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conditions influence sorbent
selection in adsorption-based direct air capture?†

Malte Glaser, a Arvind Rajendran b and Sean T. McCoy *a

The climate crisis is driving the urgent need to develop negative emission technologies, such as adsorption-

based direct air capture (DAC), to combat global warming. Although DAC holds promise, it remains

expensive and requires further technology innovation, design optimisation, and development of supply

chains to scale up effectively and have a meaningful impact on climate. The performance of DAC is

influenced by both local ambient conditions and the selection of sorbents. However, previous research

typically evaluated DAC performance under constant ambient conditions and considered only a single

sorbent per case study. This approach may result in an incomplete picture of DAC performance and

suboptimal decision-making. Additionally, current DAC optimisation can be computationally expensive,

making comprehensive global analysis impractical. Therefore, this study presents a computationally

efficient, simplified, time-dependent, zero-dimensional (0-D) DAC model that accounts for multiple

sorbents and hourly changing ambient conditions. The model is used to identify a sorbent that

maximises net carbon removal by optimising for different geographical case studies to assess the impact

of local, varying ambient conditions. The results demonstrate that DAC modelling can be simplified from

a one-dimensional model to a 0-D model, thereby reducing computational demands. Additionally,

beyond their absolute values, diurnal and seasonal variations in ambient temperature and humidity have

a strong impact on sorbent performance. Key performance indicators, such as the net carbon removal

rate, vary by up to 400% depending on the sorbent used or daily and seasonal variations in ambient

conditions. Consequently, to improve DAC performance, sorbents should be selected based on ambient

conditions. Finally, this study aims to advance the understanding of DAC and its role in mitigating climate

change by providing general guidelines for DAC sorbent selection.
1 Introduction

Global temperatures have risen by more than 1 °C since the late
19th century, largely attributed to the increasing concentration
of CO2 in the atmosphere.1,2 Reducing the atmospheric carbon
dioxide (CO2) concentration is one of the most difficult long-
term challenges in climate change mitigation.3,4 Negative
emission technologies (NETs), which include adsorption-based
direct air carbon capture and storage (DACCS), therefore play an
important role5,6 in attaining the objectives set forth by the Paris
Agreement.7 DACCS extracts CO2 from the atmosphere and
permanently sequesters it, resulting in negative carbon emis-
sions as long as the amount of greenhouse gases emitted during
this process is less than that sequestered.8,9 Previous studies
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examined the impact of ambient conditions on DAC and re-
ported that factors such as temperature and relative humidity
affect its performance.10–16 However, these studies oen either
assumed constant annual or monthly average ambient condi-
tions, neglected diurnal variations, or considered changing
conditions only during the evaluation of DAC performance, not
during the optimisation. This assumption can become prob-
lematic for many high-latitude continental climate regions,
such as Canada, where, for example, temperatures can vary
from below−40 °C to above +30 °C throughout the year. Relying
on average values in such cases does not adequately reect the
real-world conditions, as the variation in ambient conditions is
excluded by averaging, potentially leading to inaccurate DAC
analysis.

Moreover, optimising DAC performance is essential for the
advancement of cost-effective DAC technology. While previous
studies focused on optimising the cycle design of DAC
processes (e.g., step duration, adsorption, and desorption
settings), the process design (e.g., sorbent selection) was
frequently assumed outside the scope of the study.13,16–20

Sorbents, however, are a fundamental element of DAC systems,
as they capture (and release) CO2. Various sorbents are being
This journal is © The Royal Society of Chemistry 2025
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considered for DAC applications,21,22 each performing differ-
ently under varying ambient conditions. Thus, focusing on
a single sorbent and excluding sorbent selection from the
optimisation process may lead to suboptimal decisions.

Understanding the thermodynamics and performance of
DAC is necessary for evaluating the impact of hourly changing
ambient conditions on DAC's sorbent selection. Given the high
cost and impracticality of observing real-world DAC perfor-
mance today, computational modelling is indispensable for
global analysis. Typically, the literature employs one-
dimensional (1-D) models to describe DAC systems, address-
ing the co-adsorption of CO2 and H2O and providing results
with both temporal and axial spatial resolution.23–26 1-D models
yield accurate results close to experimental measurements, but
also require considerable computational resources, as they
involve solving partial differential equations (PDEs) with cor-
responding initial and boundary conditions. While solving
PDEs for a single case study is manageable, the computational
demands escalate in global DAC screening, where process and
cycle designs are optimised for hourly variations in ambient
conditions across all geographical coordinates. This increase in
complexity emphasises the need for more efficient, faster, yet
accurate DAC modelling approaches. To reduce model
complexity, it is argued that high axial resolution is unneces-
sary.27 This arises because, to minimise pressure drop, most
DAC models and patents in the literature26,28 assume shallow
adsorption columns only a few centimetres deep. This shallow
geometry limits the spatial scale of the model and leads to the
proposal of a zero-dimensional (0-D) model, which ignores axial
resolution. 0-D models for DAC were published previously;29

however, these models are based on static assumptions, such as
the system reaching equilibrium conditions instantaneously.
Sorbents attain equilibrium loading when there is no net
change in the amount of adsorbed molecules under the current
conditions. The time required to reach equilibrium is inu-
enced by heat and mass transfer within the system. As a result,
depending on the cycle design, the sorbent may not be exposed
to ambient air long enough to achieve equilibrium conditions.
Current 0-D models do not account for this temporal
dimension.

Therefore, the literature lacks three critical aspects: (a) the
consideration of hourly changing ambient conditions in DAC
modelling, (b) the integration of different sorbents into the
optimisation problem, and (c) the availability of a fast and
accurate time-dependent 0-D model to describe DAC thermo-
dynamics. Consequently, the primary objective of this study is
to examine how hourly changing ambient conditions affect
sorbent selection in order to achieve optimal DAC performance.
The second objective is to develop and explore the potential use
of a time-dependent 0-D model for DAC modelling.

