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Continuum mechanics of differential growth in
disordered granular matter

Noemie S. Livne, †a Tuhin Samanta, †b Amit Schiller,†a Itamar Procacciabc and
Michael Moshe *a

Disordered granular matter exhibits mechanical responses that occupy the boundary between fluids and

solids, lacking a complete description within a continuum theoretical framework. Recent studies have

shown that, in the quasi-static limit, the mechanical response of disordered solids to external perturbations

is anomalous and can be accurately predicted by the theory of ‘‘odd dipole screening.’’ In this work, we

investigate responsive granular matter, where grains change size in response to stimuli such as humidity,

temperature, or other factors. We develop a geometric theory of odd dipole-screening, incorporating the

growth field into the equilibrium equation. Our theory predicts an anomalous displacement field in

response to non-uniform growth fields, confirmed by molecular dynamics simulations of granular matter.

Although the screening parameters in our theory are phenomenological and not derived from microscopic

physics, we identify a surprising relationship between the odd parameter and Poisson’s ratio. This theory

has implications for various experimental protocols, including non-uniform heating or wetting, which lead

to spatially varying expansion fields.

1 Introduction

A densely packed assembly of elastic grains that forms a
jammed granular material is able to withstand external shear
stress similarly to solid materials. Unlike conventional solids,
stress in the jammed state is transmitted through force chains –
networks of particles in contact that selectively bear the external
load.1 Close to the jamming point only a fraction of the particles
participate in these chains. Consequently, when grains undergo
volume expansion due to thermal, humidity,2 or other environ-
mental changes, the mechanical impact varies depending on its
position within the force chain network.3 Therefore, the
mechanical state of a growing and responsive granular material
is expected to deviate significantly from that of elastic-like
growing solids.4–6 The main objective of this work is to study
the effect of growth on granular matter using a continuum
theoretical framework. A central objective in the theory of
granular matter is the development of a complete continuum
framework that accurately describes the complex phenomenol-
ogy exhibited by granular materials. Attempts along this line

include the description of active and passive granular matter in,
or at the verge of, mechanical equilibrium.7–12

A key challenge in developing continuum theories for dis-
ordered granular materials is that their response to mechanical
perturbations involves plastic events, characterized by localized
particle rearrangements that relax internal stresses. Unlike
crystalline solids, where plastic deformations can be described
using dislocation theory, the lack of long-range order in dis-
ordered solids necessitates alternative approaches to model
plasticity. Several theoretical frameworks have been proposed,
including Eshelby inclusions,13,14 shear transformation zones
(STZs),15,16 and elasto-plastic models,17–19 all of which aim to
capture the collective rearrangement of particles under stress.
However, these models do not provide a closed-form conti-
nuum theory that generalizes classical elasticity to describe
deformation and displacement fields in amorphous solids. In
contrast, recent studies have demonstrated that, despite the
microscopic complexity of granular materials, their averaged
equilibrium response can be effectively described using a
continuum mechanical screening framework, where mechan-
ical relaxations are modeled as interacting elastic charges.20–22

More specifically, in this theory, plastic rearrangements
adjust the material’s reference state and induce elastic charges
that mediate strain relaxation. These charges obey conservation
laws. Just as in electrostatics, where local rearrangements of
charge generate electrostatic dipoles or higher-order multi-
poles, in mechanics, the lowest-order multipole allowed by
conservation laws is the quadrupole.23 The effect of mechanical
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screening by plastic rearrangements is therefore described as a
distribution of quadrupolar elastic charges.

When the nucleation energy of quadrupoles is high, such as
when the system is under large pressure, the theory aligns with
the elastic-like behavior of disordered solids. Conversely, when
the nucleation energy is low, quadrupoles can organize non-
uniformly, and screening is instead dominated by the nuclea-
tion of mechanical dipole-charges, an extension of dislocations
to disordered solids.23–25 In this regime, mechanical screening
leads to an anomalous response to external loads, where
displacement fields deviate qualitatively from classical elasti-
city. For instance, while the elastic response to the inflation of a
small, confined region is that of an Eshelby inclusion, experi-
ments have shown that inflating a single particle in a jammed
granular solid induces spatially oscillating displacement fields
that were accurately predicted by mechanical screening
theory.26 These predictions, along with other anomalies, have
also been confirmed in numerical simulations of disordered
granular and glassy materials.20,27 This continuum framework
based on mechanical screening thus provides a novel pathway
for extending continuum mechanics to describe the mechan-
ical implications of growth in disordered granular materials.

