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Deep-learning-enhanced modeling of
electrosprayed particle assembly on non-spherical
droplet surfaces†

Nasir Amiri,a Joseph M. Prisaznuk,b Peter Huang,b Paul R. Chiarot *b and
Xin Yong *a

Monolayer assembly of charged colloidal particles at liquid interfaces opens a new avenue for advancing

the additive manufacturing of thin film materials and devices with tailored properties. In this study, we

investigated the dynamics of electrosprayed colloidal particles at curved droplet interfaces through a

combination of physics-based computational simulations and machine learning. We employed a novel

mesh-constrained Brownian dynamics (BD) algorithm coupled with Ansyss electric field simulations to

model the transport and assembly of charged particles on a non-spherical droplet surface. We

demonstrated that the electrostatic repulsion between particles, electrophoretic forces induced by

substrate surface charge, and Brownian motion are the key factors influencing the compactness and

ordering of the assembly structure. We further trained a deep neural network surrogate model using the

data generated from the BD simulations to predict radial distribution functions (RDF) of particle

assembly. By coupling the surrogate model with Bayesian optimization, we identified the optimal particle

and substrate charge densities that yield the best match between the simulation and experimental

assembly. Using the optimal charge densities, the RDF profile of the simulated assembly accurately

matches the experiment with a similarity of 96.4%, and the corresponding average bond order

parameter differs by less than 5% from the experimental one. This deep-learning-based approach

significantly reduces computational time while maintaining high accuracy in predicting the important

features of the assembly structures. The charge densities inferred from the modeling provide critical

insights into the surface charge accumulation in the electrospray process.

Introduction

Colloidal particles at liquid–air interfaces have garnered signifi-
cant interest due to their ability to enrich an interface with
unique physicochemical properties, enabling broad applications
across various fields. When colloidal particles are adsorbed onto
a fluid interface, the interfacial energy of the system is reduced,
making the adsorption process thermodynamically favorable.
Subsequently, the particles can experience complex interparticle
forces and/or be exposed to external fields, which drive the
particles to arrange into ordered structures,1 a phenomenon
referred to as self-assembly or directed self-assembly. Depending
on the particle size, shape, density, and surface properties, they

organize into diverse structures ranging from hexagonally
packed crystal arrays and linear strings to disordered and fractal
patterns.2–6 The curvature of the underlying interface also plays a
crucial role in determining the assembly structure.3,7–9 Confine-
ment and geometrical effects are also important factors in
shaping the assembly.10–13 This interfacial assembly process
offers new opportunities to develop novel techniques for fabri-
cating functional colloidal materials.6,14–16

An essential step of interfacial colloidal assembly is introducing
particles to the liquid interface. Conventional methods rely on the
spontaneous adsorption of particles from the bulk or mechanically
dispensing a film (as in the Langmuir–Blodgett approach) or a
droplet of particle suspensions to the interface.17–20 In the latter, the
particles are deposited onto the interface as the solvent evaporates
or spreads. However, these methods have a few notable drawbacks,
including low throughput and materials waste, and can significantly
disturb the interface. Our team previously implemented electro-
spray, widely used in mass spectrometry for analyzing large bio-
molecules, as a non-intrusive targeting method for delivering
charged colloidal particles directly to liquid interfaces with minimal
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disturbance.21,22 In this process, high voltage is applied to a spray
manifold with a fluid emitter to generate an aerosol plume of highly
charged, micrometer-sized droplets from a dilute colloidal suspen-
sion. The strong electric field directs these particle–laden droplets
toward the target liquid interface that is connected to ground. Upon
rapid evaporation of the solvent in flight, dry particles can be gently
deposited onto the target interface.21,22 The application of electro-
spray to deliver colloidal particles to liquid droplet surfaces has
opened new avenues for fundamental research and technological
innovation.

There are two fundamental differences between electrospray
particle delivery and more traditional methods. First, electro-
spray imparts a significant electric charge to the particles,23

which subsequently influences their behavior and interactions
at the liquid interface. Our previous study showed that electro-
sprayed particles formed non-closed-packed clusters on the
droplet surface. Even with the addition of salt in the droplet,
the interfacial particles remained well separated over tens of
minutes.22 This result suggests significant surface charges on
the air side of the particles and their slow dissipation. Second,
when targeting a sessile droplet, there is concomitant charge
transfer to the surrounding substrate. Previous studies on
electrospray deposition demonstrated a thickness-limited coating
regime, indicating that accumulated charge in the deposit can
repel newly arriving spray and self-limit the film growth.24–26 We
have shown that the residual charge on the substrate can result in
a global electric field affecting the assembly dynamics and the
spatial organization of charged particles at the droplet surface.22

Our study suggests a complex interplay among various electro-
static interactions and Brownian motion in the interfacial assem-
bly of electrosprayed particles. These interactions include not only
those between the particles themselves but also between the
particles and the substrate-charge-induced field. Parameters like
particle surface charge density and substrate surface charge
density significantly impact the assembly structure. However,
accurately probing post-spray particle and substrate charge in
experiments remains daunting.

