Issue 1, 2025

Adhesion of a nematic elastomer cylinder

Abstract

Reversible dry adhesion is exploited by lizards and insects in nature, and is of interest to robotics and bio-medicine. In this paper, we use numerical simulation to study how the soft elasticity of liquid crystal elastomers can affect its adhesion and provide a technological opportunity. Liquid crystal elastomers are cross-linked elastomer networks with liquid crystal mesogens incorporated into the main or side chain. Polydomain liquid crystalline (nematic) elastomers exhibit unusual mechanical properties like soft elasticity, where the material deforms at nearly constant stress, due to the reorientation of mesogens. Our study reveals that the soft elasticity of nematic elastomers dramatically affects the interfacial stress distribution at the interface of a nematic elastomer cylinder adhered to a rigid substrate. The stress near the edge of the nematic cylinder under tensile load deviates from the singular behavior predicted for linear elastic materials, and the maximum normal stress reduces dramatically. This suggests that nematic elastomers should display extremely high, but controllable adhesion, consistent with the available experimental observations.

Graphical abstract: Adhesion of a nematic elastomer cylinder

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2024
Accepted
21 Sep 2024
First published
03 Oct 2024

Soft Matter, 2025,21, 39-44

Adhesion of a nematic elastomer cylinder

N. Maghsoodi and K. Bhattacharya, Soft Matter, 2025, 21, 39 DOI: 10.1039/D4SM00606B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements