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Active-like dynamics of worm-like chains driven
by an external traveling-wave force

Fabio Cecconi, *ab Andrea Puglisi, c Massimiliano Viale cd and
Dario Lucente d

We present a simplified theory for semiflexible flagella under the action of a traveling-wave perturbation

that emulates the organized active forces generated by molecular motors, capable of inducing beating

patterns to the filament. By modeling the flagellum as a worm-like chain (WLC), we explore the interplay

(competition) between the externally applied perturbation and the intrinsic bending rigidity of the

filament. Our analysis aims to understand how this interplay can lead to a selection of conformations

with the spatiotemporal behavior resembling the beating dynamics of axonemes such as those in sperm

tails, in Chlamydomonas cilia, or eukaryotic flagella in general. Through a systematic analysis of the

WLC’s response to traveling-wave perturbations, we try to identify the key parameters that mostly

influence the mechanical waveform profiles.

1 Introduction

Flagella are relatively slender structures found in various living
organisms playing a crucial role in motility and locomotion.
While bacterial flagella are usually passive filaments actuated
by motors located at their base,1 eukaryotic flagella such as the
cilia in organisms like Chlamydomonas or the tails of sperm
cells are active filaments powered by numerous molecular
motors distributed along their length.2

Flagella serve, in general, as the primary swimming appara-
tus that, by wiggling and rotating, enables microorganisms to
move through fluid environments. Besides propulsion,3 they
perform, along with cilia and bio-filaments, a variety of other
biological processes,4 that include, for instance, movement of
fluids and particles, pathogens removal, e.g. mucus clearance
in lung tissue,5,6 embryogenesis (cell signaling, tissue develop-
ment and patterning),7–9 mechanotransduction10 and sensory
reactions to environmental stimuli.11

The complex dynamics of flagella have attracted researchers
for decades, inspiring investigations into the fundamental
mechanical principles that govern their biological function.
In recent years, interest has also grown for the theoretical
and experimental study of dynamical fluctuations in the fla-
gellum beating pattern, which is periodic only on average.12–15

This research is driven by the natural need for knowledge but
also by the goal of emulating their working efficiency in
engineered micro-scale devices and macroscopic biomimetic
systems.10 Several theoretical approaches have been developed
or applied to address the wide range of flagella shapes and their
complex dynamics,16 as well as to explain and interpret a plethora
of experimental evidence and observations.17,18 Theory includes
mechanical description based on the elasticity of flexible rod-like
and slender bodies,19–23 computational methods24–26 and simple
theoretical frameworks borrowed by active polymer physics,27–30

each suited to account for the specific phenomenology of various
types of flagella. In particular, the bending rigidity of long linear
biomolecules, flagella, and biofilaments in general, is a crucial
characteristic that significantly assists their biological functions,
and such molecular stiffness is naturally assumed essential for
the precise functional control of the beating dynamics. From this
perspective, theoretical and computational models that accurately
incorporate this bending rigidity are essential for capturing,
mechanical, physical, and structural aspects of such functional
dynamics.

Therefore, models of semiflexible polymers, which account
for the stiffness of biopolymers like actin filaments, proteins,
and DNA,31–33 are also useful for describing flagella. This
stiffness arises from the valence angles in their backbone
structure.34 However, these models are more difficult to handle
theoretically, as they require additional constraints like preser-
ving a fixed chain length.

A very popular approach resorts to employing the so-called
‘‘worm-like chain’’ (WLC) models representing a minimal yet
meaningful physical approach to implementing bending rigid-
ity, as they describe flexible elongated structures characterized
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by a certain persistence length.35,36 This property has strongly
motivated the modeling of flagella as active persistent
polymers,28,29,37 idealized as chains of units (molecular motors)
that, through their organized or synchronized activity, deter-
mine the shape and the right collective dynamics to confer
motility to the flagellum.30,38