Bridging the gap between ambient conditions and sorbent
selection advances the scientic understanding of DAC and
offers practical solutions to guide policy and industry decisions
for effective and strategic DAC deployment. Additionally, this
study provides a foundational framework for future research.
The use of the 0-Dmodel makes DACmodellingmore accessible
to a broader audience, including those without access to high-
This journal is © The Royal Society of Chemistry 2025
performance computing. Following the identication of
optimal sorbent selection, subsequent studies can focus on
further optimising DAC's process and cycle design under
varying ambient conditions. This optimisation is important for
developing sustainable, region-specic DACCS solutions,
thereby improving the technology's applicability and ultimately
contributing to climate change mitigation.
2 Modelling

To address the objectives of this study, a 0-D model with
weather-dependent inputs is developed, validated, and opti-
mised for targeted geographical case studies. The following
section builds on a 1-D model presented in the literature,26,30

modied here by simplifying assumptions to reduce its
complexity to a 0-D model and enable analysis of multiple
sorbents. Unlike other 1-Dmodels in the literature that focus on
a single sorbent, Balasubramaniam et al.26 examined three
sorbents capable of co-adsorbing CO2 and H2O. Hence, to assist
model validation, this study uses model parameters from
Balasubramaniam et al.26 This approach reduces the impact of
differences in assumptions across studies regarding isotherms,
kinetic data, and other parameters. In doing so, observed
differences in performance are attributable to the sorbents
themselves and their interactions with varying ambient condi-
tions, making the data more suitable for the objectives of this
study.
2.1 DAC model development

To describe the thermodynamics of DAC systems, most 1-D
models represent the adsorption column as a packed bed. In
contrast, the 0-D model developed in this study assumes that
the adsorption column can be represented as a well-mixed
reactor. This assumption is based on the fact that the shallow
geometry of many modelled DAC columns oen leads to
uniform conditions throughout the column, both aer the inlet
and before the outlet. Mathematically, this means that the
conditions within the adsorption column and at the outlet are
identical. To achieve this, the process design features a single
cylindrical adsorption column characterised by wall density r,
length l, inner (in) and outer (out) radius r, and heat transfer
coefficient h. The adsorption column is packed with sorbent
particles, with detailed dimensions and parameters, such as the
heat of adsorption DHads and specic heat capacity cp, provided
in Tables S1 and S2.† The sorbents studied that enable the co-
adsorption of CO2 and H2O include APDES-NFC-FD-S
(APDES),31 SIFSIX-18-Ni-b (SIFSIX),32 and NbOFFIVE-1-Ni
(NbOFFIVE).32 These sorbents are selected to represent both
amine-functionalised chemisorbents, which offer high CO2

loadings but suffer from oxidative degradation, and phys-
isorbents, which are more stable but sensitive to moisture.
Nevertheless, it is assumed that all sorbents remain stable for
the purposes of this analysis.

Fig. 1 illustrates the 0-D assumption and the chosen cycle
design of the modelled temperature vacuum swing adsorption
(TVSA) system. The TVSA cycle design involves four steps:
Sustainable Energy Fuels, 2025, 9, 4404–4416 | 4405

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5se00681c


Fig. 1 Schematic representation of the four steps of the TVSA cycle:
step 1—adsorption, during which ambient air enters the adsorption
column. Step 2—evacuation, where residual gases are removed from
the system until the desired desorption pressure is reached. Step 3—
external heating, in which heat is supplied through a heating jacket
(illustrated by red-coloured adsorption column walls) to raise the
system temperature. Step 4—desorption, involving the continuous
desorption of CO2 and H2O, followed by the separation of these gases
to improve CO2 purity.
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adsorption (ads), evacuation (eva), heating (ht), and
desorption (des). During the adsorption step, a fan blows air
with ambient temperature Tamb and relative humidity 4amb

through the adsorption column. The fan overcomes the
pressure drop of the adsorption column by applying power
_WFan. Within the adsorption column, CO2 and H2O are adsor-
bed, while other gases are assumed not to interact with the
sorbent. The air, which is leaner in CO2 andH2O, is then released
back into the atmosphere. The evacuation step initiates the
desorption process. The adsorption column inlet is closed, and
a vacuum pump (VP) uses mechanical power _WVP to evacuate the
adsorption column until the desired desorption pressure pdes is
attained, releasing the remaining gases into the atmosphere.
During the heating and desorption steps, the temperature in the
adsorption column is increased isobarically to the desorption
temperature Tdes by applying thermal energy _QW and additional
mechanical power _WVP. If desired, steam can be used during the
desorption step to introduce an extra temperature and pressure
swing, increasing productivity at the cost of higher energy
consumption.26 Temperature and pressure swings decrease the
sorbent's equilibrium loading, causing the adsorbed CO2 and
H2O to desorb. Continuous heating and the extraction of des-
orbed CO2 and H2O from the adsorption column maintain
constant Tdes and pdes. This ensures continuous desorption,
v

vs
TW ¼

	
2rinhin

rout2 � rin2
$
�
TC � TW

�� 2routhout

rout2 � rin2
$
�
TW � Tamb

��
$
�
rW$cWp

��1
(4)
allowing the remaining adsorbedmolecules to desorb until a new
equilibrium is reached. Aer the desorption step, the inlet is
opened to allow ambient air to ow in. This causes the system to
cool and the overall pressure to rise until ambient conditions are
4406 | Sustainable Energy Fuels, 2025, 9, 4404–4416
attained in the adsorption column. This process is repeated
cyclically to continue capturing CO2 from the air.
2.2 Simplied DAC model

The description of the 0-D model is based on three equations:
molar balance, energy balance, and adsorption kinetics. The
molar balance assumes that anymoles _n of species i˛ {CO2, H2O,
N2} entering the adsorption column through the inlet (I) either
exit (O) the system, adsorb (A) onto the sorbent, or accumulate (C)
within the system (eqn (1)). The molar balance accounts for time
s, the universal gas constant R, the sorbent volume Vsorbent, the
sorbent loading qAi , the adsorption column gas volume VC, mole
fraction yCi , pressure pC, and temperature TC.