Machine learning approaches are particularly valuable in
scenarios where conducting experiments or simulations are
resource extensive, time consuming, or practically challenging.
These approaches enable efficient exploration and prediction of
complex systems with high accuracy. In colloidal systems,
machine learning can be employed to predict or analyze
particle assembly behaviors. For instance, deep learning has
been implemented to characterize the self-assembly structures
of 3D colloidal systems by reducing the dimensionality of
neighborhood graphs.27 It has also been integrated into hybrid
approaches, such as through combining with molecular mod-
eling and simulations, to improve the prediction of material
properties and the design of colloidal materials.28 Furthermore,
neural networks have been trained for applications like identi-
fying local crystalline order in various colloidal particle systems
using diverse inputs, including symmetry functions, bond
order parameters, particle positions, and image data. These
trained networks can subsequently serve as order parameters
for analyzing local structures.29–32

The present study aims to integrate physics-based modeling
and machine learning to elucidate the dynamics of electrosprayed
particles on a geometrically controlled droplet surface and infer
surface charge accumulation in electrospray. The detailed electric
field induced by the surrounding substrate and the behavior of
electrosprayed particles on curved droplet surfaces has not been
studied extensively before, stressing the need to probe and under-
stand the physics behind their dynamics and assembly. We
combined a novel mesh-constrained Brownian dynamics (BD)
algorithm with Ansyss electric field simulations to investigate
how the competition between various electrostatic interactions
influences particle assembly. This BD algorithm represents an
advanced and recently introduced method, offering enhanced
capabilities for accurately simulating colloidal interactions and
dynamics on arbitrary manifolds. We then employed an artificial
neural network (ANN) surrogate model and Bayesian optimization
(BO) to infer particle and substrate charges that are challenging to
probe with experiments. To the extent of our knowledge, this
study represents the first attempt to explore the complex behavior
of electrosprayed colloidal particles at curved liquid interfaces
through machine-learning-assisted computational simulations.
The findings from this research could potentially lead to new
strategies for manipulating and controlling the interfacial assem-
bly of colloidal particles, thereby advancing the design of novel
materials and devices with tailored properties.

Results and discussion

To quantitatively understand the assembly dynamics and structure
evolution of electrosprayed particles, we employed a new BD
algorithm to simulate the interaction and motion of charged
particles on the sessile droplet with a triangular contact line
footprint as in our previous experimental study (Fig. 1). This study
explores the interplay between interparticle electrical repulsions
and electrophoretic forces attributed to an external electric field.
We first determined the electrostatic field induced by the substrate
surface charge accumulated during electrospray. Using Ansyss, we
modeled the droplet and surrounding substrate with geometries
and materials properties according to the experimental setup
(Fig. 2a) and conducted electrostatic analysis to solve the field,
assuming a uniform substrate surface charge density ss as the
input. The results indicate that the tangential component dom-
inates the air-side field near the water–air interface. Fig. 2b shows
that the tangential electric field at the interface generally points
toward the droplet center, with its strength being the highest near
the contact line and gradually diminishing toward the center. This
electric field contributes to the formation of the depletion region
by applying electrophoretic forces that drive charged particles away
from the contact line and toward the center of the interface. Our
Ansyss simulations also show that varying ss proportionally varies
the magnitude of the local electric field without changing its
direction. The electric field data from Ansyss at each vertex of
the mesh was then interpolated to each particle position on the
mesh using a linear shape function to obtain the electrophoretic
force. Due to the linear interpolation, the strength of the
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electrophoretic force acting on a particle scales linearly with ss for
a given particle charge density sp while the direction remains
unchanged.

Despite not affecting the electric field distribution, the abso-
lute value of ss inevitably influences the competition between
particle–particle and particle–field interactions. We conducted an
independent experiment, summarized in Fig. 3, to obtain a first-
order approximation for ss. Fig. 3a shows a 3D printed mask
made of PLA (polylactic acid) attached to an FTO (fluorine-doped
tin oxide) coated glass slide with cutouts, similar to the substrate
used in our interfacial targeting experiments.22 When this sub-
strate is targeted with electrospray, surface charge accumulates on
the insulative mask and the deposited material is primarily
guided to the grounded FTO surface at the bottom of the circle,
square, and triangle cutouts. As shown in Fig. 3b and c, we created
a simplified model of the mask and found the expected surface
charge density, ss, which matches the theoretical result based on
an ideal capacitor ss = e0erV/d. This calculation already provides
us with an upper bound for the surface charge density of 6 �
10�5 C m�2, since the potential at the mask surface cannot exceed
the spray voltage. To narrow the expected range for ss, we
compare the experimental deposition of particles in the triangular
cutout to the expected deposition pattern from the electrostatic
model as shown in Fig. 3d and e. The numerical results for Vsurf Z

1 kV show a significantly wider ‘‘depletion region’’ than the
experiment, so based on Fig. 3c we estimate that the surface
charge density lies between 5 � 10�6 and 1.7 � 10�5 C m�2 given
0.25 kV r Vsurf r 0.75 kV. In the following BD simulations, we
consider 1 � 10�5 C m�2 as the reference value of ss.