From a hydrodynamical point of view, the locomotion is
possible because the viscous friction of the fluid along slender
bodies is anisotropic;39 indeed, the hydrodynamic forces acting
on slender bodies are predominantly anisotropic due to the
different resistance encountered along and perpendicular to
their length. This effect is embodied in the slender-body
theory,40 which simplifies the approach by focusing only on
the body’s centerline, especially when viscous forces dominate
(low Reynolds number). The investigation of the complex inter-
play between hydrodynamics and elasticity in biofilament fluc-
tuations has led to the elastohydrodynamic formulations of
flagellar motion that inspired a series of interdisciplinary
studies. Besides the seminal works by K. E. Machin41 on the
propagation of elastic waves along flagella, other interesting
contributions include ref. 42 on the bending modulus measure-
ment of microtubules and ref. 43 exploring the behavior of actin
filaments under external oscillatory driving and viscous drag.

The implications of anisotropic hydrodynamic friction are
essential to understanding biological propulsion and designing
micro-scale devices. Although this issue is highly significant, it
will not be addressed here because we are mainly interested in
the dynamics of beating. Therefore, we only consider the situa-
tion in which the first monomer of the filament is anchored to a
fixed point. Note that a similar condition has been realized
experimentally,13 in which sperm cells were confined within
microscopic cages (Fig. 1). Since this setup forbids natation, tail
conformations can be assumed to be weakly affected by the
anisotropies of the hydrodynamic drag.

Therefore, we study through simulations and theory a
simplified, yet not trivial, version of an anchored flagellum

depicted in Fig. 1 constrained to move in the 2D planar geometry
and subject to the effects of a traveling-wave force representing
an idealized version of the coherent activity of molecular motors
during beating dynamics. In particular, we will analyze how
spatially periodic conformational shapes of flagella can emerge
from the interplay between its rigidity and the spatiotemporal
periodicity of the driving.44,45 To maintain the analysis as simple
as possible, we consider a monochromatic traveling-wave force,
as in ref. 46, characterized by a wavelength l (i.e. wavevector
k = 2p/l) and an oscillation frequency o. The study is performed
at different o and k to show how these parameters affect the
flagellum wave-form selection.

Our simple choice of the force hn is due to the requirement
that the continuum model, we will use to explain certain
regimes of flagellum dynamics, be fully solvable. One might
question whether such functional form and direction are
compatible with the notion of active force, since: (i) the force
is decoupled from the chain conformations; (ii) it always
oscillates in a constant direction (y-axis). In its widest defini-
tion, an active force is an additional degree of freedom coupled
to the system leading to out of equilibrium dynamics. In the
literature, it is common practice to represent active forces as
coloured noises independent of the conformation,30,46,47 but
any representation that breaks detailed-balance is legitimate.

Additionally, it can be noted that in the approximation we
will work with, weakly bending (small deformation from the
straight conformation), the force directed along the y-axis is the
relevant part of the force that is oriented as the normal to
the flagellum. In this sense, it is reasonable to interpret hn as
the local average force exerted by molecular motors on a small
segment of the filament. To further emphasize the concept, let us
notice that molecular motors acting on a filament constitute
additional degrees of freedom beyond those representing
the filament. Moreover, each dynein exerts a shear force on a
microtubule doublet, which is internal to the filament, such a
shear force converts instantaneously into a bending (i.e. almost
transversal) excitation inducing local curvature due to internal
constraints.

The paper is structured as follows. In Section 2, we introduce
the computational two-dimensional model of the flagellum,
along with its continuum theoretical version, which provides a
useful framework for interpreting the simulation results. Sec-
tion 3 discusses the dynamics of the flagellum, analyzing the
computational results in terms of parameters (o,k) that define
the monochromatic active force. Finally, conclusions are drawn
in Section 4.