�
ni
I � �

ni
O ¼ v

vs

�
pC$VC

R$TC
$yCi þ qAi $Vsorbent

�
(1)

The temperature change in the adsorption column
v

vs
TC is

determined using the energy balance shown in eqn (2). The
energy balance accounts for the temperature difference between
the inlet and adsorption column (Tamb − TC), the pressure

change in the system
v

vs
pC, the heat of adsorption or desorption

processes, external heat exchanges _Qexternal, and sensible heat
required to heat the mass m of sorbent (S), adsorbed, and
accumulated gases. _Qexternal includes the heat exchanged
through the adsorption column wall (W), considering the
temperature difference between the adsorption column and its
wall TW (eqn (3)):

v

vs
TC ¼

 X
n
�

i
I
$cIp;i$

�
Tamb � TC

�þ VC$
v

vs
pC

þ
X

DHS
ads;i$

v

vs
qAi $Vsorbent �Q

c
external

�

$
�
mS$cSp þ

X
qAi $Vsorbent$c

A
p;i þ

X
nCi $c

C
p;i

��1
(2)

_Qexternal = hin$p$rin$2$l$(T
C − TW) (3)

It is assumed that the adsorption column wall is instanta-
neously heated to the set desorption temperature during the
heating and desorption steps.26 In all other steps, however, the
wall temperature varies according to the current temperature in
the adsorption column and the ambient temperature, as shown
in eqn (4).
Adsorption isotherms are used to model the uptake of CO2 and
H2O

3. Eqn (5) calculates the rate of adsorption or desorption by
using a simple linear driving force (LDF) model, where qA;*i and
This journal is © The Royal Society of Chemistry 2025
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ki represent the sorbent's equilibrium loading and each gas's
mass transfer/LDF coefficient, respectively.

v

vs
qAi ¼ ki$

�
qA;*
i � qAi

�
(5)

The relative humidity in the adsorption column is determined
by the ratio of the partial pressure of H2O to its corresponding
saturation pressure, the latter of which is calculated using the
Clausius–Clapeyron equation. During the evacuation step
(duration of seva) the pressure change is assumed to follow an
exponential prole, as detailed in eqn (6).

v

vs
pC ¼ pC

seva
log

	
pdes

pC

�	
pdes

pC

� s
seva

(6)

2.3 Productivity and energy calculations

The system's modelled productivity (Pr) can be determined by
quantifying the amount of CO2 desorbed DmA

CO2;sdes ¼ DmCO2;cycle

during the duration of the desorption step sdes and dividing it
by the product of sorbent volume and cycle duration scycle, as
shown in eqn (7).

Pr ¼ DmCO2 ;cycle

Vsorbent$scycle
(7)

To calculate the specic energy demand (SED) of the DAC system,
it is necessary to factor in the absolute energy demand (AED) of
the fan, vacuum pump, heating system, and, if applicable, steam
generation. Although a 0-D model, by denition, does not
account for pressure drop in the axial direction, differences in
bed voidage among sorbents and their effects on the required fan
power are adapted from published 1-D models.17,30 More specif-
ically, the pressure drop in eqn (8) is calculated using Darcy's law
in the axial direction, following the approach in Haghpanah
et al.30 In total, the energy required by the fan varies with the
volumetric ow rate entering the system _V I, the fan efficiency
hFan, and the pressure drop across the adsorption column Dp.

Wc
Fan ¼

1

hFan

$Vc I$Dp (8)

The energy requirement of the vacuumpump (eqn (9)) varies with
the adiabatic constant g, pump efficiency hVP, ambient pressure
pamb = 1 atm, and volumetric ow rate leaving the system _VO.

Wc
VP ¼ 1

hVP

$
g

g� 1
$Vc O$pC$

2
64pamb

pC

g�1
g � 1

3
75 (9)

A heating jacket supplies the necessary heat ux to reach the
desorption temperature. _QW is calculated using the surface area
of the adsorption column and the temperature difference
between the adsorption column and the desorption tempera-
ture (eqn (10)).

_Qw = hin$2$p$rin$l$(Tdes − TC) (10)

The energy demand for steam use is calculated using eqn (11)
and accounts for the steammass ow rate _msteam, the difference
between desorption temperature and saturation temperature
This journal is © The Royal Society of Chemistry 2025
Tsat at the desorption pressure, an assumed water temperature
of 5 °C and the heat of vaporisation DHvap,H2O which accounts
for the phase change from liquid (l) to gaseous (g). Given the
range of considered desorption pressures, Tsat is always
greater than 5 °C, ensuring a positive temperature difference
Tsat − T5°C.

_Qsteam = _msteam$(cp,H2O,1$(Tsat − T5˚C)

+ DHvap,H2O
+ cp,H2O,g$(Tdes − Tsat)) (11)

By integrating the power demands over the entire cycle dura-
tion, the total primary SED can be determined (eqn (12)),
assuming an efficiency of 50% for converting thermal to elec-
trical energy.26

SED ¼
Ð
Qc W þ Ð Qc steam þ 2$

� Ð
Wc

Fan þ
Ð
Wc

VP

�
DmCO2 ;cycle

(12)

2.4 Integration of ambient conditions

To account for the inuence of varying ambient conditions,
particularly temperature and humidity, the 0-D model uses data
sourced from NASA's MERRA-2 programme.33 Hourly changing
real-world ambient conditions for the year 2023 (totalling 8760
hours) are used as input to the model to identify the optimal
sorbent for any given location.

However, NASA's dataset provides data for over 200 000
locations. Optimising the DAC process design for each location
using hourly changing real-world ambient conditions would
require substantial computational resources, potentially
exceeding available capacities. This issue is addressed by
temporally aggregating a year's worth of data into a select
number of representative typical periods (TPs) and using these
time series as input to the 0-D model to identify the optimal
sorbent for each TP. Aggregating ambient conditions involves
grouping days with similar weather patterns to dene a repre-
sentative typical day. These typical days are then organised into
broader typical periods comprising multiple days with compa-
rable ambient conditions; for example, June 1st and July 1st

could be considered representative of a typical summer day in
the northern hemisphere. However, these periods do not
correspond directly to traditional seasons like winter, spring,
summer, or autumn, since, for instance, a warm day in March
might be grouped with one in October. Nevertheless, temporal
aggregation allows for typical periods to be interpreted as
analogous to typical seasons, potentially leading to DAC process
designs that are tailored accordingly. The tsam library34 in
Python aggregates the data using a hierarchical aggregation
algorithm.

One disadvantage of temporal aggregation is that the
sequence of typical periods at a given location cannot be pre-
determined—such as TP2 always following TP1. To address this
and capture inter-seasonal variations in ambient conditions,
the data for an entire year is merged into a single time series
which is then used as input to the 0-D model to identify the
optimal sorbent. Since aggregating all 8760 hours into a single
TP does not adequately represent diurnal and seasonal
Sustainable Energy Fuels, 2025, 9, 4404–4416 | 4407
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Table 1 Summary of ambient conditions input

Scenario Purpose

Actual Accurate real-world analysis
Temporally aggregated Intra-seasonal analysis
Resampled (Faster) inter-seasonal analysis
Averaged Literature benchmark analysis
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variations (as detailed in Section S.2†), the pandas library35 in
Python resamples the data for the entire year by averaging 20-
hour intervals. This process reduces the number of modelled
hours to 438. Additionally, changing the sorbent throughout the
year to optimise DAC performance is considered impractical;
therefore, a single optimal sorbent is selected for the entire year.