The BD simulation considers two electrostatic forces governing
the dynamics of particles: interparticle repulsion, proportional to

sp
2, and the substrate-induced phoretic force, proportional to sp�

ss. Thus, the competition between these forces is dictated by the
magnitudes of the free parameters sp and ss. Tang and Gomez
demonstrated that dry nanoparticles retain charges of the carrier
droplets immediately before complete solvent evaporation.23

Thus, we consider that sp is bounded by the Rayleigh limit charge
of the liquid droplet of the same size as the particles.33 Assuming
constant sp for all particles, we introduce the ratio of the particle
to substrate charge densities k = sp/ss to tune the relative strength
of the two forces.

Integrating the electrostatic field from our Ansyss simula-
tions into the BD algorithm, we simulated 9000 particles of a

Fig. 1 Brownian dynamics simulation of particles on the triangulated
surface of the sessile droplet with a triangular footprint. The inset shows
the schematic for the velocity folding scheme for constraining particle
motion on the mesh.

Fig. 2 (a) 3D model for the triangular droplet and surrounding substrate in the
Ansyss simulations. (b) Tangential electrostatic field at the water-air interface
calculated using a uniform substrate charge density (ss = 10�5 C m�2). The
scale bar indicates the relative magnitude of the electric field at the mesh nodes
tangential to the interface. The maximum magnitude is observed at the contact
line, and decreases sharply from the edge to the center of the droplet surface.
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radius of 1 mm randomly placed on the triangular droplet
surface. The total number of particles, their size, and droplet
dimensions are consistent with our experiments. Starting with
a random distribution, the particles first move toward the
center part of the droplet surface under the dominant electro-
phoretic forces. As the particles pack together while moving
away from the contact line, the decreasing electrophoretic
forces are gradually balanced by increasing electrostatic repul-
sions (see Fig. S1a for the time evolution of the assembly, ESI†).
We quantitatively monitor the structural evolution by calculat-
ing the variations in local particle density between consecutive
time frames, as shown in Fig. S1b (ESI†). The fully developed
configuration is a non-closed-packed cluster at the droplet
center with a particle-free zone near the contact line, which
agrees well with the experimental observation.22 Below, we
analyze the fully developed particle assembly in detail.

We performed a series of preliminary simulations with
different combinations of sp and ss in an extensive range of
values (sp changes between 1� 10�3 and 8� 10�3 C m�2 and ss

changes between 2 � 10�6 and 3 � 10�4 C m�2). The results
show that the final particle density in the fully developed
assembly is determined solely by k and not the absolute values
of sp and ss, given that electrostatic forces are strong enough to

overpower Brownian motion driven by thermal fluctuations
(e.g., at the reference value ss = 1 � 10�5 C m�2). In this regime,
varying k effectively adjusts the relative strength between
the electrophoretic forces and interparticle repulsions, thereby
controlling the compactness of the assembly structure. As
shown in Fig. 4a, the overall particle assembly enlarges with
larger interparticle distances as k increases, implying that
particles are moved apart due to enhanced electrostatic repul-
sion. Fig. 4b provides quantitative evidence of the structural
changes by presenting the radial distribution function (RDF)
for each k value, which characterizes the packing and ordering
of the particle assembly. The position of the first peak in the
RDF reflects the average distance between a reference particle
and its nearest neighbors. The presence of multiple peaks at
specific distances indicates local ordering. The first peak in the
RDF corresponds to the nearest-neighbor distance, while
the second peak arises due to the second-nearest neighbors.
These two distances are geometrically related in a hexagonal

lattice, with the second peak located at approximately
ffiffiffi
3
p

times
the distance of the first peak. Therefore, the emergence of this
specific proportional relationship between the first and second
peaks is a clear indicator of local hexagonal ordering in our
system. We observe that the first peak position shifts to the

Fig. 3 (a) 3D printed mask with cutouts for collecting electrosprayed material. (b) Simulation domain for the electrostatic model of the mask. (c) Surface
charge density as a function of voltage on the mask surface. (d) Composite image of particle positions (red points) in the triangular cutout, where the
green and magenta lines indicate the boundary of the detected points with different shrink factors, 0.5 and 0.1, respectively. (e) Termination points of
streamlines from the electrostatic model at four increasing surface voltages, colored by their displacement in x and y.
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right as k increases, confirming that the particles are increas-
ingly separated from their neighbors at higher k values. The
wider distribution of particle density for higher k values in
Fig. 4c also indicates the expansion of the overall assembly,
attributed to increasing interparticle distances.

So far, we have simulated the assembly in a regime with large
values of sp and ss, in which Brownian motion is negligible
compared to electrostatic forces. To assess the influence of Brow-
nian motion on the degree of particle ordering, we reduce charge
densities to a level where Brownian motion becomes comparable
to the electrostatic forces. Based on each particle position, we
triangulate the particle assembly following the Delaunay criterion
to define the nearest neighbors for each particle (Fig. S2, ESI†). The
cutoff distance is selected to be the first trough position in the RDF
to define its coordination number Nc. The sixfold orientation order

parameter c6 ¼
1

Nc

PNc

j¼1
exp i6yj
� ������

����� is calculated to quantify the

systems with hexagonal or near-hexagonal packing, where yj is
the angle between a vector connecting the reference particle and
its j-th neighbor and an arbitrary reference axis. A value of c6 = 1
corresponds to that the nearest neighbors of a reference particle
form perfect hexagonal ordering, while c6 = 0 indicates a com-
pletely disordered state. As shown in Fig. 5a, the ensemble-

