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Sequence-controlled copolymers can self-assemble into a wide assortment of complex architectures, with
exciting applications in nanofabrication and personalized medicine. However, polymer synthesis is
notoriously imprecise, and stochasticity in both chemical synthesis and self-assembly poses a significant
challenge to tight control over these systems. While it is increasingly viable to design “protein-like”
sequences, specifying each individual monomer in a chain, the effect of variability within those sequences
has not been well studied. In this work, we performed nearly 15000 molecular dynamics simulations of
sequence-controlled copolymer aggregates with varying level of sequence stochasticity. We utilized
unsupervised learning to characterize the resulting morphologies and found that sequence variation leads
to relatively smooth and predictable changes in morphology compared to ensembles of identical chains.
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Furthermore, structural response to sequence variation was accurately modeled using supervised learning,
revealing several interesting trends in how specific families of sequences break down as monomer
sequences become more variable. Our work presents a way forward in understanding and controlling the
effect of sequence variation in sequence-controlled copolymer systems, which can hopefully be used to
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1 Introduction

Block copolymers consist of two or more polymer chains
attached at their ends.! In dilute solution, these macromole-
cules have been shown to self-assemble into an assortment of
nontrivial architectures,>® with applications in drug delivery
and personalized medicine.*” The character of this self-
assembly hinges upon the sequence of constituent blocks,
resulting in a vast spectrum of possible morphologies, includ-
ing micelles,*® strings or wires,'® and vesicles."*

In this vein, there has been increasing interest in sequence-
controlled or protein-like copolymers as their aggregation beha-
vior can be carefully tuned. The design of single-chain aggregation
has been studied for more than 20 years,'” with modern design
methods assisting in both accelerating and broadening the
search.”*™'® Some recent efforts have also been directed toward
melts or aggregates of sequence-controlled copolymers,'” ™
though this remains somewhat less prevalent compared to studies
of single chains. In our own prior work,>**! we studied the self-
assembly of a model sequence-controlled copolymer into a large
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design advanced copolymer systems for technological applications in the future.

variety of different aggregate structures and showed that changing
even a single monomer in a 20-mer may significantly alter the self-
assembled morphology.

While the range of possible morphologies is known, it is
challenging to obtain highly sequence-controlled polymers in
practice. Chain growth polymerization is statistical in nature and
provides imprecise control over the final sequence.”” Some causes
of this are side reactions, such as chain transfer and radical
coupling, which can be unavoidable. Reversible-deactivation radi-
cal polymerization techniques have been shown to generate more
accurate sequences, especially in recent years, but they, too, cannot
achieve perfect accuracy.”® Some recent developments in synthesis
have yielded new levels of sequence control,>*° but exact control
over every monomer in the system still seems unlikely.

Since experimentally synthesized polymers are imperfect
(i.e., not identical in length and monomer sequence) due to
this inherent randomness in chain synthesis and self-assembly,
the polymers community has invested some effort in develop-
ing descriptions that account for such variability. One example
is BigSMILES,* an extension of the popular SMILES notation®*
for chemical structure. BigSMILES supports ‘‘stochastic
objects” such as side chains or repeat units that vary statisti-
cally due to polymerization chemistry. These stochastic objects
are machine-friendly representations of the natural variations
in polymer sequences (or, more generally, structures) and allow
the encoding of ensembles of similar molecular structures that
vary in random but well-behaved ways.
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In this work, we extend our previous investigation
monodisperse (a term we reserve for describing chain length)
but non-identical (stochastic) chains, such that each aggregate
contains an ensemble of similar sequences derived from a
common ‘“‘template” sequence. We use the term template to
refer to the intended or as-designed monomer sequence to
clarify that the monomer sequence within each chain in the
simulation may vary from that template copolymer. This varia-
tion results in an ensemble of monodisperse 20-mers (as in our
previous work) whose monomer sequence (and composition)
vary in prescribed ways.

The self-assembly of these chains with stochastically varying
monomer sequences fundamentally differs from that of either a
single chain or ensembles of identical sequence-controlled
copolymers, as in our prior work. These stochastic variations
pose even greater challenges to conventional methods for
modeling macromolecular aggregation such as self-consistent
field theory (SCFT),**® which cannot account for stochastic
sequence variation at the monomer level, especially monomer-
level sequence variation within one simulation. Our previous
work®" demonstrated the predictive capability of data-driven
models to rapidly screen from over 60000 possible monomer
sequences to identify the desired morphology. This framework
significantly reduces the computational demands previously
required for sequence-controlled polymer design. However, our
prior work and others’”*° used simulations of perfectly mono-
disperse and identical polymer chains within the system (all
chains of identical length and monomer sequences), which limits
their translation to presently available synthesis techniques.?®

We simulate the self-assembly of ensembles of sequence-
controlled copolymers with stochastic sequence variation using
molecular dynamics (MD), a scenario that has received little
attention in the published literature. To this end, we generated
a large dataset of different template sequences under varying
levels of sequence variability, yielding nearly 15 000 simulation
trajectories. These trajectories were analyzed with our pre-
viously established dimensionality reduction technique,”® pro-
viding new insight into how these variations in monomer
sequence affect the self-assembled morphologies. We also
applied supervised learning to model the effect of stochastic
sequence variation as a function of template morphology and
degree of stochasticity. Our model’s prediction error when
deployed on unseen test data was comparable to the intrinsic
uncertainty resulting from the self-assembly process, indicating
excellent performance. Finally, we used this model to quantita-
tively describe the sensitivity of different self-assembled
morphologies to sequence variation.

2 Methods

2.1 Molecular dynamics simulations

We follow the same simulation procedures as in ref. 20. Each
coarse-grained polymer chain contains a sequence of A and B
beads, with the A beads being attractive and the B beads being
purely repulsive. The attractive beads interact with each other
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using the Lennard-Jones potential®” (g, &, 7.y = 30), while the
purely repulsive beads’ self- and cross-interactions are described
using the Weeks-Chandler-Anderson potential (g, &, ey = 2°5).%
Here the ¢ is the dimensionless bead diameter and ¢ is the
dimensionless energy unit. The bonds between beads in the chain
were described by the standard finitely extensible nonlinear
elastic potential®® (Ry = 1.50, k = 30 ¢/¢*). An implicit solvent
model was used to maximize computational efficiency, so solvent
interactions were neglected. All simulations were performed using
the HOOMD-blue*® simulation package with an NVT ensemble
and a Langevin thermostat at fixed temperature 7 = 0.5¢ with
damping constant y = 0.1. The density is fixed at p = 0.05m/c>,
with the box size set to L ~ 400 on each side and the simulation
containing 500 chains of length L = 20/¢. Simulations were run at
a time step of 8¢ = 0.0057, and the aggregates were allowed to
equilibrate for 5 x 10° timesteps (2.5 x 10%7).

Our previous work>>*! was limited to completely identical,
monodisperse chains. Here, in contrast, stochasticity was
introduced by allowing each monomer bead from each tem-
plate sequence in the simulation to randomly (and indepen-
dently) flip at a fixed probability p (Fig. 1a). Sequences were
independently randomized, giving up to 500 unique sequences
(although some independent randomization may coinciden-
tally result in the same sequence). Note that these events
resulted in a random selection between A and B type such that
p =1 generated completely random sequences (if p is defined as
the probability of changing type then p = 1 would simply yield
the sequence with all A replaced by B and vice versa). By defining
p as a probability for a bead to flip if and only if the bead
succeeds on a coin flip, we avoid having the inverse sequences at
p = 1. The inherent stochasticity observed in the self-assembly
process®®?! was investigated by creating five replicas of each set
of input parameters (i.e., template sequence and p).

The relationship between our p parameter and real-world
copolymer systems deserves some consideration. Experimental
systems with well-defined reactivity ratios might exhibit some
characteristic p, but this would result in variations in monomer
sequences, whereas our coarse-grained model has variations in
groups of monomers (multiple monomers making up each
bead). Also, our coarse-grained system assumes no selectivity
in the reaction, which makes the behavior a bit simpler. These
effects could be represented within a similar coarse-grained
model through additional bead types representing blends of
monomer units in different ratios and consequently incorpor-
ating a matrix of transition probabilities that depend on the
base sequence. We leave this additional complexity to future
study, but felt the need to clarify these aspects for the sake of
the reader.

2.2 Unsupervised representation learning

The same unsupervised learning method discussed in our
previous work®® was used to generate the Z order parameters
from the simulation trajectories. To summarize, the beads are
first further coarse-grained such that 10 beads are represented
by a single point at their center of mass. These coarsened point

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Schematic describing the supervised learning method used to predict
the final manifold coordinates (2) of a template sequence (Z°) that has
undergone some amount of sequence variation (p). (a) illustrating the prob-
ability of a bead to switch types, where every bead is given a random number
from O to 1, and beads with a random number less than or equal to the chosen
p value are given a 50% chance to flip their type. (b) Showing the predicted
trajectory of a starting sequence on the manifold as randomness is increased.

clouds are used to generate geometric features of the local
environments according to ref. 41. The uniform manifold
approximation and projection (UMAP)** technique is then
applied to project these local features into a 3D coordinate
space; we refer to this as the local UMAP. These local features
are pooled into a global feature for the entire simulation snap-
shot by generating a 3D histogram of all the local coordinates,
similar to kernel density estimation. Finally, this histogram is
used to embed the snapshot into a 2D space with a second
UMAP; we refer to this as the global UMAP. All aspects of this
embedding process are identical to ref. 20, and the source code
is available on Github.*® All relevant code and data are also
available in a Zenodo repository created for this project.**

2.3 Supervised learning

Once the Z order parameter was obtained for each sequence, we
randomly split the dataset into training (60%), validation
(20%), and testing (20%) sets using scikit-learn.*> These splits
were performed on sequences rather than individual observa-
tions to avoid data leakage (e.g., the same sequence appearing
in training and test sets does not provide an accurate view of
generalization performance). Next, a shallow Neural Network
(NN) was trained to approximate the function,

125,27, p) — (20, Z)), 1)

where Z° represents the order parameter for a template
sequence (i.e., p = 0), p is the level of mutation applied, and Z
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is the model prediction at that p (Fig. 1b). Note that this NN is
separate from the previously defined unsupervised learning
task. The NN model was implemented in pytorch?® and the
hyperparameters were tuned with Bayesian optimization using
ax-platform®” (the optimized hyperparameters are reported in
the results section).

2.4 Sensitivity analysis

After the model was trained, the sensitivity S of Z to changes in
p was calculated according to the L, norm of the gradient at
various points (Z°, p) throughout the manifold, i.e.,

S(z°,p) = Hg_i (2)

2
(Z°.p)

The model was also evaluated for any spatial error dependence,
specifically whether manifold location correlates to certain
errors. This was done by applying the model to the training,
testing, and validation datasets and finding the Euclidean
distance between the predicted manifold location and the
simulated manifold location.

3 Results

3.1 Molecular dynamics simulations

We simulated 259 randomly selected, 20-monomer-long
sequences at 11 p values ranging from 0 to 1 with five replicas
each for a total of 14795 total MD trajectories. The natural
variability in MD simulations and the randomization of the
sequences resulted in differences in the Z order parameter for
identical runs. Across all p values, the Root Mean Square
Deviation (RMSD) for these Z order parameters averaged to be
1.07, with no spatial dependence on RMSD throughout the
manifold, as seen in Fig. 3. To visualize the space of possible
morphologies, including strings, spherical micelles, mem-
branes, liquids, vesicles, wormlike micelles, and structured
liquids as observed in ref. 20, we render selected snapshots
in Fig. 2 to form an approximately regular grid. Beyond the
recognizable structures, we observed continuous variations of
each morphology, with no apparent discontinuities in the order
parameter space; thus, many aggregates for which we have no
obvious name are shown. Only snapshots for p = 0 are shown in
Fig. 2 for consistency with our prior work. The full dataset,
including gsd simulation trajectories and full-resolution ren-
derings in png format, are available in our Zenodo archive.**

When introducing stochastic sequences (i.e., p > 0), we find
that morphologies tend towards a center point, which we refer
to as Z® ~ (5,1). Such a point must exist because when p =1, all
sequences are equivalent (completely random). This behavior is
illustrated for some representative sequences in Fig. 4; we
choose sequences for which Z° are on the periphery of the
manifold to best illustrate their breakdown from ‘‘archetypal”
morphologies into the common random morphology. As dis-
cussed in our prior work, Z* must be located in the center of the
manifold to maximize the distance from the recognizable
structures around the periphery.
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Fig. 2 A representative subset of the 14795 total simulations performed for this work as embedded in the manifold generated in ref. 20. The color
scheme is the same as the one introduced there, with each bead being colored in RGB space according to its position in the local environment manifold.