This study also explores scenarios with constant average
ambient conditions in the 0-D model. This approach is inten-
ded to investigate whether using constant ambient conditions
results in different optimal sorbents compared to those ob-
tained under varying ambient conditions and to enable
comparisons with previous studies. Table 1 summarises the
various inputs for the four scenarios: actual, temporally aggre-
gated, resampled, and averaged ambient conditions.
2.5 Model validation

The combination of molar balance, energy balance, and
adsorption kinetics yields a set of coupled ordinary differential
equations (ODEs) that necessitate a numerical solver to obtain
their solution. The scipy package36 in Python is used for this
purpose. Subsequently, a specic DAC cycle design (e.g., step
duration, adsorption, and desorption settings) with given
ambient conditions is modelled, yielding data on the variables
listed in Table 2 at any given point in time. This data helps
determine the model's key performance indicators (KPIs). To
account for heating and cooling effects within the DAC system,
the evaluation of the model's KPIs excludes the rst cycle. KPIs
of subsequent cycles are averaged over the duration of their
respective cycles to ensure they are not inuenced by the initial
cold start.
Table 2 Output variables of the DAC model

Variable Description Unit

nACO2
CO2 sorbent loading mol

nAH2O
H2O sorbent loading mol

nAN2
N2 sorbent loading mol

nCCO2
CO2 in adsorption column mol

nCH2O
H2O in adsorption column mol

nCN2
N2 in adsorption column mol

nOCO2
Collected CO2 mol

nOH2O
Collected H2O mol

nON2
Collected N2 mol

TC Temperature in adsorption
column

K

pC Pressure in adsorption column Pa
TW Wall temperature K

4408 | Sustainable Energy Fuels, 2025, 9, 4404–4416
The 0-D model is validated against the 1-D model by
comparing commonly used KPIs, specically Pr and SED.
Balasubramaniam et al.26 reported their results for various cycle
designs under a constant ambient temperature of 20 °C and
a relative humidity of 50%. These same cycle designs and
ambient conditions are used as input to the 0-D model.
Comparing the computed KPIs from both models allows for an
assessment of whether the 0-D model can be used for the
purposes of this study.
2.6 Objective function

Pr and SED do not account for upstream emissions associated
with DAC operation and, therefore, do not reect the real
negative emissions potential of a specic DAC sorbent under
varying ambient conditions. To address this, Pr, dened per
unit volume of sorbent, is converted into a unit of mass
captured per unit time. This conversion is done by xing the
volume of the adsorption column, and consequently, the size of
the DAC system, based on the dimensions stated in Table S1.†
Additionally, SED is multiplied by the on-site greenhouse gas
emissions (CO2,eq) from the energy used eenergy,CO2,eq =

0.184 kg kW−1 h−1 = 0.0511 kg MJ−1,37 which is assumed to
originate from natural gas combustion. This conversion allows
two new KPIs to be determined: removal rate (RR) and carbon
removal efficiency (CRE).17 A high RR ensures the removal of
large quantities of CO2 by the DAC system within a short period
of time (eqn (13)), while a high CRE minimises on-site emis-
sions DmCO2,on-site resulting from DAC operation relative to the
amount of CO2 captured (eqn (14)).

RR ¼ DmCO2 ;cycle

scycle
(13)

CRE ¼ DmCO2 ;cycle � DmCO2 ;on-site

DmCO2 ;cycle

(14)

However, RR is typically inversely related to CRE, necessitating
a trade-off and bi-objective optimisation, which in turn requires
considerable computational resources. Bi-objective optimisa-
tion is avoided by introducing the net carbon removal rate
(CRR)17 as the objective function, shown in eqn (15), and opti-
mising CRR through single-objective optimisation. CRR
accounts for the net amount of CO2 removed from the atmo-
sphere, considering both total CO2 captured and CO2 emitted to
the atmosphere through on-site processes within a given time
period. This objective function aligns with the goal of global
carbon dioxide removal efforts while conserving computational
resources.

CRR = RR$CRE (15)

2.7 Decision variables

Factors inuencing CRR include the type of sorbent, which
introduces an integer variable to the optimisation problem.
However, each sorbent has unique characteristics. Therefore, as
part of the overall cycle design, the duration of adsorption sads
This journal is © The Royal Society of Chemistry 2025
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and desorption, desorption pressure, and air inlet velocity vads
are also considered, adding four continuous variables. Optional
steam desorption is included as a second integer variable, along
with the corresponding steam inlet velocity vsteam as an addi-
tional continuous variable. Constraints for the decision vari-
ables considered are shown in Table S3.† This means that, for
a given input of ambient conditions, a single optimal sorbent
and its corresponding set of cycle design variables are deter-
mined, both of which remain xed throughout the specied
time period. Consequently, each input of ambient conditions
can result in a different sorbent and different set of xed cycle
design variables. Optimising the cycle design variables for each
individual cycle would better accommodate hourly changing
ambient conditions. However, this approach lies beyond the
scope of this study, as addressing it would effectively transform
the problem into a control optimisation challenge. Table S4†
lists parameters of the cycle design that are assumed to remain
constant during optimisation. These parameters either have
little impact on DAC performance or serve to simplify the
complexity of the optimisation problem. Given the non-linearity
and integer nature of the optimisation, particle swarm algo-
rithm (PSA) is employed for its effectiveness in solving such
problems. The pymoo package38 in Python applies PSA to the
DAC model, employing 10 000 particles until the algorithm
converges to ensure an optimal solution is reached, as detailed
further in Section S.3.†
2.8 Case studies

The 0-D model, integration of ambient conditions, and opti-
misation approach establish a framework that allows for the
rapid and straightforward investigation of how ambient
conditions inuence the optimal sorbent selection for DAC.
This framework can be applied to any location, provided data
on ambient conditions is available, enabling a global analysis of
DAC systems. As an example, the framework is demonstrated
through two case studies: Calgary and Barbados. These loca-
tions are chosen due to their diverse climates, spanning cold
and dry winters to warm and humid summers, to best demon-
strate the effects of varying sorbent performance.