Another key characteristic of disordered granular matter is
the existence of non-vanishing work cycles, even in the
presence of reversible plastic events.28,29 Due to the glassy
structure of the energy landscape, it has been shown that after
a closed loop in deformation space, the system does not return
to its original microscopic state. As a result, energy is not
conserved within the standard continuum framework, it may
either be released or stored, leading to an apparent violation of
energy conservation from a macroscopic perspective. This issue
is naturally resolved if one explicitly accounts for the micro-
scopic degrees of freedom associated with plastic events, but
doing so contradicts the goal of developing an effective con-
tinuum description of disordered granular matter. A more
recent theoretical advancement has revealed that mechanical
screening in the presence of a glassy energy landscape, where
energy conservation is effectively violated, can be formulated in
terms of odd screening.30 The case of odd-quadrupole screen-
ing is equivalent to odd-elasticity, and introduces no new
phenomenology. Contrary to that is the extension of mechan-
ical screening theory to odd-dipole screening, a framework that
leads to new phenomenology with anomalous displacement
fields that deviate from previous odd or conservative predic-
tions. These theoretical predictions have been experimentally
confirmed in sheared granular materials.30 Therefore, to study
the effect of growth in disordered granular matter, we focus
below on incorporating growth fields into the framework of
odd-dipole screening.

To analyze the mechanical response of disordered granular
matter to nonuniform growth fields, we employ both analytical
and numerical methods. On the analytical side, we extend the
theory of odd dipole-screening to incorporate arbitrary growth
fields, and focus on the specific setup wherein growth is
induced by diffusive mechanisms, such as temperature or
humidity variations, and derive explicit predictions for the

resulting displacement fields. As a case study, we consider
thermal expansion driven by a uniform heat source with a
fixed-temperature boundary condition. We demonstrate that
the resulting geometric state of the system corresponds to a
flattened spherical configuration. This process is illustrated in
Fig. 1, which presents the displacement fields across three
regimes: elastic, screened, and odd-screened (see figure caption
for details). On the numerical side, we perform molecular
dynamics simulations of jammed granular matter experiencing
a growth field by expanding the size of each grain according to
the prescribed growth profile.

A fundamental aspect of the odd dipole-screening theory is
the emergence of two screening moduli that accompany the
classical elastic moduli. While we do not derive these moduli
from microscopic interactions, our analysis uncovers a signifi-
cant and nontrivial relationship between the measured screen-
ing and elastic moduli observed in simulations.

The remainder of this paper is structured as follows: in
Section 2, we review the dipole-screening theory and extend it to
account for differential growth, subsequently generalizing it to
the odd-screening regime. Section 3 introduces the specific
growth field considered in this study and presents the corres-
ponding analytical solution. Section 4 describes our numerical
simulations, where we systematically vary both growth fields
under fixed physical conditions and physical conditions under
a fixed growth field. Finally, in Section 5, we compare our
theoretical predictions with the molecular dynamics simula-
tions of differentially growing disordered granular matter and
find excellent agreement between theory and simulations.

Fig. 1 Growth-induced residual stresses: (a) a non-uniform growth pro-
file f(x) inducing a mechanical state equivalent to flattening a thin
spherical cap. (b) The resultant displacement field in the elastic case, with
positive definite radial displacement dr. The angular displacement dy

vanishes from polar symmetry. (c) Illustration of the same growth field
applied to a solid-like disordered granular structure made of small discs,
with the color indicating the growth ratio for each grain. (d) A representa-
tive solution for the predicted displacement fields corresponding to even
dipole-screening (dashed) and odd-dipole-screening (solid), with the main
difference expressed in the non-vanishing angular displacement dy.
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2 Theoretical framework

The following sections introduce the theory of dipole screening,
its extension to incorporate growth, and finally, the general-
ization to odd-screening. Our starting point is an energy func-
tional that accounts for both elastic strains and the nucleation
of plastic rearrangements. To address the inherent coupling
between elastic and plastic deformations encoded in the dis-
placement field when measured relative to an initial state, we
adopt a geometric approach wherein the reference state evolves
in response to mechanical perturbations. This framework not
only resolves complications arising from mixing elastic and
plastic deformation modes in the displacement field, but also
provides a direct pathway for incorporating growth. Finally, we
extend the dipole screening constitutive relation to include
symmetry-breaking terms, thereby generalizing the theory to
account for odd screening.

