will decrease with 

the improvement of the major electrolysis technologies.49 The 

main PTL routes for jet fuel production being discussed today 

are the FT pathway as well as the methanol-to-jet fuel (MTJ) 

pathway.50,51 While SAF derived from the FT process has already 

been certified as a drop-in aviation fuel according to ASTM 

D7566 standards, MTJ-based SAF is currently in the process of 

obtaining approval through ASTM D4054.17 

With availability of FOG feedstocks being a limiting factor, the 

ATJ route and the Fischer-Tropsch (FT) route are expected 

to produce a significant amount of bio-based jet fuel in the 

future.52 The FT process, originally developed in Germany for 

producing liquid transport fuels from coal, is capable of 

transforming synthesis gas, i.e. here a mixture of carbon 

monoxide (CO) and H2, into liquid fuels such as SAF.53 Synthesis 

gas can either be produced from biological or non-biological 

origin.54,55 The bio-based FT process entails gasification of 

biomass into synthesis gas before converting it into liquid fuels. 

Nonetheless, the need for extensive conditioning and cleaning 

of the synthesis gas from biomass gasification can limit the 

efficiency and commercial feasibility of bio-based FT 

synthesis.56,57 

 

Table 1 - Selected ASTM properties of Jet A/A-1 and SPK of FT, HEFA and ATJ.20,23 

 

FT technology can be integrated into PTL production route, 

where synthesis gas is generated from CO2, electricity, and 

water instead of biogenic feedstocks. However, FT synthesis 

faces some challenges regarding syngas generation due to the 

high energy intensity of CO2-to-CO-conversion by reverse water 

gas shift reaction (rWGS) or the low TRL of co-electrolysis.58,59 

Moreover, its high exothermic heat and complex reaction 

kinetics present a challenge for direct coupling of the process to 

fluctuating renewable power.60,61 

While many review articles dealing with the characteristics of FT 

synthesis for SAF production are available today,53,54,62,63  

knowledge regarding the MTJ process chain is still limited. This 

review examines the current state of science across each 

subprocess of the MTJ process chain, focusing on the reaction 

systems, the different catalysts used in each synthesis step and 

the variables that impact the jet fuel yield, emphasizing areas 

for future research that can be done by the scientific 

community. It highlights the necessity to develop an integrated 

process concept that not only achieves high yields of SAF, but 

also is economically viable. Based on a systematic analysis of 

various process configurations, concepts for an integrated 

process are proposed. The review identifies key challenges and 

poses research questions critical for the future technological 

development of the MTJ pathway. Finally, challenges in process 

integration are outlined, offering a perspective for further 

research and development in this field. 

2 SAF production via methanol  

The production of SAF from H2 and CO2 via the methanol 

pathway involves four main subprocesses: methanol synthesis, 

methanol-to-olefins (MTO) conversion, oligomerization, and 

hydrogenation.19,64,65 

A simplified schematic of the MTJ process chain is shown in 

Figure , together with a rough range of the respective process 

conditions applied and used catalyst types. In a first step H2 and 

Property Requirement Jet A SAF (FT-SPK / HEFA-SPK / ATJ-SPK) 

Acidity (total mg KOH/g) < 0.1 < 0.015 

Distillation, 10 % recovered (°C) < 205 < 205 

Distillation, final boiling point (°C) < 300 < 300 

Flash point (°C) > 38 > 38 

Freezing point (°C) < -40 < -40 

Viscosity at -20 °C (mm2/s) < 8 < 8 

Density at 15 °C (kg/m3) 775 to 840 730 to 770 

Aromatics  8 – 25 vol % < 0.5 wt.-% 

Sulfur (wt.-%) 0.3 0.0015 

Metals (mg/kg per metal) 
    

(Al, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, 

P, Pb, Pd, Pt, Sn, Sr, Ti, V, Zn), mg/kg 
No requirement 0.1 
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COx obtained from carbon neutral sources, such as biomass or 

air, are converted into methanol and water over Cu-based 

catalyst in an exothermic reaction in a temperature and 

pressure range of 220-280 °C and 30-80 bar, respectively.59 

Subsequently, the purified methanol is converted into light 

olefins during the MTO synthesis step over Zeotype catalyst at 

process conditions of 400 - 500 °C and 1 - 3 bar.66  The product 

stream of the MTO synthesis is quenched, and water is 

separated and partially recycled to the MTO reactor. C2 - C6 

olefins are separated from lighter and heavier components 

using fractionation columns.67–69 In the subsequent 

oligomerization step, the chain length of the olefins (C2 - C6) is 

increased over solid acid catalyst at synthesis conditions of 

200 - 250 °C and 30 - 50 bar.70 Along the process chain, the 

olefin oligomerization is a critical step to obtain hydrocarbons 

with the desirable combustion properties in the synthetic jet 

fuel-range. The oligomerization mechanism of ethylene and 

higher olefins differs, which confers complexity to the 

oligomerization process. This will be discussed further in 

Section 2.3. The oligomerized product is mixed with H2 and 

hydrogenated over a reduced metal catalyst at 100 - 250 °C and 

20 - 50 bar to saturate the olefinic double bonds.70 The product 

is cooled and the excess H2 is recycled back to the fixed-bed 

hydrogenation reactor.71 Finally, the jet fuel product, with a 

typical carbon range of mainly C8-C16, is separated from lighter 

and heavier hydrocarbons using fractionation columns.72 

Especially in the context of PTL, MTJ shows potential for SAF 

production regarding the following aspects: 

Especially in the context of PTL, MTJ shows potential for SAF 

production regarding the following aspects: 

1) As methanol can be produced from both CO and CO2, 

CO2 can be utilized directly without the need of a 

reverse water gas shift stage or co-electrolysis.73 

2) The possibility of dynamic methanol synthesis 

operation enables a direct link of renewable energy to 

jet fuel production.74–78 

3) The exothermic heat of jet fuel production can be 

integrated into the process chain to allow reduced 

heat demands. 

4) MTJ can produce jet fuel at high yields with low levels 

of byproduct formation.17,72 This is an advantage over 

FT, where the formation of light hydrocarbons, such 

as, methane can be significant. 

5) By optimizing the synthesis conditions, jet fuel derived 

from methanol could be produced with low levels of 

aromatic compounds compared to fossil jet fuel, which 

contributes to reduced contrail formation and lessens 

the adverse climate effects of aviation emissions.79,80  

Each of the individual subprocesses of the MTJ process chain are 

currently operational on industrial scale in various plants and 

refineries.81–83 However, to date, there have been no 

commercial scale implementations of specific concepts 

integrating the various subprocesses of the MTJ pathway, 

reflecting the relatively low TRL of an integrated MTJ 

process.17,72  

Various companies and institutions are working on the process 

development of MTJ, such as: ExxonMobil, UOP and Topsoe.84–

86 Several research projects are investigating this topic, such as: 

SAFari and M2SAF.87,88 Moreover, several techno-economic 

analyses have investigated the MTJ process, although the 

optimization towards jet fuel mainly includes strong 

simplifications.50,89–92 A detailed process optimization was 

published by Bube et al., focusing on new modelling approach 

for the oligomerization of short-chain olefins within the 

framework of MTJ.17,91 Scientific studies conducted by Bube et 

al., Saad et al., and Eyberg et al. estimate the production costs 

of eSAF via the MTJ process between 4.2 and 9.45 EUR/kg.89–91 

Eyberg et al. compared the levelized cost of production (LCOP) 

at optimal energy efficiency cases for the FT process and the 

MTJ process, estimating it to be 8.78 EUR/kg and 9.45 EUR/kg, 

respectively. However, both estimates corresponds to a value 

of 0.81 EUR/kWh, reflecting differences in the lower heating 

value (LHV) associated with the respective jet fuel compositions 

obtained.90 The Project SkyPower initiative, representing 

Figure 2 - Sustainable aviation fuel production from Hydrogen and carbon source via the methanol pathway. The grey streams represent 

potential by-products that may occur in the process.18,57,58 
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multiple stakeholders in the eSAF sector, estimates that 

production costs for eSAF in Europe will range between 5 and 8 

EUR/kg by 2030.93 Overall, the estimated production costs are 

subjected to varying assumptions regarding feedstock costs, 

plant capacity and the boundary conditions, with water 

electrolysis and CO2 capture accounting to 74-79%.89–91 

Moreover, it is important to note that these studies underly 

systematic uncertainties caused by technical assumptions, such 

as conversions, selectivities and chain growth probability.17,91 

The following sections review the feedstock, catalyst, reaction 

networks, process layouts and products of each subprocess 

within the MTJ route, with the objective of enhancing the 

selectivity towards jet fuel range hydrocarbons. 

2.1 Methanol synthesis 

With a global production capacity of nearly 140 Mt/a in 2022, 

thermochemical methanol synthesis, implemented by BASF in 

1923, is today one of the most important chemical production 

processes.94,95 Methanol is used as a platform molecule to 

produce fuels and chemicals, with the main consumption driven 

by China.96 Besides traditional derivatives like formaldehyde, 

methyl tert-butyl ether (MTBE) or acetic acid, methanol is today 

widely used for the production of olefins and propylene by MTO 

or methanol-to-propylene (MTP).97,98 Due to the fixed demand 

for RFNBO by the EU, an additional path of utilization for carbon 

neutrally produced methanol is expected to emerge for the MTJ 

process.44 Thus, this technology will be reviewed in the next 

subsections to point out obstacles to be addressed by the 

scientific community to ensure a reliable scale up of thermo-

chemical SAF production via methanol. 

 
2.1.1 Feedstocks 

Methanol can be formed from synthesis gases (syngases) 

containing H2, CO and CO2 covering a wide concentration 

range.99 Importantly, the CO/CO2 ratio in the syngas as one of 

the most relevant parameters for the description of methanol 

synthesis is directly related to the feedstock and its processing 

method.73,99 

Today, the main feedstocks for methanol production are natural 

gas and coal, providing a CO-rich synthesis gas for methanol 

synthesis by either reforming or gasification technologies.94 

Depending on the feedstock applied, these processes generate 

cradle-to-gate CO2 emissions between 0.85 tCO2,eq/tMeOH and 

2.97 tCO2,eq/tMeOH for a basic natural gas or coal based process, 

respectively.100,101 Assuming thermal treatment of methanol 

end-of-life additional 1.38 tCO2,eq/tMeOH would be emitted 

through a stoichiometric oxidation. Thus, to decrease the CO2 

emissions caused by methanol production and utilization, 

carbon neutral production routes including carbon cycles need 

to be established.102 Biogenic or atmospheric carbon oxides 

reacted with carbon-neutrally produced H2 by water electrolysis 

is currently seen as a promising pathway to satisfy the methanol 

world market in the future.103 Whilst these with Power-to-

Methanol (PTM) processes offer the potential of carbon 

neutrally produced methanol, the partial or entire replacement 

of CO by CO2 in the syngas entails disadvantages originating 

from the high chemical stability of CO2 in comparison to CO and 

the formation of water as by-product (see Section 2.1.2 for 

more details). 

Due to the high feedstock availability, biomass has a large 

potential for the production of green fuels and chemicals.94,104 

Depending on the way of processing, biomass can deliver both, 

pure CO2, e.g. in case of fermentation, or a syngas containing 

CO2, CO, H2 and nitrogen (N2), e.g. in case of gasification. In case 

of a biomass gasification, the syngas produced can offer a high 

similarity to conventional syngas with an optional addition of 

surplus electrolytic H2.73,105–107 Thus, this process is 

advantageous with regard to the supply of existing methanol 

synthesis plants.99 When the gasification is performed with pure 

O2 instead of air, the N2 content in the syngas can be reduced, 

offering an advantageously low inert gas content.108 

By application of various reforming technologies, a CO and H2 

containing syngas can be produced from biomethane.104,109–112 

Biogenic CO2 can also be captured via amine wash from 

fermentation processes or combustion processes.113 However, 

in this case surplus H2 must be supplied to obtain a syngas 

suitable for methanol synthesis. In any case, bio-based syngas 

contains catalyst poisons such as chlorine or sulfur-containing 

compounds.73,111,114 Thus, these trace compounds need to be 

removed from the syngas before entering the synthesis process. 

Alternatively to biomass, CO2 can be obtained from the 

atmosphere or sea water by direct air capture (DAC) or direct 

ocean capture (DOC), respectively.115–119 While these 

technologies still need to be scaled up to reach reasonable 

costs, they offer the potential of providing CO2 at any 

location.117 

In the context of carbon capture and utilization (CCU), carbon 

oxides for methanol synthesis can also be obtained from fossil 

or mineral sources, e.g. from cement plants,120,121 steel mills122–

125 or waste incineration plants.126,127 While these carbon oxides 

are comparatively easy to exploit due to their high availability 

and concentration at the respective point source, their 

utilization has to be evaluated carefully with regard to 

international emission reduction targets.103 

If H2 cannot be obtained by thermochemical methods, current 

state of the art involves electrochemical H2 production by 

electrolysis with four major technologies being proton 

exchange membrane electrolysis (PEMEL), anion exchange 

membrane electrolysis (AEM), alkaline electrolysis (AEL) or 

high-temperature electrolysis (HTE).128,129 

 
2.1.2 Catalyst and reaction network 

After advanced gas cleaning techniques for the removal of 

sulfur species from the syngas were implemented in the 1960s, 

Cu/ZnO/Al2O3 catalysts were enabled for their industrial 

application.130 Despite ongoing research for more stable and 

active catalysts based on different metals such as indium or 

noble metals,131–133 this catalyst system remains the industrial 

standard today.134,135 

Methanol synthesis on conventional catalysts can be described 

macroscopically by CO hydrogenation, CO2 hydrogenation and 

water-gas-shift reaction (WGS): 
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CO2(g) + 3H2(g) ⇄ CH3OH(g) + H2O(g) ΔHR
0 = −50 kJ/mol 

CO(g) + H2O(g) ⇄ CO2(g) + H2(g) ΔHR
0 = −41 kJ/mol 

CO(g) + 2H2(g) ⇄ CH3OH(g) ΔHR
0 = −91 kJ/mol 

In this reaction network, CO hydrogenation can be defined as 

the combination of CO2 hydrogenation and WGS. Currently, this 

combination is considered as the main source of methanol over 

conventional Cu/ZnO/Al2O3 methanol synthesis catalysts by 

various studies 136–139, while the actual mechanistic nature of 

methanol synthesis is still debated.140–142 Due the equimolar 

formation of water, equilibrium conversion of CO2 

hydrogenation is lower compared to CO hydrogenation.143,144 

Moreover, water was shown to be responsible for inhibited 

methanol reaction kinetics145 and accelerated deactivation of 

the catalyst.146–148 As increased CO2 contents in the synthesis 

gas enhance water formation along the reactor by both CO2 

hydrogenation and reverse WGS (rWGS), many studies have 

dealt with enhancement of the catalyst for CO2-based methanol 

synthesis.149–152 Switching from the Al2O3-support towards ZrO2 

or Ga2O3 is most widely applied to stabilize the Cu species on 

the catalytic surface.153–155 

For the kinetic description of methanol synthesis, plenty 

different kinetic models have been proposed in scientific 

literature156–162 among which the model by Vanden Bussche et 

al.156 and Graaf et al.157 have gained most popularity in the 

scientific community. However, due to different reaction 

conditions, catalysts and mechanistic assumptions which these 

models are based on, they were proven to show strong 

deviations with regard to product formation and the axial 

temperature profile inside the reactor.163–167 

 
2.1.3 Process layout and reactors  

Regarding reactor design for conventional methanol synthesis, 

multiple approaches are known in literature.59,168–170 Among the 

common reactor types, the adiabatic multi bed reactor with 

intercooler or quench injection of fresh syngas as well as the 

steam cooled tubular reactor and the gas-gas-cooled reactor 

are most widely applied.144 Figure  shows a simplified process 

flow diagram of methanol synthesis process including a single 

stage crude methanol distillation and a light gas recovery to 

decrease losses of dissolved gases.171 

Depending on plant size, syngas composition and economical 

aspects, many combinations of different reactor types were 

studied in both, scientific and patent literature.172–175 To 

overcome the thermodynamic limitation of CO2 hydrogenation, 

removal of water and/or methanol from the reaction mixture 

either by interstage absorption,176 adsorption177,178 or 

condensation 123,179–184 were identified as promising pathways. 

Recently, in-situ removal of the products inside the reactor by 

sorption or membrane separation has gained attention in this 

context.185–190 However, these technologies have not yet been 

demonstrated on a larger scale. Another way to tackle the 

thermodynamic and catalytic challenges of CO2-based 

methanol synthesis is the so-called CAMERE process coupling an 

upstream rWGS stage with subsequent methanol synthesis 

from CO enriched syngas as proposed by Joo and coworkers in 

1999.191,192 Similar approaches were considered as an option 

within patent literature.193,194 However, when stable catalysts 

for CO2-based methanol synthesis become industrially 

available, these concepts could become obsolete. 

Another important point differing between fossil and “green” 

methanol synthesis relates to the process dynamics. While a 

fossil-based synthesis is usually operated at steady state,112,195–

197 coupling of fluctuating renewable energy sources to 

methanol synthesis can lead to the demand for dynamic process 

operation. Here, one main challenge lies in balancing the 

increased equipment cost and possible difficulties regarding 

heat integration for the dynamic methanol plant with the 

advantages of decreased H2 buffers and an improved utilization 

of renewable power.59,74–77,114 

 

2.1.4 Products  

With the effects of WGS and rWGS, i.e. CO2 and CO formation, 

respectively, excluded, commercial Cu/ZnO/Al2O3 catalysts 

show a carbon selectivity towards methanol > 99%.73,198,199 

Industrially, methanol purity is classified by chemical 

grades200,201 usually achieved by distillation of raw 

methanol.59,114,202 However, in case of directly linked 

downstream processes utilizing methanol, the degree of 

necessary purification needs to be defined individually since the 

removal of water might not be necessary or can be 

implemented more efficiently in downstream process 

equipment.203 

The main side products documented in literature are dimethyl 

ether (DME), formic acid, methyl formate, methyl acetate, 

higher alcohols (predominantly ethanol), ketones and 

paraffins.172,202,204,205 In a recent study, Nestler et al. analysed 

the side products present in liquid crude methanol samples 

produced from a variety of different process conditions, and 

compared those to literature data.205 In this work, the CO/CO2 

ratio in the reactor feed was identified as the main parameter 

determining side product formation, with an overall tendency 

Figure 3 - Simplified process flow diagram of the methanol synthesis.146
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to decrease as CO2 content increases. From the experimental 

data obtained, a simplified correlation was derived between the 

CO/CO2 ratio and the amount of side products. However, the 

authors indicated further research demand in this field to 

obtain a better understanding of the formation mechanisms for 

different side products, as these could affect the downstream 

process. 