In each case study, the model is optimised across several
scenarios using the four different inputs of ambient conditions
detailed in Section 2.4 and Table 1: the actual real-world data,
each typical period's aggregated data, resampled data, and
constant average data. In each scenario, one of the four inputs
of ambient conditions is used, modelling one hour at a time.
Results from each modelled hour serve as initial conditions for
the subsequent hour, with ambient conditions updated based
on the scenario investigated. PSA maximises CRR using the
decision variables outlined in Table S3,† determining the
optimal sorbent for the given input of ambient conditions,
while maintaining a CO2 purity greater than 95%.
Fig. 2 Comparison of calculated specific energy demand (SED) and
productivity (Pr) for various steam-assisted cycle designs using APDES
sorbent, between 1-D model, 0-D model, and calibrated 0-D model.
3 Results and discussion

First, the rationale for transitioning from a 1-D to a 0-D model
for DACmodelling is explained. Second, the optimal sorbent for
This journal is © The Royal Society of Chemistry 2025
different ambient conditions is discussed. Following this, the
impact of ambient condition variability along with the effects of
on-site energy emissions on sorbent selection are analysed.

3.1 Rationale for simplied DAC models

Fig. 2 compares the KPI results of the 0-D and 1-D model for
various steam-assisted cycle designs using APDES sorbent. The
KPIs from the 0-D model follow the same trend as those from
the 1-D model, albeit with a slight shi. The difference is due to
errors introduced by the effects of conduction, convection, and
dispersion in energy and molar balances, for which the 0-D
model cannot accurately account. Introducing a constant
sorbent-specic calibration factor into the 0-D model mitigates
this difference, bringing it into better alignment with the 1-D
model. The agreement between the calibrated 0-D model and
the 1-D model is quantied by the R2 value, which is sufficiently
high for the purposes of this study. While the calibration factor
has no physical meaning, it is applied to ensure the best
possible alignment with previously published 1-D models.
Accordingly, the calibrated model is used for the analysis in the
following sections.

For the same process design as above, Fig. 3 illustrates the
temporal trajectories of CO2 loading, H2O loading, and the
temperature in the adsorption column, with cycle design
parameters detailed in Table 3. The trajectories closely resemble
those published by Balasubramaniam et al.,26 conrming that
the 0-D and 1-D models produce nearly identical results. The
gure illustrates that H2O reaches its equilibrium loadingmuch
faster than CO2, consistent with the assumption by Balasu-
bramaniam et al.26 that the mass transfer coefficient of H2O is
1000 times greater than that of CO2. In fact, because CO2 mass
transfer is slow, CO2 never fully reaches equilibrium loading for
this particular cycle design. In real-world scenarios, both mass
Sustainable Energy Fuels, 2025, 9, 4404–4416 | 4409
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Fig. 3 Temporal trajectories of adsorption column temperature TC,
CO2 loading qACO2

, and H2O loading qAH2O
illustrating their variation over

time in the adsorption column under fixed ambient conditions (Tamb =

20 °C and 4amb = 50%).

Table 3 Cycle design parameters for validation purposes26

Parameter Description Value Unit

sads Adsorption step duration 13 772 s
seva Evacuation step duration 100 s
sht Heating step duration 704 s
sdes Desorption step duration 30 000 s
Tdes Desorption temperature 120 K
pdes Desorption pressure 5000 Pa
vads Air inlet velocity 0.1081 m s−1

vsteam Steam inlet velocity 0.0541 m s−1

Fig. 4 Comparison of an artificial ambient temperature and relative
humidity trajectory and corresponding H2O loading across the
adsorption, heating, and desorption steps of two DAC cycles. The
evacuation step is not visible as it is too short. The semi-transparent
and thinner line represents the same cycle, started five hours later.
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transfer coefficients would vary over time due to the dynamics
and conditions within the adsorption column. However, due to
a lack of data, these values are assumed to remain constant. The
inuence of the mass transfer coefficient of H2O is further
examined in Section S.4,† conrming that the ndings of this
study remain robust across a broad range of values. In addition,
the gure depicts a rapid decrease in temperature close to
ambient conditions of Tamb = 20 °C (at 4amb = 50%) at the
beginning of the adsorption step. However, ambient conditions
are only reached once fewer molecules adsorb, thereby reducing
the small effect of the heat of adsorption. Aer the evacuation
step, the temperature rises until it reaches the desorption
temperature. The fact that adsorption, desorption, and heating
occurs over time emphasises the advantage of a time-dependent
0-D model over previous static 0-D models, particularly when
slow kinetics prevent the system from reaching equilibrium,
making the assumption of immediate equilibrium not
applicable.

In conclusion, while reducing a PDE system to an ODE
system may compromise accuracy, the unique design of the
DAC adsorption column allows for this simplication without
considerable loss of precision. As a result, although the 0-D
4410 | Sustainable Energy Fuels, 2025, 9, 4404–4416
model lacks spatial resolution within the adsorption column,
its primary KPIs align closely with those of the 1-Dmodel. While
a more detailed model is preferable for in-depth analysis, this
simplication is reasonable for the purposes of this study.
3.2 Effect of varying ambient conditions on DAC

Fig. 4 illustrates the impact of varying ambient conditions on
DAC performance, with the stepwise trajectory resulting from
the assumed hourly changes. It uses the cycle design parame-
ters described in Table 3, APDES as the sorbent, and articial
sinusoidal ambient conditions for demonstration purposes.
The gure suggests that variations in ambient relative humidity
during the adsorption step correlate with variations in the
amount of H2O adsorbed. Specically, an increase in relative
humidity (see hours 1 to 4) leads to higher H2O adsorption by
the sorbent, while a decrease (hours 13 to 16) results in lower
H2O adsorption. Since the adsorption step is the only step in
which the DAC system interacts with ambient air, Fig. 4
suggests that ambient conditions during adsorption have the
greatest inuence on sorbent performance. Consequently,
assuming constant ambient conditions in DAC modelling does
not accurately reect in situ performance.