2 Flagellum models
2.1 Computational model

In our approach, the flagellum is portrayed as a 2-dimensional
chain of N + 1 beads of mass m connected by stiff elastic
springs of finite extension b. As the first bead is anchored to the
origin, r0 = 0, the system cannot translate but can explore
the full range of bending fluctuations. The bending energy

Fig. 1 Sketch of the two-dimensional geometry setup that we consider in
this work. The head of the bacterium is blocked in a cage device (blue box),
thus the flagellum is practically hinged to the origin and constrained to
move on the plane XY. The red arrows represent the amplitude and
direction of the traveling-wave forces driving the beating dynamics.
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introduces a penalty whenever three consecutive beads lose
their alignment. The potential energy of the system is defined
by the function48–50

V r0; . . . ; rNð Þ ¼ K

2b2

XN
n¼1

rn � rn�1j j � bð Þ2

þ B

2b2

XN�1
n¼1

rnþ1 � 2rn þ rn�1j j2:

(1)

In this notation, spring K and bending B constants have the
dimension of energy (kBT); in the following, we will take b = 1, K
c B (K = 100), as we assume to work in a regime as similar as
possible to an inextensible polymer. Even though a moderate
degree of extensibility of the chain cannot be excluded,51 as
small fluctuations of bond lengths |rn � rn�1| are still possible
around their expected value b = 1.

We consider the overdamped regime of the system when
coupled to a weak thermal bath, so the equation of motion of
each bead is

g_rn ¼ �
@V

@rn
þ hnðtÞ þ

ffiffiffiffiffiffiffiffiffi
2gT

p
xnðtÞ (2)

where xn(t) is a Gaussian white noise of zero average and
unitary variance, T is the solvent (bath) temperature, while
hn(t) = (0, f0 sin(knb � ot)) is a deterministic space-modulated
and time-periodic perturbation (active-like force)52 that, in our

simplified scheme, confers to the flagellum a transversal beat-
ing dynamics. In the following, we set f0 = B/20 in all simula-
tions and theoretical analysis to consider the active force as a
relatively small perturbation with respect to bending and
stretching interactions. The active force hn(t) competes with
the bending rigidity in generating transversal undulatory fluc-
tuations of the chain with a spatial modulation depending on
the wave number k. We choose k = (2p/L)m where L = Nb is the
length of the flagellum in terms of monomers and m is a
positive integer defining the number of expected oscillations
applied to the flagellum. This choice guarantees that the active
force is spatially periodic over the polymer length L and implies

a zero net force as easily verified, f0
PN
n¼1

sin ð2pm=NÞn� ot½ � ¼ 0:

In addition, we assume local isotropic dissipation with friction
coefficient g and neglect long-range hydrodynamic interactions.

As already mentioned in the introduction, a rigorous dyna-
mical formulation would require anisotropic drag.32,53 How-
ever, as we clearly show in Appendix D, the weakly bending
regime we consider in simulation and theoretical analysis,
where the motion is predominantly transverse, implies that
only the normal drag enters the leading-order dynamics.

Here, the role of g in the dynamics is to provide a time scale,
i.e. the rate of energy dissipation due to the friction with the
solvent, and then it can be set g = 1 in the simulations without
loss of generality. Nevertheless, in the following theoretical

Fig. 2 Snapshots of the flagellum stationary dynamics (left panels) compared with the corresponding conformations obtained from the approximated
theory eqn (4) (right panels), for a chain of length L = Nb (N = 40, b = 1) and bending modulus B = 10. The different colors indicate six sampling times that
are equally spaced within a force-cycle 2p/o. The comparison is done for active perturbations of wavevector 5(2p/L) and small, moderate, and high
frequencies o = 0.01, 0.10, 1.0.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
7/

20
25

 5
:3

6:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00153f


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 5138–5152 |  5141

analysis, we leave it indicated to keep track of the correct
physical units of the observables; we also anticipate that the
theory will neglect the Gaussian noise.

This is because, in our simulations, the noise is completely
overwhelmed by the forcing hn, i.e. f0

2
c gT. However, although

small, its presence is necessary for running Brownian dynamics
simulations.54

Along the same lines as the work by Machin,41 we are
interested in understanding how the interplay between bend-
ing rigidity and active forcing selects the resulting polymer
conformations and in describing their relevant spatiotemporal
patterns.55,56 In the papers,32,53 the same issue is studied under
the effects of localized forces, applied to one of the endpoints of
the flagellum, and under anisotropic hydrodynamic drag. Let
us notice that, while hydrodynamics plays an important role in
generating self-propulsion, it does not contributes significantly
in the beating dynamics, which is instead mostly influenced by
mechanical aspects (see Appendix D), especially when driven by
an extended force like the one we consider.

For this reason, we first perform Brownian simulations54 of
the chain in an isotropic medium through the Langevin eqn (2).
Then, to better clarify the role of the perturbation parameters
(k,o), we support the computational results with a theoretical
analysis based on the continuous model discussed below. The
left panels of Fig. 2 and 3 give the first qualitative idea about
the beating phenomenology of the system by showing several
conformations assumed by the flagellum sampled in simula-
tions over one period, 2p/o, of the forcing. When k = m(2p/L),
the flagellum can sustain undulations of wavelength l = L/m as

one can see from the number of bumps along the conforma-
tions. The tail, instead, cannot follow the spatial periodicity due
to the great moment of the external force on the free-end region
making the tail perform considerable excursions.

Moreover, simulations indicate that at low frequencies, o t
10�2, the flagellum oscillates over time but shows little undula-
tion. In contrast, at high frequencies, o \ 1, it becomes more
spatially modulated and undergoes a ‘‘stiffening’’ transition,
assuming a more rod-like conformation. This occurs because
its mechanical structure can no longer sustain and follow high-
frequency modes. The transition is evident from the ‘‘cigar-
like’’ shape seen in the final left panels of Fig. 2 and 3.

2.2 Continuum model

The continuum formulation of model (2) can be derived from
the explicit expression of the internal forces obtained by direct
differentiation of the potential (1)

�@V
@rn
¼ K

b2
G rnþ1 � rnð Þ � G rn � rn�1ð Þ½ �

� B

b2
rnþ2 � 4rnþ1 þ 6rn � 4rn�1 þ rn�2ð Þ

(3)

with G(x) = (1 � b/|x|)x. Since the head of the chain is fixed
while the tail is free, eqn (3) holds for all the bulk monomers
except the boundaries (precisely beads of number n = 0, n = 1,
n = N � 1, n = N), we will discuss such conditions later. In the
derivation of the continuum version of eqn (2), the flagellum is
assimilated to a 2D-fluctuating string, hinged to the origin

Fig. 3 Same conditions of Fig. 2, but higher bending stiffness, B = 20.
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r(0) = 0, with elongation 2n = K/b and bending e = Bb stiffness.
The dimensional analysis suggests that e/n has the dimension
of a squared length, and more precisely, from ref. 57, e/n = 2cp

2,
being cp the persistence length of the stiff polymer. As custom-
ary, we parameterize the curve with the arc length bn - s
measured from the origin coinciding with the hinged point (see
Fig. 1).

The equation of motion governing the evolution of the
system’s coordinate r(s,t) = x(s,t)ex + y(s,t)ey is straightforwardly
derived from the monomers’s eqn (3) after performing the
continuum limits rn � rn�1 - b qr(s)/qs. In this way, the first
term of eqn (3) formally represents the discrete first derivative
of the function G(x), whereas the last term is the discrete 4-th
derivative of r(s) and neglecting the contribution of the Gaus-
sian noise, this leads to

g_r ¼ 2n
@

@s
g @srj jð Þ@r

@s

� �
� e

@4r

@s4
þ hðs; tÞ (4)

where g(x) = 1 � 1/x and h(s,t) = (0,f0 sin(ks � ot)). For
consistency with the simulation setup, we have to assume:
h(0,t) � 0 because the external force on the hinged monomer
is null. The boundary conditions for eqn (4) corresponding to a
tethered-hinged polymer in the origin (s = 0), and free at the
other end (s = L), can be derived from eqn (3) by adding the
‘‘virtual’’ monomers r�1, rN+1, rN+2, which must satisfy specific
relations such that the equations of motion for the ‘‘actual’’
monomers r1, rN�1, rN can be treated as bulk eqn (3). This trick
ensures the same description of the dynamics across the entire
polymer chain, including the boundaries. Such conditions are,
obviously, r0 = 0 and

r1 � 2r0 + r�1 = 0

rN+1 � 2rN + rN�1 = 0

2ng
rNþ1 � rNj j

b

� �
rNþ1 � rN

b
¼ e

rNþ2 � 3rNþ1 þ 3rN � rN�1
b3

which, to the continuum, leads to r(0,t) = 0 and

@2r

@s2

����
0

¼ @
2r

@s2

����
L

¼ 0

2ng @srj jð Þ@r
@s

����
L

¼ e
@3r

@s3

����
L

(5)

The vanishing of the second derivative at s = 0 and s = L implies
the absence of moments at the boundaries, while the last
equation means no force at the free end s = L. In physical
language, g(|qsr|) corresponds to a line tension that guarantees
the chain connectivity and its small stretchability,28 by introdu-
cing an energetic penalty paid to stretch (or contract) the
filament beyond its rest length. Mathematically speaking this
term emerges by a variational principle on the WLC energy by
imposing the constraint that the total chain length is left
unaltered by the dynamical fluctuations.28,58,59 Therefore, in
the literature, g is customarily introduced as a Lagrangian
multiplier implementing the average inextensibility constraint

of the flagellum.57,60 In our approach, the presence of a weak
stretching contribution is simply justified by the simulation
setup, for which the in-extensibility constraint is implemented
only in a soft manner via stiff harmonic springs for the
bonds.49,61 This, of course, does not prevent tiny fluctuations
of the bond lengths around their fixed values b = 1. Since our
simulations are run under quasi-inextensible condition (K c B)
we have |rn � rn�1| C b or, equivalently, |qsr| C 1.51 It means
that the factor g(|qsr|) should be considered, if not vanishing,
small. Moreover, the external force h that we implemented in
our simulations tends to increase the distance between
the beads; this slight but distributed stretching of the chain
(|qsr| \ 1) implies that the small value assumed by g(|qsr|) is
generally positive and weakly dependent on s. Nevertheless,
trying to linearize directly eqn (4) by assuming a small and
constant value of ng(|qsr|) - neff, leads to several inconsisten-
cies, the worst of which is the collapse of the entire chain at the
origin.62,63

2.3 Weakly bending approximation

The weakly bending approximation (WBA)59,64 is a convenient
approach to recovering extensibility; it assumes the flagellum
undergoes only small deviations from a straight or rod-like
conformation, likewise, the active force is considered small
enough to remain consistent with the weakly bending regime.
In our case, we see that WBA provides a satisfactory scheme
for interpreting computational results. As customary in WBA,
a convenient parameterization of the flagellum centerline is
r(s,t) = (s + u(s,t),y(s,t)), where u is a small longitudinal deviation
from x = s, with a small derivative as well, qsu(s) { 1.

Such a parameterization is required to satisfy the inextensi-
bility constraint

|qsr|2 = [1 + qsu(s,t)]2 + [qsy(s,t)]2 = 1, (6)

that, to the leading order, implies

@suðs; tÞ ’ �
1

2
@syðs; tÞ½ �2; (7)

from which u(s,t) is obtained by a direct integration, yielding

xðs; tÞ ¼ s� 1

2

ðs
0

dx
@yðx; tÞ
@x

� �2
: (8)

In the WBA, the fluctuations y(s,t) completely determines the
shape of the flagellum, as the variable u(s,t), describing small
longitudinal deformations, is enslaved to y(s,t) through eqn (7).
To be consistent with the constraint, g(|qsr| = 1) = 0, the
equation that the transversal component y(s,t) satisfies is

g _y ¼ �e@
4y

@s4
þ f0 sinðks� otÞ: (9)

Unfortunately, it provides solutions that deviate from numer-
ical results, especially for the tail region, as discussed in the
section results, see Fig. 6. A decidedly better affinity is instead
obtained by including a ‘‘small’’ stretching term leading to the
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effective equation

g _y ¼ 2neff
@2y

@s2
� e

@4y

@s4
þ f0 sinðks� otÞ (10)

yð0; tÞ ¼ 0;
@2y

@s2

����
0

¼ @
2y

@s2

����
L

¼ 0

2neff
@y

@s
� e

@3y

@s3

����
L

¼ 0

with neff small and positive parameter that has to be determined.
As already mentioned, neff could be considered as a Lagrangian
multiplier (within the approximation g constant) which imple-
ments inextensibility constraint of the flagellum. However, since
we are already working within the WBA framework, which
approximates this constraint, we need only to determine a
reasonable value of n from the simulation data (see next section).
As a consequence, n naturally turns out to be a function of the o
and k, neff = neff(k,o) of the active force, like it always happens
when a stiff polymer undergoes the action of an external driving
(shear flow, pulling, or active random force).37,65,66

In the rest of the paper, for simplicity, we use n instead of neff.
Besides the need to reproduce numerical simulations,

another guess for the presence of the stretching term stems
from the observation that by plugging the condition (7) into
eqn (6) implies that |qsr|2 C 1 + (qsy)4/4, thus |qsr| is allowed to
take on values slightly larger than 1. This is consistent with our
expectation regarding the role of the term g(|qsr|) in eqn (4).

Definitely, our analytical estimate of the flagellum confor-
mations in the WBA is given by eqn (10) together with eqn (8).
The solution to eqn (10) can be obtained by an expansion37,58

yðs; tÞ ¼
X1
n¼1

ynðtÞ cnðsÞ (11)

in the orthogonal eigenmodes

cnðsÞ ¼
1ffiffiffiffiffiffiffi
Wn

p 1

an2
sin ansð Þ
sin anLð Þ þ

1

bn2
sinh bnsð Þ
sinh bnLð Þ

� �
; (12)

of the differential operator appearing in eqn (10), i.e.,

e
d4cnðsÞ
ds4

� 2n
d2cnðsÞ
ds2

¼ lncnðsÞ; (13)

consistent with boundary conditions (5), where ln are the
corresponding eigenvalues. Appendix A reports the derivation
of the eigenmodes and eigenvalues ln, including the definition
of an and bn, along with the formula of the normalization
constants Wn. With a little abuse of language an or bn can be
referred to as ‘‘quantum numbers’’ of the eigenmodes.

The amplitudes of each mode are independent and evolve
according to the following equation

g
dyn

dt
¼ �lnyn þ bn cosðotÞ � an sinðotÞ (14)

where

an = f0hcos(ks),cn(s)i, bn = f0hsin(ks),cn(s)i, (15)

are the coefficients representing the projection of the external
force f0[sin(ks)cos(ot) � cos(ks)sin(ot)] on the eigenmodes;
having defined the scalar product

gðsÞ;cnðsÞh i ¼
ðL
0

dsgðsÞcnðsÞ:

Their explicit expression is

an ¼
f0ffiffiffiffiffiffiffi
Wn

p an tan anL=2ð Þ
an2 an2 � k2ð Þ þ

bn tanh bnL=2ð Þ
bn2 bn2 þ k2ð Þ

� �
(16)

bn ¼
f0ffiffiffiffiffiffiffi
Wn

p k

an2 an2 � k2ð Þ �
k

bn2 bn2 þ k2ð Þ

� �
: (17)

In Appendix B, we show that eqn (14) is solved by the following
(stationary) periodic solution:

ynðtÞ ¼
bnln þ anðgoÞ
ln2 þ ðgoÞ2

cosðotÞ þ bnðgoÞ � anln
ln2 þ ðgoÞ2

sinðotÞ: (18)

We note that all coefficients appearing above, e.g. an, bn depend
on the forcing parameters (k,o), but – to make the notation less
burdensome, we have omitted such dependencies.

After putting all the terms together and using the cn(s), we
obtain the full solution of the y-profile of the flagellum that can
be rearranged into the very simple expression

y(s,t) = Ak,o(s)cos(ot) + Bk,o(s)sin(ot) (19)

upon defining, for the sake of shorthand notation,

Ak;oðsÞ ¼
X1
n¼1

cnðsÞ
bnln þ anðgoÞ
ln2 þ ðgoÞ2

� �

Bk;oðsÞ ¼
X1
n¼1

cnðsÞ
anðgoÞ � anln
ln2 þ ðgoÞ2

� �
:

(20)

Here the indexes ‘‘k,o’’ recall the parametric dependence on
the active force numbers.