In the context of the MTJ route, the degree of purity necessary 

for a stable operation of the downstream process, i.e. MTO 

synthesis, should be investigated further, as a simplification in 

methanol purification can decrease the energy demand of the 

process chain and offer the potential to for new integrated 

process schemes.206 

2.2 Methanol-to-Olefins conversion 

The methanol-to-hydrocarbons (MTH) process was first 

developed by Mobil Oil Corporation (today ExxonMobil) in the 

1970s.207 They claimed that a feed of lower alcohol and/or 

ether, such as methanol, dimethyl ether, or an equilibrium 

mixture of both, can be converted into a mixture of C2-C5 light 

olefins when contacted over a shape selective aluminosilicate 

ZSM-5 zeolite catalyst in a fixed-bed reactor. These light olefins 

can further react to produce paraffins, aromatics, naphthenes 

and higher olefins, as illustrated in Figure .208  

This discovery opened the possibility to produce a range of 

synthetic hydrocarbons through various processes classified by 

their targeted product. Thus, MTH process can be subdivided 

into methanol-to-gasoline (MTG),209 methanol-to-aromatics 

(MTA),210 MTP,211 and MTO processes.212 Reviewing the MTO 

synthesis within the MTJ route is crucial for optimal coupling of 

the subprocess for a maximized jet fuel yield. By examining the 

state-of-science of the MTO process, opportunities for 

innovation and efficiency improvements in SAF production can 

be identified. 

2.2.1 Feedstock 

Coupled with state of the art upstream processes, MTH 

processes offer a versatile method to produce hydrocarbons 

from a wide range of carbon sources, e.g. natural gas, coal, or 

biomass.83 Thus, the MTH synthesis can also be applied to 

produce renewable synthetic fuel when “green” methanol is 

used as a feedstock.81 Aside from methanol, water can be fed 

into the reactor to reduce the temperature increase caused by 

the exothermic MTO synthesis, which in turn influences product 

selectivity and catalyst activity.213 High water contents of e.g. 

74–80 mol-% in the feed are known to increase olefin 

selectivity, decrease formation of aromatics and paraffins, as 

well as reduce coke formation on the catalyst surface.214–216 

Thus, these results indicate that the utilization of crude 

methanol could be a promising option to decrease the aromatic 

content in SAF produced via the MTJ pathway. 

DME formed as an intermediate product in the MTO synthesis 

can be converted to hydrocarbons in the DME-to-Olefins (DTO) 

process.217,218 Martinez-Espin et al. compared pure methanol 

and DME as feedstocks, and concluded that DME feed results in 

a higher catalytic activity as well as lower selectivity for 

aromatic products and ethylene.219 Additionally, Cordero-

Lanzac and co-workers found that the DTO process produces 

less water and is less exothermic compared to the MTO 

process.220 Due to these promising findings, the kinetic and 

technical impacts of DME cofeeding to olefin synthesis should 

be evaluated in the context of SAF production in future work. 

 
2.2.2 Catalyst and reaction network 

Microporous zeolites or zeotype catalysts containing Brønsted 

acidic sites are used in the MTO synthesis with H-ZSM-5 and the 

SAPO-34 being the two most prominent catalysts due to their 

light olefin selectivity.221 The topology and acidity of the zeolite 

catalyst significantly influence the selectivity of the MTO 

synthesis.222–224 Besides H-ZSM-5 and SAPO-34, other catalysts 

that have been studied for MTO synthesis include H-ZSM-11, 

H-ZSM-22 and H-ZSM-48.225 Notably, a high selectivity to C3+ 

olefins has been reported in MTO over 1-D framework zeolites, 

such as H-ZSM-48 and H-ZSM-22.224,226 High C3+ olefin yields are 

particularly advantageous for maximizing the jet fuel selectivity. 

within the MTJ route. For further details on each zeolite 

topology, readers can refer to the International Zeolite 

Association (IZA) database.227 

Along with topology, the product selectivity of the zeolite 

catalyst in MTO is influenced by concentration, distribution and 

strength of both Brønsted acid sites (BAS) and Lewis acid sites 

(LAS).228 BAS density affects the catalytic activity and catalyst 

lifetime.229 It is determined by the framework aluminium 

content of the zeolite and can, thus, be increased by decreasing 

the Si/Al ratio. A high BAS density confers a high activity, but 

facilitates successive reactions along the diffusion pathway, 

promoting aromatization and coking, whereas lower BAS 

densities favour methylation and cracking reactions.230 In 

addition to BAS density, the distribution of the BAS within the 

framework influences the reaction pathway and the 

deactivation by coke formation, thereby affecting olefin 

selectivity and catalyst lifetime.231 Hydrogen transfer reactions 

can be suppressed by reducing the Brønsted acidity of the 

ZSM-5 zeolite, e.g., by incorporating a Ca promoter.232 Alkaline 

earth metal-promoted ZSM-5 zeolites, such as Ca-ZSM-5, can 

exhibit a lower activity, but a considerably enhanced catalyst 
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lifetime, increased propylene selectivity and decreased 

aromatics selectivity in MTO, compared to unpromoted 

zeolites.222,228,232–234 The promotion with alkaline earth metals 

decreases the BAS concentration and results in the formation of 

LAS, which can explain the difference in activity and selectivity. 

With LAS impacting the reactant adsorption and the stability of 

transition states on vicinal BAS, the decreased aromatics 

selectivity can be attributed to a difference in the reactivity of 

the BAS, in addition to a decreased BAS concentration.222 As 

described by Bailleul et al.,222 the LAS strength is decisive for the 

reactivity of the neighbouring BAS, with Ca and Mg promoted 

zeolites offering a compromise between activity and selectivity. 

In addition to modifying the acid properties of the zeolite, Ca 

promotion alters the effective pore geometry and decreases the 

micropore volume, which has been suggested to contribute to 

the composition of the hydrocarbon pool.233,234 In conclusion, 

selection of a zeolite with an appropriate topology and tuning 

the ratio, strength, concentration, and distribution of BAS and 

LAS in the MTO catalyst is crucial to maximize the desired light 

olefin yield (C3-C6) and catalyst lifetime. 

Despite more than 40 years of research on the MTO synthesis, 

more than 20 different models for the reaction mechanism have 

been proposed.208,235–242 Modelling of the MTO reaction 

mechanism remains challenging due to the complex 

stoichiometry and the large number of elementary reactions. 

Reaction conditions significantly influence the product 

distribution and catalyst lifetime in the MTO synthesis, as each 

elementary reaction may have varying orders and activation 

energies.243–245 Today, the dual-cycle mechanism (DCM) is the 

most widely accepted for the mechanistic description of the 

MTH reaction.246,247 As schematically shown in Figure , it 

suggests an autocatalytic olefinic and aromatic cycle to run in 

parallel.248 The DCM involves six key categories of chemical 

reactions, i.e., methylation and cracking of olefins, methylation 

and dealkylation of aromatics, cyclization and hydrogen 

transfer, with their respective rates determining the product 

distribution of the overall synthesis.248,249 It has been 

demonstrated that one of the two cycles can be promoted while 

suppressing the other one by co-feeding species participating in 

the respective autocatalytic cycle. According to Sun et al., co-

feeding of olefins (such as propylene, butylene, pentene and 

hexene) or aromatics (such as benzene, toluene and xylenes) 

promotes either the olefinic or aromatic cycle.250,251 A small 

olefin recycle to the MTO unit could therefore be beneficial 

within the MTJ process chain. 

Catalyst coking is a key challenge in MTO synthesis, as coke 

deposition on the outer surface and internal channels of the 

zeolite is the primary cause for deactivation in MTO 

synthesis.252,253 Moreover, coke formation can consume up to 

8% of the methanol feed, reduces the turnover capacity of the 

catalyst, and necessitates high-temperature regeneration, 

leading to a permanent structural degradation of the 

catalyst.254–257 H-ZSM-5 demonstrates a higher resistance to 

coking compared to SAPO-34.246 Unlike deactivation caused by 

zeolite material degradation or dealumination, deactivation 

due to coke deposits can be reversed by subjecting the catalyst 

to a thermal treatment at temperatures between 500 °C and 

600 °C and an atmosphere with a low oxygen concentration, to 

restore the accessibility of the active sites.258 The deactivation 

model by Janssens et al. assumes that the deactivation rate is 

directly proportional to methanol conversion and that the 

reaction between methanol and aromatic species results in 

coke formation.258 The model demonstrates that the catalyst's 

active sites gradually become covered with hydrocarbon pool 

species, leading to subsequent coke deposition. According to 

Paunović et al., the rate of coke formation also depends on the 

concentration and nature of Brønsted acid sites (BAS), as well 

as the presence of Lewis acid sites (LAS) and framework 

defects.254 

Despite being present in low concentrations during MTO 

synthesis, formaldehyde contributes to the coke-induced 

deactivation of the zeolite catalyst.219 Liu et al. showed that 

formaldehyde is predominantly formed at the induction period 

and exerts a detrimental influence on the catalyst lifetime, by 

facilitating the formation of non-olefinic products as dienes, 

polyenes and aromatics, which act as coke precursors.259 To 

extend catalyst lifetime, it is relevant to develop strategies to 

effectively reduce the concentration of formaldehyde by 

inhibiting its formation or facilitating its rapid decomposition. 

Such strategies include MeOH dilution,260 olefin co-feeding,251 
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products back-mixing,257 and substituting MeOH feedstock by 

DME.219 

Kinetic modelling of MTO synthesis is challenging due to the 

complex reaction network involved. Several studies have 

investigated MTO synthesis and kinetic modelling using 

different feedstocks, such as pure methanol or methanol co-fed 

with olefins, over different catalysts and process 

conditions.65,80,219,248–265 

Table  summarizes the parameter ranges related to feed 

composition, synthesis conditions, and catalysts in selected 

experimental and kinetic investigations. Quantitative data on 

selectivity and yield are excluded, as these studies were not 

conducted within the framework of the MTJ process, thus 

avoiding misinterpretation. Most published kinetic models on 

MTO synthesis are based on simplified assumptions or are 

targeting selective propylene production, which is not the 

primary focus of the MTO synthesis within the MTJ route. A 

significant shortfall of several kinetic models is the lumping of 

lower olefins into one lump or lumping methanol and DME 

together, which affects the robustness of the models due to the 

different formation mechanisms and reactivities of each 

component. Another challenge is understanding the interaction 

between water and zeolite and its effect on the kinetics, as 

water acts both as diluent and a competing adsorptive. 

Moreover, the catalytic activity decreases due to deactivation 

by coke deposition, which should be considered within the MTO 

kinetics. Additional research is necessary to develop kinetic 

models optimized for the MTO process conditions relevant to 

MTJ applications, as extrapolating beyond experimentally 

investigated conditions could result in unrealistic model 

predictions. 

Table 2 - Summary of selected MTO experimental and kinetic investigations in literature at reaction pressure of 1 bar. 

 
2.2.3 Process layout and reactors 

ExxonMobil combined the MTO process with Mobil's Olefins to 

Gasoline and Distillate (MOGD) process. Both processes use the 

medium pore zeolite H-ZSM-5 catalyst, to convert methanol 

into gasoline and other distillate fuels, including jet fuel and 

diesel.271 Commissioning of a plant in New Zealand with an 

annual production capacity of 600,000 tons of gasoline utilizing 

this process marked the beginning of the commercial use of 

methanol for fuel production in 1985.82 Topsoe (previously 

Haldor Topsøe) developed a process integrating gasoline 

Feed 
Temperature 

(°C) 
Catalyst Si/Al WHSV (h-1) Olefins yield Objective of study Reference 

MeOH 500 
Ca-modified 

ZSM-5 
40 8 

C2 olefins= 14% 
C3 + C4 olefins= 82%  

Aromatic cycle suppression in 
MTO reaction 

232 

MeOH 520 
Ca-modified 

ZSM-5 
89.8 4.2 C3 olefins= 49% 

Enhance catalytic stability & 
propylene selectivity 

261 

DME 400 
ZSM-5 

ZSM-48 
ZSM-22 

40.2 
73.5 
50.4 

6 
1.5 
0.3 

C2 - C11 olefins= 
26% 

C2 - C11 olefins= 
90% 

C2 - C11 olefins= 
50% 

Aromatic cycle suppression in 
DME to hydrocarbons reaction 

262 

MeOH 400 - 550 ZSM-5 25.4 5.8 C2 - C4 olefins Kinetic modelling (seven lumps) 263 

MeOH 300 - 450 ZSM-5 24 2.7 - 25 C2 - C3 olefins 
Role of water on MTO kinetic 

modelling 
264 

MeOH 360 - 480 ZSM-5 200 - C2 - C8 olefins Single event kinetic modelling 265,266 

MeOH 
MeOH + C4H8 

480 ZSM-5 200 5.3 C3 olefins= 81.6% 
MTP monolithic catalyst 

investigation / Kinetic modelling 
267 

MeOH 
MeOH + C4H8 
C5H10/ C6H12 

420 - 500 
B-modified 

ZSM-5 
180 2.0 - 9.4 C3 olefins 

Methanol and olefins co-
feeding investigation / Kinetic 

modelling 

268 

MeOH + C3H6  
MeOH + C4H8 
MeOH + C5H10 
MeOH + C6H12  

400 - 490 ZSM-5 200 - C2 - C7 olefins 
Methanol and olefins co-

conversion / Kinetic modelling 
269 

MeOH + C3H6  
MeOH + C4H8 
MeOH + C5H10 
MeOH + C6H12 

400 - 490 ZSM-5 200 - - 
Paraffins and aromatics side 
reactions / Kinetic modelling 

270 
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production with the synthesis of methanol and DME from a 

feedstock of syngas within a single synthesis loop, in a process 

called Topsøe Integrated Gasoline Synthesis (TIGAS Process).272 

These two processes focus on a high yield of gasoline, while for 

the MTJ process, a high yield of light olefins is desired in the 

MTO subprocess.  

Today, the UOP/INEOS MTO process and the Lurgi MTP process 

are two major technologies dominating the MTO market, 

demonstrating a high TRL for the production of light olefins 

from methanol. A comparison between available data of the 

Lurgi MTP and UOP/INEOS MTO processes is shown in Table , as 

they show suitable olefin target product for the MTJ process.252 

The UOP/INEOS MTO process, developed in the 1990s by UOP 

and Norsk Hydro (now INEOS) and depicted in Figure . uses the 

SAPO-34 catalyst in a fluidized bed reactor coupled with a 

fluidized-bed regenerator. The process is capable of using crude 

methanol, grade AA methanol or DME as a feed.273 The feed is 

evaporated and introduced into the MTO reactor, operating in 

the vapor phase at temperatures between 340 °C and 540 °C 

and pressure between 1 bar and 3 bar.274 SAPO-34 exhibits high 

selectivity towards ethylene, with the main products of the 

process being ethylene and propylene at a selectivity up to 80% 

and nearly complete methanol conversion.275–278 A portion of 

the catalyst from the fluidized-bed reactor is continuously 

regenerated in the regenerator, allowing the flexibility to adjust 

the operating temperature by recovering heat from the 

exothermic MTO reactor.276 The reactor temperature is crucial 

to adjust the propylene-to-ethylene ratio, as elevated 

temperatures favour higher propylene yields and coke 

formation.273 The heat of the exothermic synthesis is removed 

by steam generation and cooling coils in the fluidized bed 

reactor. Effluent of the reactor is condensed to separate water. 

The dried gases are subsequently compressed and processed in 

a downstream fractionation.275 Similar technologies have been 

developed in China by Dalian and Sinopec using catalysts 

containing SAPO-34 in a fluidized bed reactor.273,274,279 

Table 3 - Comparison aspects between the industrial process of Lurgi MTP and UOP/INEOS MTO.252 

  MTP (Lurgi) MTO (UOP/INEOS) 

Catalyst  H-ZSM-5 H-SAPO-34 

Temperature, °C 450 350 

Pressure, bar 1.5 2 

Reactor  Fixed bed Fluidized bed 

Recycle  Water, olefins C4+, C2 DME 

Products, wt-%*   

     Propylene 72 42 

     Ethylene - 39 

     C5+ 23 5 

(* Composition can vary) 

Lurgi GmbH developed an MTP process where methanol 

feedstock first is converted into DME and water in an adiabatic 

pre-reactor, as shown in Figure .211,280 The resulting mixture of 

methanol, water, and DME is then sent to the MTP reactor 

premixed with steam and recycled olefins. The process uses 

fixed-bed reactors loaded with a H-ZSM-5 catalyst, offering 

lower investment costs compared to processes using fluidized-

bed reactors.281 However, the fixed-bed reactors are less 

effective in managing the heat generated by the highly 

exothermic reaction compared to the fluidized-bed 

reactor.282,283 The MTP process produces propylene, and 

gasoline as a by-product, with a methanol + DME conversion of 

Figure 6 - Simplified process flow diagram of the UOP/INEOS MTO process.244,259 
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more than 99%.211 The reaction section consists of three parallel 

adiabatic quench bed reactors to facilitate intermittent catalyst 

regeneration after 500-600 h of time on stream (TOS), with one 

reactor on standby for coke removal by introducing air.280 Each 

reactor is equipped with five or six catalyst beds with feed 

injection between beds to control reaction temperature.280,284 

The process runs slightly above atmospheric pressure (1.3 to 

1.6 bar), with steam added to the feed (0.5 - 1.0 kgsteam/ 

kgmethanol), and at reactor inlet temperature between 400 °C and 

470 °C.66,274 Olefins such as C2 and C4-C6 are recycled to the 

reactor to maximize the propylene yield.285 Solutions for further 

increasing the propylene selectivity and prolonging the catalyst 

lifetime in MTP were proposed by UOP in their MTP patent 

family centred on moving bed reactor technology.286–288 

In the context of the MTJ process, MTO aims to produce a 

mixture of C2+ olefins,17,72,92 in contrast to Figure  and Figure , 

which reduces purification requirements and simplifies the 

separation process.  