The analysis in Fig. 4 also demonstrates that the timing of
starting DAC operation inuences overall performance. For
instance, starting the cycle ve hours later would result in
different values for SED, Pr, and CRR, with respective differ-
ences of 1.3%, −2.7%, and 0.11% for the shown cycles.
However, while this effect is noticeable when considering only
This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Ambient temperature and specific humidity (wet basis) across
four typical periods in Calgary, with thresholds characterising warm/
cold and humid/dry conditions.

Table 4 Optimal sorbent selection for different typical periods (TPs)
and their corresponding characterised ambient conditions (AC)

TP Characterised AC
Optimal
sorbent

1 Warm & humid APDES
2 Cold & dry SIFSIX
3 Warm & humid APDES
4 Cold & dry SIFSIX
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a few cycles, its impact becomes negligible as the analysis includes
several hundred cycles (as is typical in a year). This is because, in
the real world, ambient conditions do not follow a clear 24-hour
cycle, making the described effects less pronounced.
3.3 Optimal sorbent selection for different typical periods

Analysis of temporal aggregation results in Calgary suggests
that using four typical periods, each spanning eight days,
accurately reects real-world data while reducing the modelled
hours from 8760 to 768 (see Section S.2† for further informa-
tion). Using four TPs also enables the denition of four distinct
typical seasons within a year. However, instead of categorising
by months as is typically done, this approach groups days with
similar ambient conditions into one of the four seasons. The
results of this aggregation are illustrated in Fig. 5, where a thin
solid and dotted line divide the subplot into two regions,
marking a visualisation threshold that separates warm, cold,
humid, and dry conditions. Ultimately, this method enables the
identication of an optimal sorbent for each typical period.

Table 4 shows the optimal sorbent for maximising CRR in
each typical period in Calgary. TP1 and TP3 favour APDES, while
TP2 and TP4 favour SIFSIX. The results further demonstrate
that ambient conditions above the threshold lines in Fig. 5—
characterised as warm and humid—favour the use of APDES,
whereas ambient conditions below this line (cold and dry)
favour SIFSIX. Together, the above ndings demonstrate the
impact of ambient conditions on sorbent performance and
suggest that tailoring sorbent selection accordingly could
improve DAC performance. Although changing sorbents in
response to each TP may be challenging in practice, these
This journal is © The Royal Society of Chemistry 2025
results offer preliminary guidelines for optimising sorbent
selection based on ambient conditions to achieve better DAC
performance.

To further illustrate the effect of ambient conditions on
sorbent performance, Fig. 6 depicts the quantitative differences
in CRR among various sorbents under identical cycle designs
and ambient conditions (TP1 and TP2). The results demon-
strate that CRR varies with the sorbent used, emphasising the
critical importance of sorbent selection in DAC process design.
Specically, employing APDES over SIFSIX in TP1 increases CRR
by 158%, while using SIFSIX instead of APDES in TP2 increases
CRR by 404%. However, it should be noted that the cycle design
used is not optimised, so the observed difference might be
smaller if optimised cycle designs were applied for each
sorbent. Optimising the cycle design is, however, beyond the
scope of this study. Additionally, the gure indicates that
NbOFFIVE is not recommended for use in Calgary under these
ambient conditions, as it never yields a positive CRR. This is
because the ambient conditions in all TPs are unfavourable;
using NbOFFIVE demands excessive energy and leads to
considerable on-site emissions, while capturing insufficient
CO2, rendering DAC operation impractical.

The absolute values shown in Fig. 6 help to contextualise the
results discussed above. Since this study models only a single
adsorption column, with its dimensions xed, the amount of CO2

removed is relatively small. Previous studies17,26 addressed the
scaling up of their models by multiplying their system's perfor-
mance with a constant factor to align with industrial capacities.
However, this approach is not considered here for two reasons.
Firstly, scaling up does not affect the qualitative results of this
study, which aims to evaluate sorbent selection under different
ambient conditions; thus, the sorbent choice remains unchanged
as the system scales. This consideration becomes more important
when taking into account the life-cycle emissions and costs of the
entire DAC system, which are beyond the scope of this study.
Secondly, these studies17,26 used Climeworks' Orca plant as
a reference system, citing their target of capturing 4000 t of CO2 per
year. However, Climeworks recently reported39 that their actual
performance falls far below the initially targeted 4000 t, making
any scale-up based on proposed industry data challenging.

The varying performance of APDES and SIFSIX under
different ambient conditions can be attributed to their distinct
underlying chemistries. APDES and SIFSIX represent two
different types of sorbents: a chemisorbent and a physisorbent,
respectively. Physisorption relies on physical forces, such as van
der Waals forces, to capture molecules, while chemisorption
involves the formation of chemical bonds. These fundamental
Sustainable Energy Fuels, 2025, 9, 4404–4416 | 4411
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Fig. 6 Comparison of net carbon removal rates (CRR) achieved with
APDES, SIFSIX, and NbOFFIVE under identical cycle designs and
ambient conditions, using typical periods 1 (warm and humid) and 2
(cold and dry) in Calgary as representative examples.
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differences result in distinct behaviours when exposed to H2O,
which in turn affect the CO2 adsorption performance of each
sorbent under varying humidity levels. APDES, a chemisorbent,
promotes synergistic adsorption of both CO2 and H2O,
improving its performance in humid conditions. Conversely,
SIFSIX, a physisorbent, faces competitive adsorption between
CO2 and H2O, as elaborated further in Section S.1.† Thus, in
humid environments, the prevalence of H2O hinders the effec-
tiveness of SIFSIX by occupying the adsorption sites that would
otherwise be available for CO2. In contrast, in dry conditions,
the reduced presence of H2O lowers this competition, allowing
SIFSIX to perform better. Hence, the prevalence of H2O in
ambient air, its adsorption, and subsequent desorption deter-
mines which sorbent performs best. This is because desorbing
H2O consumes energy and subsequently causes on-site emis-
sions. For CRR optimisation, it is reasonable to use more energy
for H2O desorption only if the system captures more CO2 as
a result. Conversely, the less CO2 the system captures relative to
the amount of H2O it captures, the less benecial the DAC
operation becomes, as the additional on-site energy emissions
cannot be offset by more CO2 captured. While these results
already demonstrate the impact of ambient temperature and
humidity on sorbent selection, further analysis is needed to
explain how variations in these ambient conditions impact the
overall performance of the DAC system.
Fig. 7 Comparison of actual, resampled, and average ambient
temperature and specific humidity for Calgary and Barbados, along
with the corresponding optimal sorbent.
3.4 Inuence of ambient condition variability on sorbent
selection