On the other hand, the appearance of common pathways on
which several different peripheral sequences collapse is not
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Fig. 3 Natural variability of Z order parameters throughout the latent

space. (@) RMSD for each sequence at each p value, and (b) RMSD as a
function of p.
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expected. This can be seen especially with the structures
labeled K, A, and B, where Zp,—92~ Z3 and Zgpp-o4 ~
Zap=02 X Zxp-o0.1. This indicates that introducing finite p to
some sequences drives them towards the template state of
others, though no obvious trend appears to the authors in
evaluating the sequences by eye: K, AABAABBAAABBBAAABAAB;
A, ABABAABBBAABAAAABAAB; B, ABAABAABBAABABABAAAB.

We will hereafter refer to the collection of Z embeddings for
a single sequence at different p as a series. Note that the various
series shown in Fig. 4 are independently equilibrated at each p,
so there is no hysteresis, and the use of lines to connect the
different snapshots in the figure is purely for clarity in associat-
ing different points with the same series. Furthermore, the
figure shows only one of the five replicas simulated for each
(sequence, p) pair, so the plot appears quite noisy; averaging
over the replicas helps resolve this noise to reveal more con-
sistent trends.

Another view of the same series is shown in Fig. 5. This time,
the series is laid out on a grid, with rows representing a
common sequence and columns representing a common p.
This view clearly shows the gradual convergence of the different
sequences to a common, randomized morphology as p — 1.
Each panel in Fig. 5 corresponds to a point along the lines in
Fig. 4, where tracing the lines from exterior to interior is
equivalent to following the series from left to right along a
single row.

In evaluating Fig. 4 and 5, we found that spherical micelles
(F, AAAAAAABABAABABBBABB) could tolerate more sequence
variability than any other structure, remaining micelle-like
for p < 0.5. This property extended to adjacent structures E

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Selected p series from the periphery of the manifold: initially liquid (A) and (B), structured liquid (C)—-(E), spherical micelles (F) and (G), wormlike
micelles (H), membranes (I) and (J), and vesicles (K). The color scheme is the same as Fig. 2 and ref. 20, with each bead being colored in RGB space

according to its position in the local environment manifold.

(AABAAAAAAABBAABABBBB) and G (AABBABABBAAAAAAAB-
BAB), which were also able to sustain their approximate

m O 0O w >

Sequence

p

Fig. 5 Grid view of the same series selected in Fig. 4, including simulation
snapshots at more p values. The color scheme is the same as Fig. 2 and 4,
and ref. 20, with each bead being colored in RGB space according to its
position in the local environment manifold.

This journal is © The Royal Society of Chemistry 2025

structure for p < 0.4. On the other hand, membranes (J,
AABBBAABABAAABAAAABB) broke down as soon as p > 0.
We analyzed the magnitude of deviation from each sequences
template Z° in Fig. 6. While most sequences could tolerate p =
0.1 variability without substantial morphology change, there
were some notable outliers, including the liquid, vesicle, and
membrane regions of the manifold. These outliers show the
structural instability of these three aggregate morphologies
when undergoing sequence variation and show that even small
changes in sequence can lead to large structural changes.

We hypothesize that the relative structural stability of sphe-
rical micelles under greater sequence variation is due to the
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Fig. 6 Euclidean distance from Z° as a function of p.
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longer block sequences present in the spherical micelle
sequence that remain comparatively unaffected by minor
sequence variation. Sequences defined by patterns of long
blocks still contain comparatively long blocks when variability
is introduced, and thus, the overall pattern remains intact. For
sequences defined by patterns of short blocks, small changes in
sequence disrupt the pattern more, and the short blocks in the
simulation look different both from the template sequence and
from each other.