Topsoe filed four patents related to MTJ in 2021,84,289–291 out of 

which three directly focus on the MTO subprocess. Separate 

applications were filed for MTO synthesis catalysed by zeolites 

with 1-D 10-ring pore structures, such as the *MRE, MTT and 

TON families,290 and by zeolites with 3-D 10-ring pore 

structures, such as the MFI family.289 The MTO subprocess 

outlined by Topsoe is claimed to produce predominantly C4+ 

olefins. The C4+ olefin selectivity, which may exceed 80 wt.-%, 

can be attributed to the combination of the catalyst, reactor 

configuration, and reaction conditions.289 

Topsoe’s MTO synthesis is preferentially carried out in two sets 

of parallel fixed bed reactors, operated at reaction 

temperatures below 400 ˚C and pressures up to 25 bar.84,289–291 

Hydrogen transfer reactions, typically promoted at elevated 

pressures, may be mitigated by operating temperatures below 

400 ˚C and by limiting the methanol partial pressure by feed 

dilution to, e.g. 5 or 10 vol.-%.84,289–291 Furthermore, the 

relatively mild reaction temperature may suppress 

monomolecular cracking of higher olefins.292 Additional factors 

suggested to contribute to the C4+ olefin selectivity include the 

recycle of C3- olefins, and operating the two reactor sets at a 

WHSV of 6 - 10 h-1.84,289–291 The patents claim that the high-

pressure operation of MTO bridges the pressure gap between 

the MTO and oligomerization subprocess (Figure ), reducing the 

intermediate compression demand and results in energy 

savings and a simplified process.84,289–291 

 
2.2.4 Products 

In the context of the MTJ route, the MTO synthesis targets to 

produce a distribution of C3-C6 olefins. Alongside the C3-C6 

olefins, the ethylene fraction produced could be either partially 

recycled back to the MTO reactor or directed to the subsequent 

oligomerization subprocess. The differences between ethylene 

oligomerization and C3-C6 olefins oligomerization will be 

addressed in the following section. The usage of an H-ZSM-5 

catalyst in a fixed bed reactor is expected to yield a more 

favourable distribution of C3-C6 olefins compared to the 

SAPO-34 catalyst in a fluidized-bed reactor. To enhance the jet 

fuel yield from the MTJ route, it is essential to minimize the 

formation of aromatic and paraffinic byproducts during the 

MTO synthesis. Investigation on the impact of oxygenates, 

water and aromatics on the oligomerization is still scarce. This 

should be addressed by further research. Co-feeding a portion 

of the light olefins product as a recycle stream into the MTO 

reactor could suppress the aromatic cycle. 250,251 

2.3 Oligomerization 

The oligomerization process involves increasing the olefin chain 

length by coupling of light olefin monomers.293 Within the MTJ 

process, the light olefins produced in the MTO unit, 

predominantly ethylene, propylene, and butylene, are 

converted into longer-chain hydrocarbon (C8 - C16) suited for jet 

fuel production.294–296 On the industrial scale, oligomerization of 

light olefins is already established for the production of 
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petrochemicals and various fuels, including polymeric gasoline 

(C5 - C10) and diesel (C10 - C20).297,298 Despite being a mature 

technology, oligomerization processes are constantly advancing 

through ongoing research aimed at enhancing catalyst 

selectivity and lifetime, investigating new feedstocks, and 

improving both material and energetic efficiency.295 However, 

research targeting to improve the selectivity of the 

oligomerization of mixed light olefins towards jet fuel is still 

scarce.  

Product distribution and selectivity of the oligomerization 

process are significantly influenced by the feed composition. 

Oligomerization of various olefinic feedstocks has been 

investigated in literature, each exhibiting distinct 

oligomerization pathways and selectivity.294,299–302 This section 

focuses on the oligomerization of olefin fractions ranging from 

C2 to C6, which are relevant to the MTJ pathway due to their 

prevalence in the MTO product. 
 

2.3.1 Catalyst and reaction network 

Table  provides an overview of different experimental 

oligomerization studies, including their respective feedstocks, 

product distributions, catalysts, and synthesis 

conditions.19,298,303–310 Quantitative data on selectivity and yield 

are excluded, as these studies were not conducted within the 

framework of the MTJ process, thus avoiding misinterpretation.

Table 4 - Summary of selected oligomerization experimental investigations in literature. 

Olefin feed Temperature 
(°C) 

Pressure (bar) Catalyst  Si/Al WHSV (h-1) Target olefins 
products 

Reference 

C2H4 120 50 Ni/SiO2-Al2O3 0.6 8 C6 - C12 303 

C3H6 270 40 Ni/H-ZSM-5 25 4.03 C6 - C18+ 304 

C3H6 200 - 274 1 H-ZSM-5 12 - 140 - C6 - C12+ 305 

C3H6 210 - 250 2.2 H-ZSM-5 13 - С4 - С9+ 306 

C4H8 175 - 325 1.5 H-ZSM-5 30 - 180 5.6 - 112 С8 - С12 307 

C2H4 
C3H6 
C4H8 

200 - 450 1 
H-ZSM-5   

H-Na-ZSM-5 
30 - C2 - C8 308 

C2H4 
C3H6 
C4H8 

120 16-32 Ni/SiO2-Al2O3 - 4 C6 - C13+ 309 

C3H6 
C6H12 

200 - 250 40 
Pristine ZSM-5 
Meso-ZSM-5 

18 
12.8 

1 - 8 С3 - С12+ 310 

C3H6/ C3H8 100 - 200 20 - 40 
Meso-SiO2-

Al2O3 
- 1 - 20 - 298 

C3H6 / C4H8 140 - 260 13.8 

H-ZSM-5 
H-Y 

H-beta  
Amberlyst-36 

Purolite-
CT275 

23 
5.2 
20 
- 
- 

1.1 C6 - C12+ 19 

Advances in the oligomerization of light olefins for synthetic fuel 

production have been made since UOP developed the first 

industrial catalyst in 1935, i.e. silica-supported solid phosphoric 

acid (SPA).298 However, SPA, catalyst faced challenges such as 

limited water tolerance, a short catalyst lifetime, and 

environmental concerns for its disposal, in addition to a low 

productivity and corrosion issues.311 Regarding current catalyst 

research, it is observed that studies can be categorized into two 

main categories: 

1) Ethylene oligomerization over transition metal 

catalysts.294,312 

2) Oligomerization of higher olefins such as propylene 

and butylene over acidic catalysts.295,313,314  

The difference is attributed to the distinct oligomerization 

mechanism operative over the catalyst, namely metal-catalysed 

1,2-insertion and Brønsted acid-catalysed oligomerization 

involving carbenium intermediates.295 Ethylene oligomerization 

is not favourable over solid acid catalysts due to an unstable 

primary carbenium intermediate.70 Obtaining jet fuel range 
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olefins via a single-stage oligomerization of ethylene-containing 

olefin feedstocks derived from MTO, is therefore challenging. 

Ethylene oligomerization has been investigated over a range of 

homogenous and heterogenous transition metal 

catalysts.296,315–319 Among catalysts for ethylene 

oligomerization, nickel-based catalysts have received the most 

attention in both academic and industrial applications, due to 

their activity, selectivity, stability, and low cost.296 The 

performance of nickel-based catalysts is largely determined by 

the number of accessible active sites. With the co-existence of 

several Ni species in heterogeneous Ni-based catalysts, the 

exact chemical nature of the active site is debated in the 

scientific community.294,318 As discussed by Olivier-Bourbigou et 

al.,294 experimental evidence has been presented both for Ni(I) 

species, (coordinatively unsaturated) Ni(II) species, as well as 

Ni(I)/Ni(II) redox shuttles.  