Fig. 7 illustrates the actual, resampled, and average temperature
and humidity data for Calgary and Barbados. It demonstrates
4412 | Sustainable Energy Fuels, 2025, 9, 4404–4416
that Calgary experiences strong diurnal and seasonal variations
in ambient conditions, while Barbados remains relatively stable
throughout the year. Those inter-seasonal changes in Calgary,
however, are not accounted for in the previous analysis in
Section 3.3. Therefore, using both the actual and resampled
data, the results in Fig. 7 indicate that Calgary, with its cold, dry,
and varying ambient conditions, favour SIFSIX, while Barbados,
being warm, humid, and stable, favour APDES. This aligns with
the previous nding for Calgary's TPs alone. Also, the optimal
sorbent remains the same regardless of whether actual or
resampled ambient conditions are used. Thus, in this case,
using resampled data accounts for inter-seasonal variations
while saving computational resources. In fact, it can reduce
computational time by up to 90% compared to processing all
8760 hours. Subsequently, this can allow for a global analysis of
DAC systems by enabling comparisons across different loca-
tions to assess whether ambient conditions inuence the choice
of optimal sorbents.

The results further demonstrate that assuming constant
ambient conditions may result in suboptimal sorbent selection
and poor decision-making in practice, as APDES is identied as
the best option in both locations under these ambient condi-
tions. This demonstrates that, in a location like Barbados,
where ambient conditions are relatively stable, assuming
constant ambient conditions does not affect the choice of
optimal sorbent, and the use of average ambient conditions for
This journal is © The Royal Society of Chemistry 2025
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Table 5 Range of artificial ambient conditions considered

Variable Range Increments Unit

Temperature 250–350 5 K
Relative humidity 0–0.95 0.05 —
Relative variations 0–0.9 0.3 —

Fig. 8 Heatmap showing the normalised achievable net carbon
removal rate (CRR) based on ambient temperature, relative humidity,
and their relative variations.

Fig. 9 Heatmap showing the optimal sorbent based on ambient
temperature, relative humidity, and their relative variations.
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optimisation does not lead to suboptimal decisions. However,
in a location with varying ambient conditions like Calgary,
assuming constant ambient conditions, as commonly done in
the literature thus far, leads to suboptimal decisions and does
not provide the best possible process design for DAC.

The impact of sorbent choice on model performance and
KPIs is analysed in greater detail in Section S.6.† The analysis
demonstrates that selecting APDES over SIFSIX in Calgary and
SIFSIX over APDES in Barbados considerably affects CRR, SED,
and the capture of CO2 and H2O, with implications that may
even result in net-positive emissions for DAC. It also empha-
sises the strong dependence of ambient conditions on KPIs and
their variability, challenging the applicability of xed bench-
mark KPI values commonly used or reported in the literature. As
an example, for two different locations (Calgary and Barbados)
with two different sorbents (APDES and SIFSIX), CRR and SED
can vary by up to 476% and 159%, respectively, while even
within the same location, such as Calgary, these KPIs can
change by 150% and 33% over just a few cycles, particularly
when ambient conditions vary strongly.

Hence, it is not only the ambient temperature and humidity
but also their relative variations that inuence DAC perfor-
mance and optimal sorbent selection. While specic results can
only be obtained if the actual real-world ambient conditions for
a given location are used as input to the model, this study
provides general guidelines for DAC sorbent selection. To ach-
ieve this, articial ambient conditions are used to represent the
full range of ambient conditions, as detailed in Section S.5† and
Table 5. Fig. 8 and 9 illustrate the normalised achievable CRR
and optimal sorbent selections across various combinations of
temperature, relative humidity, and relative variation, empha-
sising that colder and drier ambient conditions typically result
in higher CRR, while greater variation in ambient conditions
also tends to increase CRR. The results further indicate that
SIFSIX and NbOFFIVE are preferred under cold and dry condi-
tions, whereas APDES is favoured under warm and humid
conditions. However, at cold temperatures, even a low specic
humidity can result in high relative humidity due to the low
saturation pressure of H2O at these temperatures. Therefore,
the ambient conditions for optimal use of SIFSIX and NbOF-
FIVE can be further detailed: SIFSIX is preferred in cold and dry
conditions which still result in high relative humidity, whereas
NbOFFIVE is the better choice in ambient conditions that are
even drier, where relative humidity remains low despite the cold
temperatures. This is consistent with the previous ndings for
Calgary's ambient conditions, where SIFSIX is preferred, as the
cold temperatures in Calgary during those periods mean that
relative humidity is still reasonably high (always >25%),
explaining the preference for SIFSIX over NbOFFIVE. Fig. 9 also
This journal is © The Royal Society of Chemistry 2025
demonstrates the effect of relative variations in ambient
conditions on sorbent selection, suggesting that SIFSIX and
NbOFFIVE may be benecial in ambient conditions with warm
and humid averages, provided there are considerable relative
variations. This implies that the sorbent is occasionally exposed
to cold and dry conditions, emphasising the complexity of the
problem and the inadequacy of considering average ambient
conditions alone during the decision-making process. Although
Sustainable Energy Fuels, 2025, 9, 4404–4416 | 4413
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this analysis currently accounts for only a select number of
sorbents and articial ambient conditions, it provides
a straightforward heuristic for selecting the best sorbent based
on average temperature, relative humidity, and relative varia-
tions in ambient conditions at a specic location. While
including more sorbents would increase the variety of solids, it
is unlikely to improve the reliability of the results, as the
outcomes are intricately linked to physicochemical properties
that are not well mapped. This study already highlights that
ambient conditions should be considered in DAC optimisation.
Including additional sorbents in the analysis once data is
available would further enhance the level of detail but would
not change the core nding.
3.5 Impact of on-site energy emissions on sorbent selection

As previously described in Section 3.3 and 3.4, two factors
inuence the choice of sorbent: rst, the ambient conditions
including how intensively they vary, and second, the on-site
emissions of the energy used. During CRR optimisation, the
on-site energy emissions are decisive in determining whether
higher energy consumption for desorption is reasonable.
As shown in Fig. 10, varying the on-site energy emissions from
0 kg kW−1 h−1 = 0 kg MJ−1 to 0.3 kg kW−1 h−1 = 0.0833 kg MJ−1

leads to different optimal sorbents, even under the same
ambient conditions (resampled data for Calgary and Barbados).