averaged �c6 decreases monotonically by reducing sp for a fixed k
(i.e., both particle and substrate charge densities decrease propor-
tionally). This confirms that when Brownian force becomes

comparable to electrostatic forces, the assembly order is disrupted
due to thermal fluctuations. The RDF profiles in Fig. 5b show that
sp does not affect the first peak position of the RDF when the k
value remains constant. This consistency implies that the relative
strength of Brownian motion against electrostatic interactions
does not influence the average interparticle distance. However,
decreasing sp (and ss) reduces the difference between the first
peak and the first trough values in the RDF, which can be
correlated to the decrease in the orientational order parameter
(Fig. S3, ESI†). Therefore, the first peak-to-trough distances of the
RDF can also serve as a metric for particle ordering, with a greater
distance signifying a higher level of ordering within the assembly.
In summary, the RDF profile provides information on both particle
density and local ordering in the assembly.

Throughout our study, we have identified two critical factors
influencing the interfacial assembly structure: the ratio of
particle-to-substrate charge density k and the relative strength
of Brownian motion compared to electrostatic forces dictated
by the magnitude of sp (or ss). Our next objective is to find a
pair of k and sp that yields a simulation assembly structure that
best matches with experiments. We note that deviations from
hexagonal ordering in experiments can be ascribed to thermal
fluctuations and weak nonuniformity in particle charge density
due to variations in particle size and the charge dissipation
process. In contrast, the optimization of the simulation only
accounts for the disruption of particle ordering by thermal
fluctuations. Nevertheless, the optimization of these values

Fig. 4 (a) Simulation snapshots showing the effect of increasing particle-to-substrate charge density ratio k on the overall final assembly structure and
depletion region size for ss = 1 � 10�5 C m�2. (b) Radial distribution functions of the assembly for different k values. (c) Particle density distributions
averaged along three axes of symmetry for the triangular droplet shown in the inset.
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could provide critical insights into the surface charge accumu-
lation in the electrospray process.

Notably, our BD simulation was implemented in serial code,
with a typical run time of 10–14 days per simulation. Directly
applying iterative optimization algorithms to the BD simulation
that requires sequential execution of simulations is computa-
tionally prohibitive. To address this, we conducted 96 BD
simulations in an embarrassingly parallel manner to sample
k and sp in a large parameter space spanning two orders of
magnitude (Fig. 6). We trained a surrogate model for predicting
the RDF with charge densities as the inputs using the simula-
tion data set. Given the high dimensional and nonlinear
relationship between the input and output, we implemented
ANN as the surrogate for its proven capacity to approximate

complex functions.34 This model establishes a high-fidelity
predictive link between k and sp (effectively ss and sp), and
the output RDF vector within the training space, which can be
used later for parameter optimization.

For the initial training phase, we utilized the Ray Tune
library in Python to optimize the hyperparameters of the ANN
model. Using the optimized hyperparameters presented in
Table S2 (ESI†), we subsequently trained an ANN-based surro-
gate model. Our ANN surrogate model was designed as a fully
connected feedforward network. The input layer accepts k and
sp as features, while the output layer constructs the RDF, which
encodes the structural properties of the particle assembly.
Hidden layers, equipped with a nonlinear activation function,
capture the intricate dependencies between the input para-
meters and the output. The ANN was trained using a back-
propagation algorithm with the loss function to quantify the
difference between the predicted and simulated RDFs. More
details of the ANN architecture and training procedure are
provided in the Materials and methods section. The ANN
training learning curve is presented in Fig. S4 (ESI†). The heat
maps in Fig. 7 show the behaviors of two RDF characteristics
generated by the surrogate model, corroborating our findings
in Fig. 4 and 5. The first peak position of the RDF reflecting the
average interparticle distance is solely governed by the charge
density ratio. Meanwhile, the relative strength of Brownian
motion determined by the absolute values of sp and ss affects
the degree of local ordering, which is evident in the variations
in the first peak-to-trough distance.

Using the trained surrogate model, we then employed BO to
identify k and sp values that best match the simulated RDF to

Fig. 5 (a) Dependence of the ensemble average of sixfold orientational order
parameter on variations in particle charge density sp for a given particle-to-
surface charge rate k = 400 (i.e., the substrate charge density ss varies
accordingly) (b) corresponding radial distribution functions of the assemblies
for three sp values. The annotation marks the first peak-to-trough distance.
The inset snapshots show the corresponding particle assemblies.