This can be verified by evaluating the sequences most and
least prone to deviation in Z. For the p = 0.1 case, the template
sequences that are most sensitive to sequence variation are
AAABAABAABAAAABABBBB, AAABAABAABAAAABABBBB, and
AAABAABAABAAAABABBBB, and the least sensitive are
ABBAAABAAABAAAABBBBA, ABAABABABBABAABAAAAB, and
ABBAABABAABAABAABAAB. A value of p = 0.1 corresponds to
an average of one flipped bead per chain (two selected for
flipping, probability of 1/2 to flip). This means that the differ-
ence between most and least sensitive chains involves disrup-
tions to the patterns of only a single bead on average.
Therefore, it is not surprising that it is difficult or impossible
to identify features of these sequences that lead to this result by
eye. Instead, like in our prior work,> we must rely on data-
driven models to identify such patterns reliably.

3.2 Predicting morphology response

Bayesian hyperparameter tuning resulted in the following:
learning rate of 2.75 x 103, 1185 training epochs, 4 hidden
layers, number of neurons (79, 67, 56, 45), and ReLU activa-
tions. When the aggregates were simulated, they were repli-
cated five times from the same starting conditions, which leads
to variation between identical model inputs. Due to UMAP
approximately maintaining topological structure, there are
smooth structural transitions between nearby points on our
manifold, which was expected. Previously, we found this intrin-
sic variance to be characterized by a Root Mean Square Devia-
tion of approximately 0.67 (arbitrary units). The trained model
gave RMSE = 1.044 on the validation set (used for selection of
the hyperparameters) and RMSE = 0.909 on the test set (held
out entirely from training optimization), which is only about

Zo

Fig. 7 Predicted series for archetypal structures colored by p, trained on
8547 self-assembled structures. Non-linear paths are observed through
the manifold, along with some seemingly preferred regions.
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50% higher than the intrinsic randomness in the self-assembly
process.

The resulting model allows us to predict the evolution of a
series (i.e., fixed sequence, varying p) through the manifold, as
shown in Fig. 7. There, we view the trajectories of archetypal
(i.e., z° on the manifold periphery) aggregate structures
through the manifold as a function of p. As in Fig. 4, we see
the model predicting some preferred paths, namely the S-
shaped curve from the liquid region to the area of most
randomness. It is interesting that the sequences take a non-
linear path, as this indicates that there is some preferential
architecture in this area; an explanation for this preference
requires further investigation.

We analyzed the model error as a function of p and Z, shown
in Fig. 8 and 9, respectively. The error has a slight peak around
p = 0.3 but otherwise remains relatively flat for all p > 0,
demonstrating that the model accurately predicts the influence
of p. Note that the training error for all p is just above the RMSD
of approximately 1.0 identified above, indicating that the NN
model is learning the trends in the training data almost
perfectly. The validation and test errors are slightly higher,
but the standard deviations are so large that this effect is
relatively small. We also analyzed the error as a function of Z
to identify possible bias towards certain morphologies. There is
no discernible pattern in Fig. 9, indicating no difference in the
error rate across different sequences or structures. It is note-
worthy that the model seems to perform equally well in
previously identified outlier regions (e.g., from Fig. 6).

3.3 Model sensitivity

In addition to the predictive capabilities of our trained surrogate
model, it also has the benefit of smoothing the stochastic
response in order to more clearly show general trends in the
data. We analyzed the magnitude of the gradient (which we refer
to as sensitivity) throughout the manifold using the trained NN
model and plotted this quantity for different p in Fig. 10. The
sensitivity is highest in the liquid, membrane, and string
morphologies for low p, especially around p = 0.2. As p increases,
the magnitudes decrease for these regions since the structures
are already close to completely random after this point. As
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B LK, ]
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0.5 + ‘
+ @ Train Validation @ Test
00 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
p

Fig. 8 Model RMSE as a function of p for the training, testing, and
validation datasets. Error bars indicate standard deviation.