Calgary yields high relative humidity at low temperatures,
which, under the default on-site emissions, favours SIFSIX.
However, reducing on-site emissions shis the preference to
NbOFFIVE. This is because NbOFFIVE captures more CO2 than
Fig. 10 Influence of on-site energy emissions on optimal sorbent
selection and cycle duration (CD) for Calgary and Barbados, using
resampled ambient conditions.
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SIFSIX, albeit with greater H2O adsorption. Lowering the on-site
emissions of the energy used means that desorbing additional
H2O results in fewer on-site emissions, leading to a higher
CRR. When on-site energy emissions exceed the value of
0.24 kg kW−1 h−1, APDES becomes preferable. This result may
seem counter-intuitive since APDES is typically considered
optimal only under warm and humid conditions, suggesting it
should not be the best sorbent for a location like Calgary.
However, to reduce on-site emissions, the DAC system aims to
minimise its energy consumption. Sensible heat losses from
heating the sorbent notably contribute to the DAC system's
energy demand.26 APDES has a much lower density than SIFSIX
(61 kgm−3 vs. 786 kg m−3), meaning that for a xed volume, less
mass of sorbent needs to be heated. This consumes less energy
for sensible heating, thereby reducing on-site emissions and
supporting the decision to change the sorbent material.

The impact of reduced energy demands is also reected by
the extended cycle duration. With the same sorbent, higher on-
site energy emissions consistently lead to longer cycle times,
reducing the number of heating cycles and, consequently,
sensible heat losses. Conversely, with low on-site energy emis-
sions, the cycle design is shorter, allowing for more frequent
adsorption/desorption cycles and capturing more CO2, as the
penalties for heating and cooling are less severe.

The results also indicate that, in Barbados, due to its high
humidity, the optimal sorbent remains unchanged, with APDES
consistently performing best. However, when on-site emissions
exceed the default value, the inuence of ambient conditions on
sorbent selection diminishes, as the DAC system focuses on
minimising its energy demand to reduce sensible heat losses.

4 Conclusions

This study aims to achieve two main objectives: to examine the
impact of hourly changing ambient conditions on the optimal
sorbent selection for DAC and to explore the potential for
reducing 1-D DAC models to a computationally efficient,
simplied, time-dependent, 0-D model.

Previous studies investigated DAC performance under
constant ambient conditions and considered only one sorbent.
While these studies offered insights into the optimisation of
DAC systems, the results in this study demonstrate that there
are limitations to this previous approach. First, assuming
constant ambient conditions leads to an inaccurate description
of DAC systems dynamics, as varying ambient conditions
notably impact sorbent performance. Second, optimising DAC
for a single sorbent in one location does not yield the best
possible results as adjusting sorbent selection according to
ambient conditions can further improve performance. These
two factors, therefore, emphasise that optimising DAC systems
with only one sorbent under constant ambient conditions does
not necessarily yield optimal results. Finally, this study recom-
mends that future decision-making should account for multiple
sorbents and hourly changing ambient conditions.

1-D models are widely used in the literature, but optimising
them for hourly changing ambient conditions across various
global locations demands considerable computational
This journal is © The Royal Society of Chemistry 2025
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resources. Simplifying the 1-D model to a time-dependent 0-D
model can reduce these computational costs while still yielding
accurate results. This study demonstrates that such simpli-
cation is feasible, with 0-D model results and main KPIs closely
aligned with the 1-D model. Ultimately, a major contribution of
this study is that the simplication advances the broader
academic understanding of DAC. The 0-D model allows for
future investigations that are faster and less reliant on high-
performance computing clusters, thereby expanding the
accessibility of DAC modelling to a wider audience.

This study provides a framework for integrating multiple
sorbents and hourly changing ambient conditions into the
analysis and focuses on providing qualitative guidelines for
sorbent selection. That said, data limitations restrict its ability
to provide accurate, absolute estimates of DAC system perfor-
mance. For example, the relative paucity of experimental equi-
librium and kinetic data introduces a high degree of
uncertainty, particularly in assumptions regarding heat and
mass transfer or the impact of water and steam on system
performance. Additionally, different sorbents exhibit varying
material properties, particularly with respect to mass transfer,
stability, oxidative degradation, and other factors. While it is
acknowledged that these characteristics also affect sorbent
selection, reliable data for these parameters are not available for
the sorbents considered in this study. Nonetheless, this work
demonstrates that, in addition to intrinsic material properties,
the choice of sorbent is also inuenced by the ambient condi-
tions during DAC operation. Furthermore, using the CRR as the
objective function has disadvantages, as it is an extensive
property tied to the xed size of the system, making compari-
sons with other NETs difficult. To mitigate this, the incorpora-
tion of costs in DAC optimisation is gaining traction in the
literature, as the cost per ton of captured CO2 allows for
objective comparisons across different technologies. However,
this approach is not part of the current study. Additionally,
modelling assumptions and the choice of model structure
introduce uncertainty, as no model perfectly represents real-
world conditions. Regardless of using a 1-D or 0-D model,
quantitative differences from real-world systems are expected.
Such discrepancies are inherent, as all models approximate
reality but cannot capture its full complexity. For example, one
such limitation is the simplication of contactor geometry,
overlooking the complex heat and mass transfer processes it
entails.

To conclude, this study presents a new framework that serves
as a building block for simplifying the understanding of DAC,
one of several climate change mitigation technologies. The
framework is straightforward and quick to apply, yielding
sufficiently accurate DAC modelling that can be integrated into
other models. Consequently, it can support global analysis of
DAC systems under hourly changing ambient conditions,
potentially aiding future research on optimal DAC site selection.
Suggested future studies can focus on a more comprehensive
evaluation of DAC performance, including its integration into
the broader energy system and storage opportunities, as well as
life-cycle assessment (LCA) and techno-economic assessment
(TEA). Additionally, more data on sorbent performance is
This journal is © The Royal Society of Chemistry 2025
required to improve the robustness of the model's results. Once
the data is available, it can be easily integrated into the current
framework, thanks to the modularity of the 0-D model, which
allows for rapid re-evaluation. When combined with a more
thorough analysis, including LCA and TEA, this approach will
enable the development of realistic scenarios for DAC integra-
tion and application.
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