2.1 Geometric screening

This section reviews the main aspects of the theory of geometric
screening introduced in ref. 22, which established a theoretical
linkage between screening theory and geometric elasticity.31

Assuming that the configuration prior to the application of
the expansion profile is flat and stress free, its rest configuration
is described by a Euclidean reference metric Z. The energetic cost
of a deformation is due to the elastic strain, which measures
deviations from the reference metric.31 We assume that the
reference metric can change in response to growth or mechan-
ical perturbations, and as in ref. 22, we define a temporary
reference metric %g = Z + q where q is an anelastic strain that
describes the particle rearrangements. The elastic strain is then:

uel ¼
1

2
g� �gð Þ ¼ 1

2
g� Z� qð Þ: (1)

Assuming small strains, we define a Hookean elastic energy

density, Uel ¼
1

2
Auel

2, where A is the elastic tensor encoding

material Young modulus Y and Poisson’s ratio n

Aabgd ¼ Yn
1� n2Z

abZgd þ Y

2ð1þ nÞ Z
agZbd þ ZadZbg

� �
(2)

We further take into account the nucleation cost of the
quadrupolar perturbation field. It was shown in ref. 22 that a
hierarchy of screening modes is expected, from no screening in
pure elasticity, through quadrupole, dipole, and monopole
screening effectively forming a liquid-like state. Our focus in this
work is on dipole screening which was shown to describe the
phenomenology of disordered granular matter very well. Specifi-
cally, when the nucleation cost of a single quadrupolar charge is
negligible, e.g. at small pressures, the multipole expansion of
elastic charges allows the nucleation of dipoles with finite cost by
non-uniformly distributing a field of quadrupolar charges32

Pdip = Div Q. (3)

Here, the quadrupole charge field is determined by the
anelastic strain through Qab = eamebnqmn. The nucleation energy

will have the form Up ¼
1

2
LPPdip

2, where LP is a tensor that

encodes material properties, and in homogeneous and isotro-
pic media is proportional to Z

LP ¼
1

kp
Z (4)

where kp is a screening parameter. Finally, we add to the energy

density the correction term Uq ¼ �
Y

8ð1þ nÞq
2, otherwise, the

nucleation cost of the quadrupolar field would not be negligible
compared to Up (this is due to the appearance of q in (1)).
Finally, we have the total energy density

U ¼ Uel þUq þUp

¼ 1

2
Auel

2 � Y

8ð1þ nÞq
2 þ 1

2
LPPdip

2

¼ 1

2
Au2 �Aquþ 1

2
LPPdip

2;

(5)

where u is the full strain measured from the initial state and
thus can be expressed in terms of the displacement field

u ¼ 1

2
ðg� ZÞ ¼ 1

2
@adb þ @bda þ @ad � @bd
� �

(6)

The total energy is obtained by integrating the elastic and
nucleation energies, along with proper boundary terms
accounting for traction forces (see ref. 22)

F ¼
ð

1

2
Au2 �Aquþ 1

2
LPPdip

2

� �
dSZ þ B:T: (7)

The Euler–Lagrange equations of this energy functional, found
by varying d and assuming small displacement gradients
qd { 1, are

Ddþ 1þ n
1� nrðr � dÞ þ Pdip ¼ 0 (8)

where Pm
dip = rnQmn. From the variation of the energy with

respect to q, and upon integration, we obtain the screening
constitutive relation (see ref. 22 and 30)

Pdip = k(d � d0) (9)

where k ¼ Ykp
2ð1þ nÞ, and d0 is a constant of integration. Sub-

stituting into the equilibrium eqn (8) it reduces to a closed form
equation for the displacement field,