This journal is © The Royal Society of Chemistry 2025
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Fig. 9 Spatial representation of model RMSE across the manifold for the
training, testing, and validation datasets, colored by the error.

p — 1, it is statistically more difficult to drive these structures
away from Z° since they are already mostly random, so the
embedded representations of these structures also move less.
The previous qualitative analysis of the simulation data also
arrived at this conclusion, as the outliers in Fig. 6 occurred
mainly in the liquid, membrane, and vesicle regions. On the
other hand, we see that the micelle region (bottom left) of the
manifold is relatively insensitive to p and only experiences an
appreciable gradient at p = 0.8. This is partly due to being closer
to Z® to begin with but also appears to be related to the sequence
itself, with smaller p being less disruptive to the long blocks.

10 H p=0 i .
i i ‘ 10!
el e R e, €
# ||| =
N |||m il 5
° il S
10 ]
10°
0

Fig. 10 Norm of the trained model gradients across the manifold for
different values of p, colored by the norm (i.e., eqn (2)).
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4 Conclusions

In this work, we demonstrate the application of machine learning
to predict the morphological response of self-assembled aggregates
to stochastic sequence variation in a model sequence-controlled
copolymer. The incorporation of stochastic variation in monomer
sequences while keeping their length fixed allows us to investigate
sequence sensitivity and enables our design scheme to mimic
variations present in real-world polymer systems. The objective of
this work, therefore, was to quantitatively predict how a given
template sequence undergoing a given level of mutation p leads to
changes in self-assembled aggregate morphology.

We generated a dataset of 14 795 MD simulation trajectories
of 259 monomer sequences with 11 variations of p ranging from
0 to 1 in intervals of 0.1, representing nearly 2000 GPU hours of
compute time on NVIDIA A100 GPUs. An unsupervised repre-
sentation learning technique developed in our recent work?®
was applied to learn relevant order parameters. Supervised
learning was then used to predict the effect of independent
random sequence variation at rate p within each chain via a
shallow NN. This model was then analyzed to identify patterns
across the entire morphology space and to quantitatively
describe the simulation results.

From the MD simulations, we found that liquids, mem-
branes, and vesicles were more sensitive to sequence random-
ness than other aggregate structures, as indicated by the large
number of statistical outliers present in these regions when
analyzing the morphology deviation as a function of p. This
observation is consistent with the explanation that sequences
defined by small blocks have relatively high sensitivity to single
monomer edits compared to sequences defined by large blocks.

We also observed that the series tended to progress through
the manifold between Z° and Z® via a relatively jagged and
stochastic path, requiring averaging over many replicas in order
to obtain reliable trends. We have previously shown that the Z
order parameters are smooth within the dynamics of a single
simulation,*® so when it occurs, this shows that small perturba-
tions to the sequence can lead to relatively large changes in
morphology.

Despite the stochastic nature of the self-assembly process,
our supervised NN performed well, resulting in a validation
RMSE of 1.04, slightly lower than the observed RMSD of 1.07
from simulation replicas; this indicates that performance is on
par with the intrinsic variance from self-assembly. The model
showed no bias toward either particular p (aside from p = 0
performing well) or Z, indicating that it is equally valid across
the entire manifold. The model also revealed some interesting
contours in the trajectories of sequence embeddings through-
out the manifold. Preferred pathways were visible, indicating
collapse onto locally common aggregate structures during
randomization. The underlying reason for these preferred
intermediate morphologies will require further study. Spatial
analysis of model gradients showed the largest structural shifts
around the liquid, membrane, and vesicle areas of the mani-
fold, quantitatively describing the previously observed sensitiv-
ity to sequence variation in these areas.
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We have shown that stochasticity in chemical sequences can
profoundly affect self-assembly and that this affects different
sequences to very different degrees depending on their char-
acteristics. This is an important step towards understanding
the potential and limitations of sequence-controlled polymers
with imperfect chemical sequences, as typically synthesized
in the laboratory. We have demonstrated that our previously
developed framework can be applied to study stochastic
sequences and, together with the supervised learning approach
deployed here, may be useful for probing the robustness of a
particular morphology against sequence variations. We believe
this is an important design consideration as computational
tools converge with experimental applications. In future work,
we will consider more complex chain structures, including
varying lengths and sequences simultaneously, further to align
our models with attainable, real-world chemical systems.
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