Fig. 6 Log–log plot of the parameter space of the ANN surrogate model
for predicting particle radial distribution function. The blue points indicate
the training data set obtained by performing the BD simulations.
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the experimental RDF. BO is a derivative-free optimization
method that can iteratively refine our parameter estimates by
evaluating the objective function without relying on gradient
information. The surrogate model significantly accelerates the
search process by replacing the time-consuming physics-based
simulations. In the optimization process, our objective is the
RDF vector and we utilized two different loss functions to
evaluate the similarity between the predicted RDF and the
experimental RDF. The first is the earth mover’s distance
(EMD), and the second is the mean squared error (MSE), as
described in the Methods section. These two loss functions are
selected because they offer different comparison approaches:
the MSE provides a bin-by-bin comparison, while the EMD
offers a cross-bin comparison. This allows us to validate the

robustness of the optimization. By integrating these loss func-
tions into the BO framework, we efficiently explored the para-
meter space with the surrogate model, guiding the search
toward the k and sp pair that yields the closest match to
experimental observations. Fig. S5 (ESI†) shows the conver-
gence plot of the optimization.

After determining the optimal values of k and sp, we
performed a testing BD simulation with the optimized para-
meters to evaluate whether the result of the physical simulation
is indeed consistent with the experiments. Fig. 8 plots a
comparison among the RDF profiles obtained in the experi-
ment, ANN surrogate models with different loss functions, and
the optimized BD simulation. The collapse of all four curves
confirms the accuracy of the surrogate model in predicting the
quantitative features of particle assembly in the physical simu-
lation and the excellent agreement in the interparticle dis-
tances between the experiment and simulation. To define the
similarity between simulation and experimental RDFs as a
percentage, we calculated the normalized mean of the bin-by-
bin MSE as a metric, which indicates a 96.4% similarity
between the two RDFs. To further analyze the structural order-
ing, we calculated c6 in both experiment and optimized simu-
lation. Fig. 9 shows the comparison of the local ordering and
overall pattern of the assemblies between the experimental and
simulated systems, highlighting regions of high and low hex-
agonal order. Despite discrepancies in the spatial distribution
of c6 and overall assembly shape, the average bond order
parameters agree well with a relative difference of less than
5%. These results underscore the capability of BD simulations
to capture the experimental structural characteristics. We

Fig. 7 Heatmaps of the (a) first peak positions and (b) first peak-to-trough
distances of the RDF profiles generated by the trained ANN surrogate
model. The green and red crosses mark the optimized parameters with
the loss function of MSE (sp = 1.5 � 10�4 C m�2 and k = 182) and EMD
(sp = 1.6 � 10�4 C m�2 and k = 180), respectively.

Fig. 8 Comparison of the RDF profiles obtained from the experimental
image, the ANN surrogate models optimized based on MSE and EMD, and
the BD simulation using the optimized k and sp with the EMD loss function.
The insets are the experimental image and BD simulation snapshot of the
particle assembly. The magnified view of the simulation snapshot shows
the detailed spatial organization of the particles. The scale bar in the
experiment image is 500 mm.
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applied the optimal charge density values to simulate a
dumbbell-shaped droplet, as shown in Fig. S8 (ESI†). The
particle assembly structure is consistent to that observed in
our previous experiments.22 The nearest-neighbor distance of
15.3 mm on the dumbbell-shaped droplet is slightly larger than
that on the triangular droplet 12.3 mm, which could be attrib-
uted to increased surface area and reduced particle density
given the same spray time.

One possible reason for different overall assembly patterns
between simulations and experiments could be the normal
component of the electric field acting on the particles, whose
effect is ignored in the present model. Danov and Kralchevsky
theoretically showed that the normal electric field perturbs the
capillary meniscus of dielectric particles, which can lead to an
attractive force between particles under specific conditions.35,36

The interparticle attraction may translate to an effective line
tension that smoothens the assembly boundary, resulting in a
more circular assembly like those observed in experiments. To
explore this idea, we conducted a series of BD simulations and
found that, within the interparticle distance range of interest,
this attraction is not strong enough to significantly alter the
assembly structure. Another possible reason for the observed
discrepancy may stem from the assumptions made in the
simulations. We assumed a uniform charge distribution on
the substrate in the electrostatic Ansyss simulations. However,
this may not be the case in the actual experiments. During the

electrospray process, the accumulated charge on the substrate
may be distributed non-uniformly.24,37,38 A non-uniform charge
distribution on the substrate would alter the electric field and
revise the shape of the overall particle assembly. The detailed
investigation of this discrepancy is beyond the scope of
this work.

Conclusions

The results of this study demonstrate the successful integration
of physics-based modeling with machine learning to explore
the complex dynamics of electrosprayed colloidal particles at
liquid interfaces. By combining Brownian dynamics simula-
tions with Ansyss electric field analysis, we gain insight into
how electrostatic interactions control particle assembly on a
non-spherical droplet surface. The findings reveal that the
competition between the electrophoretic forces and interparti-
cle repulsions, which can be characterized by the ratio of
particle-to-substrate charge density. This charge density ratio
is the key factor in determining the compactness of the
assembly structure, while Brownian motion plays a crucial role
in dictating the degree of ordering in the assembly. When the
strength of Brownian motion is comparable to that of electro-
static forces, the assembly becomes more disordered despite
the presence of electrophoretic forces.