Ddþ 1þ n
1� nrðr � dÞ þ kðd� d0Þ ¼ 0: (10)

Upon employing boundary conditions we can set d0 = 0. In the
limit k B kp c 1, the dipole nucleation cost is negligible, as
can be seen from (4). In this limit, Pdip fully screens elastic
stresses. On the other hand, conventional elasticity is recovered
in the limit kp - 0, corresponding to a large dipole nucleation
energy.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/3
1/

20
25

 7
:3

5:
52

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01429d


5156 |  Soft Matter, 2025, 21, 5153–5161 This journal is © The Royal Society of Chemistry 2025

2.2 Differential growth in screened solids

In geometric terms, applying an isotropic expansion profile f(x)
to every area element DS0 such that DS = f(x)DS0 corresponds to
assigning a new initial reference metric %g0 = f(x)Z, where Z is
the Euclidean metric that described the flat two-dimensional
sample before it was deformed. The sample then responds
through particle rearrangements and elastic deformation,
reaching a new equilibrium configuration described by g.
Because both the initial and final configurations are flat, as
before, the original metric Z and the actual metric g are related
by a well-defined displacement field d, through (6).

While the elastic energy remains in the form of (5), the full
strain is modified. The elastic strain now satisfies

uel ¼
1

2
g� �gð Þ ¼ 1

2
ðg� fðxÞZ� qÞ (11)

thus modifying the energy. While the screening constitutive
relation (9) remains intact, the variation with respect to d obtains
modified equilibrium equations, with the growth contributing to
the term depending on the divergence of the displacement

Ddþ 1þ n
1� nrðr � d� fðxÞÞ þ kd ¼ 0: (12)

2.3 Odd dipole screening

Unlike elastic solids, which relax to a well-defined global energy
minimum, granular materials are characterized by rough
energy landscapes with many meta-stable states.28,33,34 As a
result, performing a closed loop of deformations that returns
the system to its macroscopic state can still lead to a net change
in energy due to microscopic rearrangements. While this
process is not dissipative in the traditional sense, it does not
conserve energy either.

In a previous work,30 the simplest possible non-conservative
yet non-dissipative extension of the theory was introduced by
coupling the mechanical response to the microscopic response
field, specifically by adding an odd term to the coupling in (9).
While still consistent with homogeneity and isotropy, it was
shown that odd dipole screening is accompanied by sponta-
neous breakdown of chiral symmetry, and accounts for the
amount of work that is extracted or loaded into the material
upon completing a closed trajectory in configuration space.
This hypothesis was experimentally verified in ref. 30, demon-
strating its relevance to real systems. In our work, we test this
generalization through simulations, focusing on an unrelated
prediction of the theory.

Adding an odd term to the coupling in (9) introduces an
antisymmetric component to the relationship. Instead of sim-
ply scaling by a constant, the coupling between Pdip and d now
involves multiplication by a scaled rotation matrix:

Pdip ¼ k
cos yk � sin yk

sin yk cos yk

 !
d; (13)

where the screening parameter k 4 0 and the odd-phase yk

quantify the screening strength and the angle between the
inducing displacement and the induced dipoles.

Consequently, the generalized equation for the displace-
ment becomes

Ddþ 1þ n
1� nrðr � d� fðxÞÞ þ k

cos yk � sin yk

sin yk cos yk

 !
d ¼ 0:

(14)

It is interesting to note that similar anti-symmetric terms
exist in the electrostatic analog of non-hermitian dielectrics. In
that case the dielectric tensor consists of an anti-symmetric
term that quantifies energy loss or gain.35,36 However, we
emphasize that the odd dipole-screening mechanism devel-
oped in ref. 30 differs fundamentally from the recently studied
odd-mechanics in driven granular matter.9 While the former
describes an asymmetric constitutive relation between the
displacement and dipoles, which effectively violates transla-
tional symmetry, the latter preserves this translational symme-
try and relates stresses with strains a-symmetrically, ultimately
leading to odd-elasticity.