The acid properties and morphology of the catalyst support is 

likewise of importance, with factors such as the prevalence, 

density and strength of Brønsted acid sites and the porosity 

affecting the structure, carbon number distribution, and the 

stability of the resulting oligomers.320–322 Reviews by Finiels et 

al. and Olivier-Bourbigou et al. provide detailed discussions on 

the dimerization and oligomerization mechanisms over nickel-

based catalysts.294,318 Product selectivity following a Schulz-

Flory distribution, as well as product spectra deviating from this 

distribution, have been reported in literature, depending on the 

catalyst and applied process conditions.303,312,317,323 For 

example, Betz et al. demonstrated that ethylene 

oligomerization over Ni/SiO2-Al2O3 catalysts predominantly 

produces C6, C8, C10 and C12 fractions under conditions of 120 °C 

and 50 bar ethylene partial pressure, and a space velocity of 

8 h-1.303 

Oligomerization of the ethylene fraction produced during the 

MTO process is crucial for enhancing the carbon efficiency and 

jet fuel selectivity of the overall MTJ process. There are two 

main approaches to convert ethylene into jet fuel range olefins:  

1) The two step approach based on dimerizing or 

trimerizing ethylene into an intermediate olefin, e.g. 

butylene and hexene, in a first reactor, followed by 

acid-catalysed oligomerization of the produced C3+ 

olefins to jet fuel range olefins in a second 

reactor.320,324,325 

2) The direct oligomerization of ethylene. Direct 

oligomerization is characterized by a low selectivity 

and require substantial recycling streams, making it 

economically less favourable than the two step 

approach.326  

Oligomerization of C3 - C6 olefins has been investigated in 

literature over various heterogenous solid acid catalysts, 

including zeolites (e.g., H-ZSM-5, H-beta),300,327 amorphous 

silica-alumina (ASA, SiO2-Al2O3),328 sulfonic acid polymeric 

resins (e.g., Amberlyst),303,329 and SPA.295,330 Among these, 

zeolites and sulfonic resins have been extensively studied for 

converting olefins to fuel-range hydrocarbons.19 Zeolites are 

favoured for operations at increased temperatures of about 

250 °C, facilitating multiple reaction types including 

oligomerization, disproportionation, cracking, and 

isomerization.19 Notably, the H-ZSM-5 zeolite is commonly used 

for light olefin oligomerization due to its higher thermal stability 

compared to polymeric resins and suitable operational 

temperature range between 200°C and 300°C.293,329 This 

particular temperature range allows for secondary reactions 

like disproportionation, cracking, and isomerization, supporting 

the production of branched longer-chain hydrocarbons ideal for 

jet fuel.19 Lopez et al. investigated the oligomerization of 

propylene/isobutylene over H-Beta zeolite at a temperature 

range of 140 °C - 260 °C.19 They observed that higher 

oligomerization temperatures result in higher conversion of 

propylene, but with a decreased yield of jet fuel distillate due to 

secondary cyclization/isomerization, hydrogenation, and 

cracking reactions. 

Mechanistically, Brønsted acid catalysed olefin oligomerization 

is initiated by the protonation of olefin by a Brønsted acid site, 

forming a carbenium intermediate, as described in Figure .306,331 

The carbenium species undergo transformations like hydride 

shifts, oligomerization (alkylation), methyl shifts, and 

protonated cyclopropane (PCP) branching, and are eventually 

reverted to olefins through deprotonation.332,333  

Figure 8 - Proposed reactions for propylene oligomerization on acid zeolites (reproduced from ref.331 with permission from John Wiley and Sons, copyright 2019). 
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Oligomerization extends the carbenium ion chain. In contrast, 

β-scission is a cracking mechanism, where the chain length is 

reduced. The reaction rates depend on the size and stability of 

the carbenium ion; larger ions react more slowly than smaller 

methyl and ethyl ions. Hydrogen transfer within these reactions 

leads to the formation of lighter paraffins.334  

The shape selectivity and acid properties of the H-ZSM-5 zeolite 

catalyst enable a high activity for transforming C3 - C6 olefins 

into gasoline, jet fuel and diesel fractions, while exhibiting a low 

deactivation rate.335 The microstructure of the catalysts, such as 

the mean pore size and pore size distribution, plays a role in 

oligomerization reactions. A study by Monama et al. on 

desilicated ZSM-5 reveals that increased mesoporosity 

enhances the accessibility to acid sites, and improves the 

oligomerization activity for 1-hexene and propylene.310 Larger 

pores in beta zeolite and desilicated ZSM-5, compared to small-

sized pores of ZSM-5, improve access to acid sites for larger 

molecules and facilitate the desorption and diffusion of reaction 

products.310,336 Thus, mesoporosity not only facilitates the 

diffusion of reactants and products, but also promotes the 

formation of longer chain hydrocarbons and extends catalyst 

lifetime.310,337,338 Bickel and Gounder showed that propylene 

dimerization rates in H-ZSM-5 zeolites decrease with larger 

crystallite sizes, highlighting the importance of diffusion 

limitations and the impact of internally formed organic phases 

within micropores.339 

Modification of the oligomerization catalyst, by alteration in 

composition, structure, and acidity, can impact the catalyst 

performance.340–342 One notable modification involves 

incorporation of Ni into the H-ZSM-5 zeolite, which favours the 

formation of high molecular weight oligomers, particularly 

beneficial for diesel production. A study by Li et al. for propylene 

oligomerization revealed that a modified H-ZSM-5 catalyst with 

a Ni content of 2.21 wt.% achieved a selectivity of 79% towards 

diesel compared to a selectivity of 68% for H-ZSM-5.304 The 

addition of Ni can also confer activity for ethylene 

oligomerization, as discussed previously. Additionally, 

advancements like the dealumination of ZSM-5 zeolites was 

found to enhance ethylene conversion and favour jet fuel range 

production.326 Research by Mlinar et al. indicated that a lower 

Si/Al ratio in catalysts enhances selectivity towards dimer 

formation rather than cracking products.305 However, a lower 

Si/Al ratio with increased concentration of Brønsted acid sites 

could negatively impact the oligomerization selectivity and 

increase the productivity of aromatics.305,343 

Catalytic activity and selectivity are significantly influenced by 

temperature, reactant partial pressure, and contact time 

between the reaction mixture and the acid sites of the 

catalyst.344 A study by Coelho et al. on 1-butylene 

oligomerization over a H-ZSM-5 catalyst indicates an increase of 

oligomerization selectivity with temperature increase up to a 

threshold of 200 °C, beyond which cracking dominates over 

oligomerization.345 Furthermore, their findings indicate an 

increase in conversion at higher reactant partial pressure. In 

their investigation of butylene oligomerization to liquid fuels at 

1.5 bar and 275 °C on H-ZSM-5 with SiO2/Al2O3= 30, Díaz et al. 

demonstrated that increasing the space time 

(0.5 - 10 gcatalyst h molc-1)  results in higher butylene conversion, 

associated with higher selectivity for C5 - C7 and lower selectivity 

for C8 - C12.307 This can be attributed to the cracking of C8 - C12 

fractions, while the selectivity for by-products like paraffins 

remained unchanged. In conclusion, optimizing the conditions 

of reaction temperature, partial pressure and contact time is 

necessary to promote the formation of olefins with a carbon 

chain length suitable for jet fuel (C8-C16) and reduce the 

formation of cracking and hydrogen transfer products. The 

ethylene content of the oligomerization feed is decisive for the 

design of the oligomerization subprocess within MTJ, as it 

determines whether a one-stage oligomerization over solid acid 

catalysts is sufficient for obtaining a high jet fuel yield. 

 
2.3.2 Process layout 

The MOGD process introduced the idea of using H-ZSM-5 zeolite 

and similar zeolites as potential alternatives to traditional SPA 

catalysts for olefin oligomerization in the 1970s and 

1980s.308,346–349 Integrated with ExxonMobil’s MTO process, the 

Figure 9 - Simplified process flow diagram of the MOGD process.279 
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MOGD process can convert light olefins in the C3 - C6 range into 

hydrocarbon products such as jet fuel. The specific conditions 

for oligomerization reported in literature are in the range of 

200 °C to 300 °C and 40 bar applied in a system of four fixed-

bed reactors, out of which three are operational and one in 

regeneration mode.81,271,350 The MOGD process, shown in 

Figure , produces high yields of distillate fuels (82%), alongside 

gasoline (15%) and light gases (3%), with the flexibility to adjust 

the distillate/gasoline ratio by adjusting the olefin yield from the 

MTO process.271,351 The integration of the MTO and MOGD 

processes therefore also demonstrates the potential of 

producing jet fuel out of methanol.70,350 

The conversion of olefins to distillate (COD) process, developed 

by PetroSA in South Africa, converts C3 - C6 olefins produced in 

FT synthesis into higher olefins, with the purpose of producing 

fuels such as gasoline and diesel.328,352 The COD process was 

investigated over ASA, SPA and H-ZSM-5 catalysts.328,353,354 

Among those, H-ZSM-5 is notable for producing a higher cetane 

number post hydrogenation reaction.70 The COD 

oligomerization of FT light olefins over H-ZSM-5 is conducted at 

operating conditions of 210 °C to 253 °C, 56 bar to 57 bar, and 

WHSV 0.5 h−1.354 The FT feedstock in the COD process consists 

of over 80% olefins and 13% to 17% paraffins. The propylene 

conversion within the COD process ranges from 92% to 99%.355 

In conclusion, insights gained from the MOGD and COD 

processes, which are established technologies with a relatively 

high TRL, could be used within the MTJ process to enable the 

conversion of C3 - C6 olefins into jet fuel range hydrocarbons 

over H-ZSM-5.  

In comparison to MOGD, as shown in Figure 10, the separation 

effort of oligomerization in the context of MTJ will be similar, as 

similar product fractions are anticipated, however with a higher 

yield of jet fuel.72,92 

 
2.3.3 Products 

The oligomerization subprocess within the MTJ route aims to 

maximize the yield of hydrocarbons fractions ranging from 

C8 - C16 while minimizing the formation of byproducts such as 

gasoline and diesel. The product distribution from the 

oligomerization subprocess and the preferred oligomerization 

strategy is dependent on the olefin distribution produced in the 

MTO subprocess, emphasizing the importance of studying these 

two subprocesses in an integrated manner.  

2.4 Hydrogenation 

Olefins are highly reactive compounds and can form deposits in 

jet engines.72 Therefore, the hydrogenation of the olefins 

produced from the oligomerization process to paraffins is a 

crucial step within the MTJ route to enhance the stability and 

performance of jet fuel.356–358 The hydrogenation process 

involves the addition of H2 to unsaturated olefins: 

CnH2n + H2 → CnH2n+2 

The reaction is catalysed by reduced metals, such as Ni, Pd or Pt 

supported on alumina or activated carbon.359–361 The 

exothermic reaction is usually carried out in in a fixed-bed 

reactor at temperature and pressure ranges between 50 °C and 

370 °C as well as 5 bar and 50 bar, respectively.70,71,358,362 

Specific hydrogenation conditions depend on the active metal, 

feedstock and targeted product. The H2 gas is fed in 

stoichiometric excess to achieve an approximately complete 

conversion of olefins to paraffins. Excess H2 is recovered 

downstream the reactor by a gas/liquid separator and recycled 

to the reactor inlet (see Figure ).24,359 Downstream the 

separator, hydrocarbons are fractionated to segregate light 

hydrocarbons (<C8), jet fuel range hydrocarbons (approximately 

C8 - C16), and heavier hydrocarbons. An isomerization unit is not 

required, as acid-catalysed olefin oligomerization within the 

MTJ process produces branched olefins.72 Meeting the final jet 

fuel properties, such as flashpoint, freezing point and distillation 

curve, the final separation after hydrogenation shall be defined 

by the ASTM standard for MTJ.20 

3 Potential for process integration and 
intensification 

Process intensification strategies aim to enhance efficiency, 

reduce equipment requirements, and decrease environmental 

impact of chemical processes by integrating subprocesses or 

using innovative equipment.363–365 In the context of SAF 

production, these strategies should be evaluated by their 

impact on the overall jet fuel yield and process efficiency. The 

previous sections illustrated several state-of-the-art process 

layouts for the subprocesses involved in the MTJ route, 

highlighting the potential for further research and development 

regarding process integration and intensification. To intensify 

the process chain, these subprocesses need to be integrated in 

terms of recycle streams and heat integration strategies. This 

section discusses key challenges and research questions for 
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process integration and intensification concepts significantly 

influencing the future implementation of the MTJ process. A 

simplified block diagram is shown in Figure  to illustrate 

different recycle possibilities and process configurations 

discussed in this section.  

A key aspect with significant potential for overall energy 

efficiency improvements in the MTJ process is related to the 

feedstock of the MTO process. On the one hand, distillation of 

crude methanol within the methanol synthesis subprocess 

requires substantial heat. On the other hand, co-feeding water 

with methanol helps to reduce the catalyst deactivation and 

manage the heat of the exothermic MTO synthesis.366,367 

Therefore, directly using crude methanol as feedstock for the 

MTO process can save energy and costs associated with 

distillation.72 Additionally, the reaction heat generated during 

methanol synthesis could potentially be utilized elsewhere in 

the process, enhancing the overall MTJ process efficiency. It is 

crucial to consider that the presence of impurities in crude 

methanol may influence the initiation of the olefinic cycle and 

the subsequent MTO conversion process. Oxygenates with 

carbon-carbon (C-C) bonds may accelerate the MTO conversion, 

and higher alcohols are expected to dehydrate into their 

respective olefins.368 Consequently, future research is needed 

to investigate the impact of these impurities on MTO 

conversion and their potential effects on catalyst deactivation. 

However, implementing this strategy would require for 

methanol synthesis and MTO subprocesses being located 

geographically close to each other.  

Particularly important is optimizing the yield of the MTO 

subprocess towards C2 and C3-C6 olefins, as this significantly 

affects the subsequent reaction mechanisms and product 

distribution in the oligomerization subprocess and can impact 

the overall yield of the jet fuel product. Feeding DME into the 

MTO subprocess could improve olefins yield.219,220 To enhance 

energy efficiency and decrease equipment cost of the additional 

conversion step from methanol to DME, integrated concepts 

are currently under investigation which could be applied in this 

context.369–371 Further research should be carried out to 

investigate the impact of the MTO feed, particularly crude 

methanol and/or DME, on the reaction mechanism, selectivity, 

reaction kinetics, and catalyst stability, in order to optimize the 

feedstock of MTO processes for SAF production.  

As the MTO product could consist of up to 30 wt.-% ethylene,252 

it emerges as an intermediate product that requires careful 

management to achieve high jet fuel yields. A main challenge in 

co-oligomerizing a mixture of ethylene and other light olefins 

(e.g., propylene and butylene) lies in the differing 

oligomerization mechanisms and the types of catalysts 

required.295 Literature discusses three main approaches for the 

further conversion of ethylene within the MTJ process: 

1) Recycling ethylene back into the MTO reactor214 

2) Direct ethylene oligomerization326 

3) Two-step oligomerization320,324,325 

While recycling ethylene to the MTO synthesis is feasible only in 

limited amounts and may not significantly improve overall 

carbon efficiency, direct ethylene oligomerization into jet fuel 

range olefins suffers from low selectivity and conversion, 

necessitating substantial recycling, which makes it an energy-

intensive option.320,325,326 In contrast, the two-step 

oligomerization could be a more efficient option, as it allows for 

a more selective conversion of ethylene to the desired jet fuel 

range olefins.326 This method involves oligomerizing the 

ethylene fraction in a separate reactor with transition metal 

catalysts to produce higher olefins (primarily in the C4 and C6 

range).320 These higher olefins can then be sent to the second 

oligomerization reactor, which is loaded with an acid catalyst. 

In conclusion, the limitations of recycling ethylene back into the 

MTO process suggest a need for further investigation of 

alternative strategies, particularly the two-step oligomerization 

approach, especially when substantial amounts of ethylene are 

produced in MTO.  

The oligomerization reaction mechanism and product 

distribution are significantly influenced by the distribution of 

light olefins produced in the MTO process. Theoretically, the 

oligomerization product mixture could be sent entirely to the 

hydrogenation subprocess. However, unconverted light olefins 

are valuable intermediates. Thus, recycling these compounds 

back to the MTO or oligomerization subprocesses has the 

potential to significantly improve the overall jet fuel yield. On 

the one hand, co-feeding small concentrations of light olefins, 

such as propylene and butylene, with the methanol feedstock 

into the MTO subprocess enhances the olefinic cycle, leading to 

a higher yield of the desired light olefin chain lengths of 

C3+.243,250,251 On the other hand, the co-oligomerization of a 

mixed olefin feedstock results in a more uniform product 

distribution and improved overall selectivity towards jet fuel 

range hydrocarbons.19,309 This enables multiple options for 

recycling light olefins (C2 - C7) that fall short of the jet fuel chain 

length downstream of oligomerization. Thus, a critical area for 

further investigation is identified as the evaluation of extent and 

impact of recycling streams on energy demand, alongside 

improvements in product distribution and process efficiency.  

Figure 11 – A simplified block diagram illustrating various recycle options and process configuration discussed in Section 3 regarding the potential for process integration and 

intensification starting from CO2 and H2. 
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By integrating and intensifying the oligomerization and 

hydrogenation processes, efficiency improvements and 

reductions in equipment requirements can be achieved. As an 

example, Topsoe introduced a method combining these steps 

into a single hydro-oligomerization (Hydro-OLI) step.84 The 

process utilizes a reactor system with stacked catalyst beds, 

incorporating a hydrogenation metal (e.g., Pd, Rh, Ni) and a 

zeolite. While this combination produces less heat than higher 

oligomerization processes and converts olefins into mainly 

C8-C16 hydrocarbons, it has the disadvantage of eliminating the 

possibility to recycle short olefins back to the reactor, as all 

olefins are saturated into paraffins. Moreover, the integration 

can reduce separation efforts and enhance energy efficiency. 

However, such improvements depend on maintaining a 

comparable jet fuel yield or aiming to produce various 

hydrocarbon product streams. Additionally, using reactive 

distillation for combined oligomerization and hydrogenation 

has been demonstrated in the literature.358 This concept shows 

the potential to improve the energy and mass efficiency of the 

process and reduce equipment costs, but requires further 

research and development within the MTJ process. 