An ANN surrogate model trained by the BD simulation data
enables a comprehensive investigation of the effects of two key
factors, charge density ratio and relative strength of thermal
fluctuations, on the assembly structure. It accurately predicts the
particle RDF, enabling an efficient search for optimal charge
density values that yield the best match between the simulated
and experimental assemblies. The results show excellent agree-
ment among the data-driven surrogate model, optimized BD
simulation, and experiments. Additionally, the optimized sub-
strate surface charge density agrees with the experimental approxi-
mation. This consistency highlights the reliability of the physics-
based model and the utility of machine learning techniques in
enhancing the computational exploration of the system. The first-
order approximation of particle and substrate charges accumu-
lated in electrospray also lays the foundation for future work on
manipulating the interfacial assembly of electrosprayed particles.

Materials and methods
Electrostatic model and electrospray experiments for charge
estimation

A 3D printed mask made of PLA was fixed to an FTO coated glass
slide to provide a conductive grounding surface as shown in
Fig. 3a. The mask had three cutouts with different shapes, and
the goal was to collect electrosprayed material in the open,
grounded regions. Before collecting any data, we created a model
of the experimental domain in Ansyss as shown in Fig. 3b and
used the electrostatic solver to get an upper bound for the surface
charge density, ss. Several assumptions were made to simplify the
boundary conditions, e.g. the entire top surface was set to the same

Fig. 9 Spatial distributions of sixfold orientational order parameter for (a)
experimental assembly and (b) simulation assembly using the optimized k
and sp with the EMD loss function.
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potential used in the electrospray experiments. We found that this
did not significantly change the result for ss, compared to using a
point source to represent the electrospray emitter. The side wall
boundaries were specified to have the electric flux tangential,
which was the most logical choice given the size of the domain
and the expectation that the electric field would be nearly uniform
away from the cutout regions. Finally, it is assumed that the
electrospray generates a uniform surface voltage, and therefore a
uniform surface charge density, on the mask surface. The actual
surface charge density will likely be higher at the center of the
mask directly under the emitter, compared to the edge of the
mask;37 therefore, we can only estimate an average surface charge
density. As shown in Fig. 3c, the solution was found at multiple
values for the surface voltage, varying from 0 to 2.5 kV in incre-
ments of 0.5 kV. This resulted in a maximum value of ss = 6 �
10�5 C m�2, since the surface voltage cannot exceed the electro-
spray source voltage, i.e., it could at most be 2.5 kV to match the
source.

With this upper bound, the 3D printed mask was used to refine
the estimate for ss. We deposited fluorescent polystyrene particles
with a diameter of 2 mm via electrospray deposition. The particles
were suspended in methanol and sprayed at a dilute concentration
of 0.1 v/v%. The distance from the glass capillary emitter to the
mask surface was 25 mm, and a potential of 2.5 kV was used
during the 30 second spray to match the simulation parameters.
As shown in Fig. 3d, we collected particles in the open, grounded
region as expected. Only the triangle is shown for clarity, but the
circle and square had similar deposits, with particles in the center
and a ‘‘depletion region’’ near the edges. The expected deposition
from the electrostatic model is plotted in Fig. 3e, which shows the
termination points of streamlines originating from the ‘‘source’’ at
the boundary, i.e. the top surface of the model. The color repre-
sents the displacement of the point in the x and y direction from
the start to the end of the streamline. The experimental data most
closely matches the Vsurf = 0.5 kV result. Considering the relation-
ship shown in Fig. 3c, we conclude that the surface charge density
is approximately 1.1 � 0.6 � 10�5 C m�2, given an average surface
voltage of 0.5 � 0.25 kV.

We note that an uncertainty of�0.6� 10�5 C m�2 is reasonable
for this estimation method by comparing the average width of the
depletion region in the experiment and the simulation. The deple-
tion region width was measured as the distance from the cutout
border midpoint to the primary particle deposit, indicated by the
light red lines in Fig. 3e for Vsurf = 1.0 kV. From the experimental
deposition image, we obtained an average width of 0.5 mm, whereas
the simulation had a width of E0 mm for Vsurf = 0.25 kV, and
0.95 mm for Vsurf = 0.75 kV. Therefore, our final estimated range for
the surface charge allows for nearly 100% variation in the depletion
region width. Even with the potential sources of error, such as a
non-uniform surface charge density, we have at least approximated
the order of magnitude of the surface charge density.

Two-dimensional Brownian dynamics on nonanalytical
surfaces

The surface geometry of geometrically controlled sessile droplets
cannot be easily parameterized analytically. To enable Brownian

dynamics simulations of interacting colloidal particles on these
complex surfaces, we represent a two-dimensional (2D) manifold
using a triangulated mesh. The triangle mesh provides a discrete
approximation of the continuous surface of arbitrary geometry,
in which vertices, edges, and faces collectively define the surface.
Considering the particles are constrained to the mesh, with their
positions in global coordinates in the three-dimensional (3D)
Euclidean space denoted by ri, the governing equation for over-
damped particle motion is given by39

dri

dt
¼ Di

kBT
FP
i þ FE

i þ FB
i tð Þ þ FC

i

� �
(1)

where kBT is the thermal energy with kB and T being the
Boltzmann constant and absolute temperature, respectively. Di

is the translational diffusion coefficient of particles straddling
the interface.