3 Problem setup and analytical
solution

To specify the growth function f, we consider a specific model of
thermal expansion in a system exposed to uniform heat source
and fixed temperature on the boundary, with the temperature
satisfying a diffusion equation.24 We show that in that situation
the Gaussian curvature corresponding to the reference metric %g0 =
f(x)Z is a constant, and we analyze the equilibrium equation with
the corresponding growth field (14).

3.1 Expansion due to a diffusive field

The following results apply to any system where a diffusive field
induces isotropic expansion. Consider an isotropic and homo-
geneous elastic material with a thermal expansion parameter a.
Then, a spatially varying temperature field T(x) induces a non-
uniform thermal expansion. We assume that the material was
initially at a uniform temperature T0 and stress-free in the
plane. For a temperature change dT = T � T0, a segment of
length c expands according to c0 = c(1 + adT), where a is the
thermal expansion coefficient. In the case of a non-uniform
temperature field T(x), this relation generalizes for an infinite-
simal length element dc as dc0 = dc(1 + adT). Due to the isotropy
of the material, the deformation results in a conformally flat
metric of the form %g0 = e2a(T�T0)Z. The Gaussian curvature
associated with this metric is given by

%KG = �aDg0
T = �ae�2a(T�T0)DT, (15)

where Dg0
is the Laplace–Beltrami operator generalizing the

Laplacian operator to arbitrary Riemannian geometry and D is
the standard (Euclidean) Laplace operator.

The temperature field T is not arbitrary but determined as a
solution to the heat equation, subject to appropriate boundary
conditions. The precise form of this equation depends on the
microscopic model of heat transport. If the heat flux is defined
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in the laboratory (spatial) frame, the Laplacian operator is
taken with respect to the spatial metric of the deformed
configuration. Conversely, if the flux is defined in the material
(reference) frame, the Laplacian is computed with respect to the
reference metric. In the limit of small temperature variations,
both formulations yield nearly identical results. For simplicity,
and although alternative models could be considered, we adopt
the latter approach here and formulate the heat equation in the
reference frame. For a detailed discussion, see ref. 37.

In the reference manifold, the thermo-elastic problem
requires solving a time-dependent heat equation while account-
ing for the intrinsic metric %g0

@T

@t
¼ DD�g0T þQ (16)

where Q is a heat source and D the material’s thermal diffusivity.
This relation highlights the intrinsic coupling of geometry and
temperature, which can be highly nontrivial. However, in steady
state with a time-independent heat source, the equation simplifies to

DD%g0
T + Q = 0. (17)

Using (15), this gives

�KG ¼
aQ
D
: (18)

Thus, when expansion is driven by a diffusive field with a
constant, spatially uniform source term, and the resulting
expansion remains small and linear in the inducing field, the
induced metric will have constant positive Gaussian curvature.
Specifically, from eqn (18), the radius of curvature R of the

resulting geometry is given by R ¼
ffiffiffiffiffiffiffi
D

aQ

r
. Note that if the heat

equation were instead formulated in the lab frame, then for small
temperature variations the Laplace–Beltrami operator reduces, to
leading order, to the standard Laplacian. This approximation
justifies the validity of the result even in that setting. For a
circular elastic sample, this implies that its intrinsic geometry
corresponds to that of a spherical cap with curvature set by the
diffusion and expansion parameters. For a granular disordered
matter, this reference state will not survive, and it will experience
further plastic deformations that will modify it.

3.2 Determining the expansion field

To use (12), we need an expansion profile f(x) that induces an
intrinsic Gaussian curvature of 1/R2 when applied to a disc of
radius rout. Given the problem’s rotational symmetry and the
requirement that the expansion field is positive, we can denote
f(x) = e2j(r). Substituting into (15), we now seek j(r) such that

�e2jðrÞDjðrÞ ¼ 1

R2
: (19)

The general solution to this equation is

e2jðrÞ ¼ 4c1
2c2

2r2c1�2

1

R2
r2c1 þ c22

� �2
(20)

where c1, c2 are arbitrary constants. To ensure regularity at the
origin, we set c1 = 1. If a thin elastic sheet were subject to this
growth field and then released into 3D, in the absence of
external constraints, in-plane stresses would relax, and the
sheet would adopt the geometry of a spherical cap cut from a
sphere of radius R, maintaining a constant Gaussian curvature
of 1/R2. The area of this cap is given byðrout

0

ð2p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �g0ð Þ

p
dydr ¼ 4prout2

c22 þ
rout

R

� �2: (21)

To ensure the deformation doesn’t alter the total area – and
thus maintains a constant pressure – we choose c2 accordingly.
This leaves us with the final expansion field

fðr; yÞ ¼ 4c2

c2 þ ðr=RÞ2ð Þ2
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� rout

R

� �2r
; (22)

where rout is the outer radius of the disc and R the radius of the
reference curvature. In the limit rout { R, f - 1 and its
contribution to (14) vanishes, so the equation reduces back to
the odd dipole screening equation from ref. 30.

3.3 Solving for the displacement field

Having determined the expansion field (22), we now turn to
solving (14) for the displacement field. In the limit where the
imposed radius of curvature R is large compared to system size
rout, the analytical solution takes the form

dr(r) = arJ1(r/l1) + brJ1(r/l2) + grr,

dy(r) = ayJ1(r/l1) + byJ1(r/l2) + gyr, (23)

where J1(x) is the first-order Bessel function of the first kind.
The parameters ai, bi, gi and li depend of the screening para-
meters k and yk, Poisson’s ratio n, the imposed radius of
curvature R, and the system size rout (for explicit expressions
see Appendix A).

Sketches of representative solutions for even (yk = 0) and odd
(yk a 0) screening modes are depicted in Fig. 1(d) in dashed
and solid lines respectively. In the next section, we outline the
simulation protocol used to test these results.

4 Molecular dynamics simulations of
2D jammed disordered granular matter

For the simulation protocol, we employed four sizes of friction-
less disks, of radii 0.4, 0.5, 0.6, and 0.7, placed randomly in a
circular disk of initial radius rout = 75, all in dimensionless
units. There are N = 15 000 discs in all. An initial area fraction
below the jamming threshold was chosen, and then the outer
radius was isotropically reduced to achieve a finite chosen
pressure. Open source code large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS) are used to perform the
simulations. In these, the normal contact force is a Hertzian
force with force-constant Kn = 2000 and the viscoelastic damp-
ing constant for normal contact gn = 100. The mass of each disk
is 1. The tangential contact force is zero since the system has no

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/3
1/

20
25

 7
:3

5:
52

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01429d


5158 |  Soft Matter, 2025, 21, 5153–5161 This journal is © The Royal Society of Chemistry 2025

friction. Using Newton’s second law of motion with damping,
the system is relaxed to mechanical equilibrium after each step,
i.e., the total force on each disk is minimized to be smaller than
10�6. Once a mechanically stable configuration is reached at a
desired pressure, each disc is inflated according to eqn (22),
and subsequently mechanical equilibration follows, and the
resulting displacement field measured. The displacement field
depends on both r and y, and we decompose it into the radial
component dr(r,y) and the angular component dy(r,y). Finally,
comparison with the theoretical functions as shown in Fig. 2 is

obtained by angle averaging, drðrÞ �
1

2p

Ð
dydrðr; yÞ, and similarly

for the tangential component.

5 Results

To test our theoretical predictions we performed numerical
simulations of disordered granular matter consisting of fric-
tionless disks. In our simulations we started from an
unjammed state and reduced the outer radius of the domain
to achieve a target pressure. In each simulation we imposed a
growth field and allowed the system to relax until it reached a
new equilibrium state. The displacement field is measured
between the equilibrium state prior to growth to that after it.
To compare the measured displacement field with our predic-
tions we perform an angle-averaging of the radial and tangen-
tial displacement components of each particle. We estimate the
error at each radius as the root-mean-square deviation within
annular bins used for averaging the displacement fields.

Dipole screening in general, and odd-screening in particu-
lar, is expected to take place when quadrupole nucleation costs
are very low. We therefore expect elastic-like behavior to take
place, for example, at high pressures and odd-dipole screening
at low pressures. In Fig. 2 we show two typical examples of
displacement fields at low and high pressures. The comparison
between theory and simulations require a simultaneous fit for
dr and dy with respect to three fitting parameters: k, yk and n.
We see that theory and simulations are in excellent agreement
with our expectation and with the theoretical predictions.

In the high pressure case, the response is quasi-elastic as
shown in Fig. 2(a). In this case, the fitting parameters are k = 0
and n = �0.1. In the low pressure case, the response is
anomalous, and it breaks chiral symmetry with a non-
vanishing tangential displacement, as shown in Fig. 2(b). The
fitting parameters are k = 0.026, yk E p/6 and n = 0.35. We see
that the effect of odd coupling is moderate, with an angle of p/6
between the inducing displacement and induced dipole.

We continue with a systematic study of the anomalous
response to non-uniform growth, and its dependence on the
controlled parameters: the radius of curvature R and the pres-
sure P. We start by varying the pressure in systems with a fixed
growth field that corresponds to a radius of curvature R = 450.
Three representative examples are shown in the left panels of
Fig. 3(a and b), showing that pressure controls the level of
screening. For example, we see that the tangential displacement
component decreases in amplitude as the pressure increases.
We continue by varying the radius of curvature R in systems with
fixed pressure P = 0.005. Three representative examples are
shown in the right panels of Fig. 3(c and d), showing that
curvature also controls the level of screening. For example, we
see that the displacement amplitude decreases as the radius of
curvature increases, as expected. In both curvature-controlled or
pressure-controlled systems, the agreement between theoretical
predictions and observations is very good. Interestingly, it
seems that the odd coupling is also affected by the pressure
and radius of curvature. To better quantify this impression we
plot the fitted moduli as function of the controlled parameter.
For example, in the case of pressure controlled simulations, we
plot k, yk and n as function of the imposed radius of curvature R,
as shown in Fig. 4.

Fig. 2 The angle-averaged displacement fields induced by the nonuni-
form growth field f(x) corresponding to radius of curvature R = 450. Error
bars indicate RMS deviation at each radius. (a) Quasi elastic response at
high pressure P = 2. (b) Odd-dipole-screening at a lower pressure P =
0.005. Simulation data is represented by discrete markers, and the theo-
retical prediction fit by solid lines.

Fig. 3 Comparison between angle averaged theoretical and numerical
displacement fields. Left panel: Comparison between simulations and theory
of dr (a) and dy (b) for a range of pressures with fixed imposed radius of
curvature R. Right panel: Comparison between simulations and theory of dr

(c) and dy (d) for a range of R values with fixed pressure. The error bars
represent the experimental variance associated with the angle averaging.
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In this figure we see explicit dependence of the screening
moduli and Poisson’s ratio on the imposed radius of curvature.
In principle, the screening parameters and the Poisson’s ratio
are emergent properties that depend on microscopic proper-
ties, e.g. particle size ratios. The dependence of these emergent
properties can be a complicated function of the microscopic
parameters. While currently we do not have a derivation of such
functions, we observe that the ratio between the odd phase and
the Poisson’s ratio is nearly constant, yk/n = 1.1. Investigation of
these relations, and understanding which microscopic para-
meters determine them, requires further numeric simulations
and experiments with varying microscopic properties, such as
particle size ratios and more. Such an investigation is left for
future research.

Next we study the dependence of screening moduli on the
imposed pressure for fixed R. For presentation purposes we plot
the screening moduli as function of F = ln(P�1), see Fig. 5. We
find that at large pressures (low F) the effect of dipole screening
disappear, with quasi-elastic behavior and k = 0. In this regime
yk is meaningless. At lower pressures screening mechanism is
dominated by odd-dipoles, and finite values for k and yk are
observed. This implies the possibility of a transition or a
crossover from a quasi-elastic regime to an odd-dipole screen-
ing regime.38,39

6 Discussion

In summary, in this work we have shown that the recently
developed theory of odd-dipole-screening30 accurately predicts
the functional form of the displacement field in responsive
granular matter. A main feature of the theory is that it describes

materials that do not conserve energy. The success of the theory
implies that the numerical model of the disordered granular
assembly do not conserve energy, as expected from a material
with glassy energy landscape.

As a linear theory, the theory is expected to hold for small
deformations. Therefore, we limited the numerical simulations
to small growth fields, that is, the radius of curvature induced
by the growth is much larger than rout. We expect that when
these become more comparable, nonlinear terms will need to
be included into eqn (14), but this beyond the scope of the
present work.

The growth protocol studied in this work is a continuum
generalization of the particle-inflation protocol studied in pre-
vious works on anomalous mechanics in disordered solids.26

There, the quasi-elastic response to a single-particle inflation
had the property that it depended only on geometric properties.
Therefore, elastic moduli could not be extracted in the quasi-
elastic regime. Here we show that the quasi-elastic response to
the growth protocol f(x) depends on Poisson’s ratio. The
numerical simulations revealed that the Poisson’s ratio is
negative in the quasi-elastic regime, and positive in the odd-
screening regime. This suggests that the Poisson’s ratio may
serve as an indicator for the onset of dipole screening.

Two characteristic properties of odd-dipole screening have
emerged in response to the specific growth profile imposed on
the system in this work. First, spatial oscillations in the
displacement field were observed, consistent with experimental
findings for a single inclusion.26 Second, chiral symmetry was
broken, in agreement with experimental observations supporting
the odd-dipole screening theory.30 While the precise details of the
displacement field depend on the specific growth profile, these
key features are expected to persist more generally, governed
primarily by physical conditions such as pressure and disorder.

A key gap between our theoretical framework and the
observed phenomenology is the lack of a clear, physically
intuitive explanation for the anomalous behavior—such as
the inward displacement. Developing such an intuitive picture
would likely involve establishing connections between the
displacement field, force chains, induced charges, and other
structural descriptors of granular matter. Bridging the

Fig. 4 The fitting parameters as function of imposed curvatures R, with
fixed pressure P. Shown are (a) the screening parameter k, (b) the odd-
phase yk, (c) Poisson ratio n, and (d) the odd-phase divided by the Poisson
ratio. Note in (d) the appearance of a near-constant ratio around 1.1
(denoted by a line).

Fig. 5 The fitting parameters as function of pressure P, with fixed curva-
ture R. Shown in (a) are the screening parameter k in blue on the left axis,
and the odd-phase yk in orange on the right axis. (b) Poisson’s ratio,
indicating a sign change at the onset of screening.
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microscopic mechanisms with the emergent macroscopic dis-
placement fields remains an open challenge and a topic of
ongoing research that we are actively pursuing.

Last but not least, we note that the growth protocol in this
work was fully prescribed. In reality, growth and mechanics are
strongly coupled.40–42 Our theory lays the foundations for a
future theory that couples the dynamics of the growth field and
the mechanical state of the growing system.

Appendix A. analytical solution for the
displacement field of ‘‘flattened
granular sphere’’

In the limit rout { R, the leading order contribution of the non-

homogeneous term due to f(x) is proportional to
r2

R2
, and the

equation is

Ddþ 1þ n
1� nr r � dþ r2

2R2

� �
þ k

cos yk � sin yk

sin yk cos yk

 !
d ¼ 0;

(24)

The explicit solution that satisfies this equation with the
stated boundary conditions is

drðrÞ ¼
C

k
J1 omroutð Þ k2 op

4 � om
4

� �
J1 oprout
� �

r
	


þ routom
4 k2 � op

4
� �

J1 opr
� ��

� routop
4 k2 � om

4
� �

J1 oprout
� �

J1 omrð Þ
�

dyðrÞ ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � om

4ð Þ k2 � op
4

� �q
� J1 omroutð Þ om

2 � op
2

� �
J1 oprout
� �

r� routom
2J1 opr
� �	 �


þ routop
2J1 oprout
� �

J1 omrð Þ
�

(25)

where

C ¼ 1

R2

k2 � om
2op

2
� �

kom
2op

2 om
2 � op

2
� �

k2 þ om
2op

2
� �

J1 omroutð ÞJ1 oprout
� �

(26)

and

om ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2ðlþ 1Þ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ cos yk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ2 cos2 yk � 4ðlþ 1Þ

qr

op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2ðlþ 1Þ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ cos yk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ2 cos2 yk � 4ðlþ 1Þ

qr

(27)
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