 

Another intensification approach is the one-pot hydrogenation 

of CO2 to olefins.372 The direct conversion of CO2 and H2 into 

hydrocarbons within a single reactor has the potential to reduce 

the overall energy demand and simplify the process layout 

compared to individual synthesis steps.373,374 This method can 

be implemented via two primary pathways:  

1) The combination of the RWGS reaction with FT 

synthesis (CO2-FT route)  

2) The integration of the methanol synthesis with 

the MTO synthesis (MeOH-mediated route)  

While the limitations and potentials of the CO2-FT route were 

already discussed in Section 1 of this article, state of science of 

the MeOH-mediated pathway will be discussed briefly here. For 

this route, the methanol and MTO synthesis can be combined 

using a bifunctional catalyst, consisting of a metal catalyst for 

methanol synthesis and a zeolite catalyst for the MTO reaction, 

at operating conditions of 350 °C to 400 °C and 15 bar to 

30 bar.375 This route is capable of producing light olefins with a 

high selectivity due to the metal/zeolite composite catalysts 

used.376 However, the low C–C coupling activity as well as the 

formation of the byproduct water enhancing deactivation of the 

metal catalyst hinder the technical implementation of this 

pathway.373,377 However, the direct CO2 to olefins conversion 

suffers from lower conversion compared to the established 

two-step methanol synthesis and MTO processes.212,378 Given 

the currently low TRL for the direct CO2 to olefins conversion, 

further research focusing on the development of efficient 

bifunctional and multifunctional catalysts that perform 

effectively under the required conditions for both methanol and 

MTO synthesis, while maintaining stability, remains critical for 

advancing this technology. 

In terms of the geographical distribution of the MTJ process 

chain, two different approaches are possible: first, producing 

methanol from CO2 and H2 at one site and then transporting the 

methanol as an intermediate to a location for further jet fuel 

production; or second, producing jet fuel from CO2 and H2 in an 

integrated process at a single site. The first approach offers 

flexibility by allowing sourcing “green” methanol from the 

global market, independent of security of supply limitations. On 

the other hand, the second approach, integrated jet fuel 

production at a single site, would enable improved heat 

integration opportunities and higher overall process energy 

efficiency. Additionally, it is crucial to emphasize that the 

recycling of byproducts (such as fuel gas and processed purge 

gas) through reforming can only be effectively implemented in 

plant designs where methanol synthesis and MTJ processes are 

located at the same site. The extend of the dynamic operation 

of methanol synthesis to utilize the fluctuating energy supply 

for both approaches should be investigated in a simulation 

study.74–77,379 Furthermore, scenario-specific technoeconomic 

assessments are recommended to evaluate economic scenarios 

for global SAF production. 

4 Conclusions 

The aviation sector faces a pressing need for sustainable 

alternatives to fossil feedstock-based jet fuel to mitigate its 

environmental impact. SAFs offer a viable drop-in solution and 

can be produced from various feedstocks. The MTJ pathway 

represents a promising route, as it offers high jet fuel yields and 

low byproduct formation. This review explores the current 

state-of-the-art of the MTJ process concepts involving the 

conversion of H2 and COx into jet fuel through methanol 

synthesis, MTO synthesis, oligomerization, and hydrogenation. 

The main findings highlight the necessity of an integrated 

process to achieve high yields of SAF and economic viability.  

The MTJ process chain begins with methanol synthesis with the 

option of dynamic operation to add flexibility to the MTJ 

process in coupling with fluctuating renewable energies. 

Methanol is then converted to light olefins in the MTO synthesis 

determining jet fuel selectivity and yield. H-ZSM-5 and SAPO-34 

are the commonly used catalysts for the MTO subprocess 

operated in a fixed bed reactor or fluidized-bed reactor, 

respectively. Among these catalysts, H-ZSM-5 catalyst seems 

more promising for SAF production as it shows a higher 

selectivity to C3 - C6 olefins compatible for the MTJ process, 

while exhibiting a lower tendency for coke formation and a 

lower selectivity towards the formation of ethylene compared 

to SAPO-34. The olefin yield and catalyst lifetime can be 

improved through various strategies, including catalyst 

modification, olefin co-feeding, MeOH dilution and products 

back-mixing. The most widely accepted mechanism for the MTO 

reaction network is the dual-cycle mechanism, composed of the 

olefinic cycle and aromatic cycle. However, representative 

modelling of the reaction mechanism is challenging, due to the 

complex reaction network and challenges regarding the 

analytical evaluation of experimental results. Most published 

kinetic models on MTO synthesis are based on simplified 

assumptions or targeted solely for selective propylene 

production. Further research is required to develop appropriate 

kinetic models optimized for the process conditions relevant for 

an MTJ application.  
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The oligomerization process is used to transform lighter olefins 

(C2 - C6) into longer-chain olefins (C8 - C16). Available scientific 

literature mainly targets ethylene oligomerization over 

transition metal catalysts and C3 - C6 olefins oligomerization 

over acidic catalysts, due to mechanistic differences in the 

oligomerization of ethylene and higher olefins. Thus, the 

oligomerization of MTO products comprising both C2 and C3 - C6 

olefins needs special consideration regarding catalyst and 

process design. The oligomerization of C3 - C6 olefins over 

heterogeneous solid acid catalysts such as zeolites, amorphous 

silica-alumina, and sulfonic acid polymeric resins has also been 

explored, with zeolites favoured for their thermal stability and 

suitable operational temperature range. Optimized reaction 

conditions, including temperature, reactant partial pressure, 

and contact time, are crucial for promoting the formation of jet 

fuel range olefins. The feed composition from the MTO 

subprocess significantly influences the reaction mechanism, 

product distribution, and selectivity in the oligomerization 

subprocess; therefore, both subprocesses should be 

investigated in an integrated manner. Thus, dedicated kinetic 

studies on both the MTO and oligomerization steps within the 

context of MTJ conversion will be necessary to reduce the 

uncertainty associated with future techno-economic analyses 

and process simulations. Industrial processes such as MOGD 

and COD have integrated oligomerization with other 

technologies to convert light olefins into gasoline and diesel, 

demonstrating the potential for jet fuel production through the 

MTJ process.  

The product mixture of the oligomerization process is finally 

hydrogenated over reduced metal catalysts to enhance the 

stability and performance of jet fuel. The hydrogenation 

subprocess is the least challenging, as state-of-the-art 

technologies can be applied for SAF production. 

Key challenges for the practical implementation of the MTJ 

process chain remain in optimizing the integration and 

intensification between the subprocesses, particularly in the 

MTO subprocess and the subsequent oligomerization 

subprocess, with regard to jet fuel yield. Several process 

intensification and integration aspects have been highlighted 

for further research by the scientific community within this 

review: 

1) The direct use of crude methanol produced from the 

methanol synthesis process into the MTO reactor 

could achieve savings in energy and costs associated 

with methanol distillation. The impact of side products 

as well as the increased water content within the 

crude methanol on selectivity should be investigated. 

2) Recycling of C2 - C7 olefins downstream the 

oligomerization step that fall short of the jet fuel range 

either to the MTO reactor or the oligomerization 

reactor to improve the overall jet fuel yield of the MTJ 

process should be examined. Here, special attention to 

the impact of recycle streams towards energy 

demand, product distribution and process efficiency 

should be drawn.  

3) The two-step oligomerization approach for managing 

the ethylene fraction produced within the MTO 

synthesis presents a promising area for further 

investigations to improve the MTJ yield and process 

efficiency. 

4) The combination of the oligomerization and 

hydrogenation within one reactor unit could reduce 

equipment costs and enhance energy efficiency. 

However, this depends on maintaining a comparable 

jet fuel yield or aiming to produce different side 

products. 

Identifying the optimal combination of MTO and 

oligomerization technology is the key challenge in optimizing 

the MTJ process. This aspect should be investigated in further 

research utilizing process simulation studies to accurately 

evaluate the overall process efficiency. Finally, future research 

should focus on refining new process integration and 

intensification strategies to improve the economic feasibility, 

efficiency, and environmental impact of the MTJ process. 

Overall MTJ yield and process efficiency could be significantly 

improved by further optimizing parameters like feedstock 

composition, operating conditions, and process integration. 
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AEL Alkaline Electrolysis 

AEM Anion Exchange Membrane Electrolysis 

ASA Amorphous Silica-Alumina 

ASTM American Society for Testing and Materials 

ATJ Alcohol-to-Jet 

BAS Brønsted Acid Site 

COD Conversion of Olefins to Distillate 

CCU Carbon Capture and Utilization 

DAC Direct Air Capture 

DME Dimethyl Ether 

DOC Direct Ocean Capture 

DTO DME-to-Olefins 

eSAF Electro Sustainable Aviation Fuel 

FT Fischer-Tropsch 

GHG Greenhouse Gas 

HEFA Hydroprocessed Esters and Fatty Acids 

HTE High-Temperature Electrolysis 

IATA International Air Transport Association 

LAS Lewis Acid Site 

LCOP Levelized Cost of Production LCOP 

LHV Lower Heating Value 

MOGD Mobil Olefins to Gasoline and Distillate 

MTA Methanol-to-Aromatics 

MTG Methanol-to-Gasoline 

MTH Methanol-to-Hydrocarbons 

MTJ Methanol-to-Jet 

MTO Methanol-to-Olefins 

MTP Methanol-to-Propylene 
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NOx Nitrogen Oxides 

PEMEL Proton Exchange Membrane Electrolysis 

rWGS Reverse Water Gas Shift 

SAF Sustainable Aviation Fuel 

SPA Solid Phosphoric Acid 

TOS Time on Stream 

TRL Technology Readiness Level 
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