FP
i ¼

P
j

F
p
ij accounts for pairwise interaction forces acting on

particle i from neighbor particle j. For polymer particles deliv-
ered by electrospray, our previous experimental studies indicate
that a significant residual surface charge exists at the particle/
air interface, which dominates the electrostatic interaction
between the particles.22 These like-charged particles of radius
a with a contact angle of 901 at the air/water interface experi-
ence electrostatic repulsion attributed to the usual Coulombic
force and the image force due to the existence of the interface40

F
p
ij �

qp
2

4pere0

1

rij2
� rij

9a2 þ rij2
� �3=2

" #
êij (2)

where qp is total particle charge on the air side, rij = |ri � rj| is
the interparticle distance, er is the dielectric constant of air,
and e0 is the vacuum electric permittivity. qp can be approxi-
mated as qp E 2pa2sp with sp being particle surface charge
density. êij = (ri � rj)/rij is the unit vector from particle j to
particle i. FE

i represents the phoretic force acting on each
particle from the external electric field induced by the substrate
accumulated charge

FE
i = qpEs(ri) (3)

where Es represents the local electric field at the particle position
generated by the surface charge of the surrounding substrate.
This electric field is calculated using Ansyss electrostatic solver,
which is described in detail below. Besides the two deterministic
forces, FB

i is the random Brownian force satisfying the fluctua-
tion–dissipation theorem with the following properties

hFB
i i = 0 (4)

hFB
i (t)FB

i (t0)i = 2(kBT)2Di
�1d(t � t0)I (5)

where d(t � t0) is the Dirac delta function and I is the second-
order unit tensor. Finally, the constraint force FC

i is introduced
to ensure that the resulting dynamics is satisfying the particle
position constraints C(ri) = 0, which represents particles staying
on the triangle mesh. On the mesh, FC

i must have its direction
aligning with n̂i, the unit normal of the triangle face containing
particle i, and the magnitude canceling the normal component
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of unconstrained forces FP
i + FE

i + FB
i (t). The constrained

equation of motion can be rewritten as39

dri

dt
¼ Pi � v0 (6)

with Pi = I � n̂in̂
T
i being the orthogonal projector onto the local

tangent plane of mesh and v0 = (Di/kBT)[FP
i + FE

i + FB
i (t)] being the

unconstrained particle velocity.

To account for the long-range nature of the Coulomb force,
we calculated this pairwise interaction with a specific cutoff
distance, beyond which the interactions were neglected. It is
worth mentioning that the simulation domain has no periodicity
in either of the three directions, so the pairwise interactions were
computed directly. The cutoff distance was chosen to be suffi-
ciently large (200 times of particle radius) to ensure that all the
necessary particle–particle interactions were accurately captured.
All simulations involved 9000 particles, matching the number
used in the experiments.

The constraint of moving on a triangle mesh is implemented
using a four-step algorithm involving the use of two sets of
coordinates: global (3D) coordinates for interparticle force
calculation and local (2D) coordinates for particle motion.39

First, the unconstrained velocity of each particle is calculated in
global coordinates. Then, this velocity is projected onto the
triangle face containing the particle and represented in the
corresponding local coordinates. The position of the particle in
local coordinates is updated for each timestep using the tangen-
tial velocity. Finally, the updated particle position is transformed
back to global coordinates for force calculations in the next
timestep. A crucial step in updating the particle position involves
treating particles traverse across different triangle faces. Velocity
folding is employed to enable consecutive transits of the particle
to adjacent faces within one timestep. Briefly, this method
transforms the original local velocity v into a new local velocity
v0 using a rotation matrix based on the angle between the two
adjacent triangle faces. The new velocity retains its magnitude
but changes the direction to be tangential to the new triangle
face, allowing the particle to move on the mesh for the remain-
der of the timestep (see Fig. 1). This technique ensures that the
particles always remain bound to the surface. A flowchart of this
algorithm is presented in Fig. S6 (ESI†).

Electric field calculation using Ansysss

To define the computational domain for numerical modeling of
the electrostatic field, we generate the target droplet geometry
as a triangulated mesh via Surface Evolver.41 The droplet size,
shape, and volume are selected to match our previous experi-
ments as closely as possible. The triangular droplet has a fixed
perimeter of 7 mm, and a corner radius of 0.3 mm to avoid
singularities in the Laplace pressure. The resulting mesh was
imported into Autodesk Fusion, which was used to add
the photoresist geometry and a sub-domain near the
droplet surface for better control over the mesh parameters
near the water–air interface. A schematic of the model is shown
in Fig. 2.

With a well-defined steady-state electrostatic problem, we
used the Ansyss Electronics Desktop package for the computa-
tion. The governing equation is thus

r�(erj) = r (7)

where e is the permittivity of a given material, j is the electro-
static potential, and r is the electric charge density. We are
interested in the electric field magnitude tangential to the
droplet interface, as this force will directly influence the motion
of charged particles confined to the surface. The tangential
field can be calculated via

Et
i = (I � nin

T
i )Ei (8)

where Et
i is the tangential electric field vector at vertex i, ni is the

vertex normal vector, and Ei is the electric field vector. We
conduct a mesh dependency study for the triangular droplet
model, and the results are summarized in Table S1 (ESI†). The
‘fine’ mesh is determined to have an appropriate balance of
accuracy and runtime for the tangential electric field calcula-
tion. A cross-section of the 3D model with the ‘fine’ and ‘finer’
mesh is shown in Fig. S7 (ESI†).

Artificial neural network surrogate model and hyperparameter
tuning

An artificial neural network (ANN) is used to model the non-
linear relationship present in our dataset between charge
densities as input and radial distribution function (RDF) as
output. It is designed to capture complex patterns by using
interconnected layers of neurons. The ANN architecture is
comprised of the input layers, hidden layers, and the output
layer. We approximate the RDF distribution using a discrete
Fourier transform to reduce the dimensionality of our ANN
training and improve accuracy. Using only the first 25 Fourier
coefficients, the reconstructed distribution matches the origi-
nal RDF one well, which consists of 100 points. These Fourier
transform coefficients are selected as the output layer of the
network, while the input layer contains charge density informa-
tion. Before training our ANN model with a specific architec-
ture, we perform hyperparameter tuning using the Ray Tune
library in Python, an efficient and scalable tool for optimizing
machine learning model parameters.42

The number of hidden layers, the number of neurons per
hidden layer, the maximum number of iterations, the activation
function, the solver algorithm, the initial learning rate, and the
learning rate are tuned using Ray Tune. The search space for
hyperparameters was systematically defined. The number of layers
was sampled from a range to explore architectures with varying
depths. The number of neurons per hidden layer was sampled
from a wide range to evaluate models with different capacities. The
maximum number of iterations was sampled to balance training
time and performance. The activation function was chosen from a
diverse set of common functions, including sigmoid, tanh, and
rectified linear unit (ReLU), to assess their influences on model
learning. The solver algorithm was selected from widely used
optimizers, such as Limited-memory Broyden–Fletcher–Goldfarb–
Shanno (LBFGS), Adam, etc. to compare their efficiency. The initial
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learning rate was sampled from a range of small values to
determine an optimal starting point for model training. The
learning rate was chosen from different strategies, including
constant, invscaling, and adaptive, to optimize the learning
dynamics. The training process involves multiple iterations with
different hyperparameter configurations to evaluate their perfor-
mance. Ray Tune’s implementation facilitates the automated and
systematic exploration and exploitation of different configurations,
ensuring a thorough evaluation of potential hyperparameters and
enhancing the robustness and accuracy of the ANN in our study.
The best hyperparameter configuration obtained from Ray Tune
presented in Table S2 (ESI†) is subsequently used to train the ANN
model for optimal performance.

In the ANN model training process, each neuron in the hidden
layers applied the sigmoid activation function, which is defined as:

S xð Þ ¼ 1

1þ e�x
(9)

The sigmoid activation function introduces non-linearity into the
network. The training of the ANN involves the process of back
propagation, a method for updating the weights and biases of the
network to minimize the difference between predicted and actual
values. To optimize the network parameters, we utilize the LBFGS
solver, an optimization algorithm in the family of quasi-Newton
methods. LBFGS approximates the Broyden–Fletcher–Goldfarb–
Shanno algorithm using a limited amount of computer memory,
which provides rapid convergence and accurate parameter estima-
tion. We employed the mean squared error (MSE) as the loss
function to train the ANN. The MSE is a common choice as it
quantifies the average squared difference between the predicted
and actual values, ensuring that larger errors are penalized. During
the training, the MSE served as a performance measure to guide
the optimization process by minimizing the error between pre-
dicted and actual values.

Bayesian optimization with surrogate model

The Bayesian optimization (BO) process for charge density esti-
mation involves several key steps. First, the trained ANN model is
used to predict the RDFs for different combinations of charge
densities during the optimization iterations. This surrogate model
enables quick evaluations of the objective function, significantly
reducing computational cost. The objective function is defined as
either the MSE or the earth mover’s distance (EMD) between the
ANN-predicted and experimental RDF. MSE is a bin-by-bin com-
parison method, where the difference is given by

FMSE xð Þ ¼ 1

n

Xn
i¼1

y ið Þ � y� ið Þ½ �2 (10)

In contrast, EMD is a cross-bin comparison that accounts for
cumulative error, defined as

FEMD xð Þ ¼
X
i

cy ið Þ � cy� ið Þj j

cy ið Þ ¼
Xi
k¼1

y kð Þ; cy� ið Þ ¼
Xi
k¼1

y� kð Þ
(11)

where y is the value of each bin in the predicted RDF and y* is the
corresponding value in the experimental RDF. More detailed
information about these two objective functions can be found
in Sakai paper.43 Next, the optimization process employs a
Gaussian process to model the objective function and uses an
acquisition function to explore the parameter space. This acquisi-
tion function balances the exploration of uncertain regions with
the exploitation of known promising areas to identify optimal
parameter values efficiently. The optimization then iteratively
selects new parameters based on the acquisition function and
computes the objective function. The Gaussian process model is
updated with each new data point, refining its approximation of
the objective function. This approach incorporates the ANN
surrogate model within the Bayesian optimization framework,
enabling efficient exploration of the parameter space. The optimal
values of charge densities are identified by minimizing the MSE or
EMD between the predicted and experimental RDFs, achieving
the best match between the simulation and experimental RDF.

Data availability
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