The amplitudes Ak,o(s) and Bk,o(s) play the role of a
response of the system to a given forcing with spatiotemporal
periodicity k,o: high or low values of those amplitudes indicate
if the traveling-wave perturbation is consistent with or is
attenuated by the bending rigidity of the flagellum. Such
amplitudes seem to be suppressed by increasing o, therefore
in large o regimes, the dynamics of the flagellum is expected to
become noise-dominated and it loses the periodic behavior. In
other terms, the flagellum response to high-frequency active
forces resembles a low-pass filter for which high-frequency
perturbations are strongly attenuated, or in a more structural
sense, this corresponds to a ‘‘straightening’’ crossover.

It is also interesting to remark that the flagellum acts as a
sort of ‘‘spectral device’’ which decomposes a ‘‘monochro-
matic’’ perturbation of parameters (k,o) into a superposition
of responses characterized by a set of numbers {an,ln}Nn=1 where
an (and bn that is strictly connected to it) plays the role of a
generalized wave vector and ln is the corresponding ‘‘vibration’’
frequency.

For visualizing the impact of the wave number, k, on the
flagellum properties we plot, in Fig. 4, the coefficients (16) and
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(17) of the active-force expansion in eigenmodes as a function
of an.

The coefficient an (black dots) displays oscillations that
intensify as an approaches k (marked by the thick vertical line),
whereas bn (red dots) exhibits a growth towards k without
oscillations, undergoing a sign change when crossing k. The

behavior of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an2 þ bn2

p
, which is a sort of composite envelope of

an and bn, distinctly reveals a pronounced peak at k.
These plots closely resemble a ‘‘spatial resonance’’ scenario,

because the maximal variation of an and bn occurs around a
neighborhood of k, even though the remaining contributions
are not negligible. This suggests that the flagellum modes with
an C k are the most sensible to the perturbation.

In the following section, we discuss the simulation results
on the flagellum beating behavior by using the above conti-
nuum string theory as a reference and interpretative basis.

3 Results

We run simulations of a flagellum according to eqn (2) for N +
1 = 41 monomers (beads), the first of which is anchored to the
origin, forming a hinged restrain, by numerically integrating
eqn (2) for each monomer forming the flagellum. We select

K = 100, as a reasonable choice for granting inextensibility, and
consider different bending modulus B and active cycles, 2p/o.
The time step is chosen to be of the order of h C 10�4 to avoid
instabilities of the Brownian dynamics code (Euler scheme)
within the whole explored range of parameters. The flagellum is
initialized by aligning all the monomers to the x-axis in their
relaxed configuration: xn = nb, (n = 0,. . .,N). Main observables
needed to characterize the flagellum dynamics were sampled
and eventually averaged over a time 10(2p/o), i.e. for ten forcing
cycles, after discarding a transient of about 106 time steps to
allow the system’s relaxation onto a robust stationary regime.

The left panels of Fig. 2 and 3 show snapshots of flagellum
conformations from simulations for three values of o, with
B = 10 and B = 20 respectively, while the right panels report the
corresponding theoretical flagellum conformations obtained
by solving eqn (10) and using eqn (8) to reconstruct the
x-coordinate in the WBA. The reasonable agreement between
simulation and theory has been possible by adjusting the
coefficient n of the stretching term. For calibrating n, we
compared the motion of the flagellum tail (last monomer) with
its theoretical prediction from eqn (10). The beating oscilla-
tions of the tail observed in the simulations and displayed in
Fig. 5 (black dots), can be described by the following simple
evolutionary laws

x(t) = x0 + ax cos(2ot) + bx sin(2ot) (21)

y(t) = ay cos(ot) + by sin(ot). (22)

As we will see in the following, the frequency doubling of
the x coordinate is a natural consequence of the quasi-
inextensibility of the flagellum. This phenomenon has also
been observed in simulations of wall-anchored semiflexible
polymers under oscillatory shear flow.56

The amplitude of the y(t) signal is F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay2 þ by2

p
whose

numerical value can be obtained by a fitting procedure to the
simulation time series, see Fig. 5. The effective value of n is

Fig. 4 Coefficients, eqn (16) and (17) plotted versus an, of the perturbation
f0 sin(ks � ot) expanded into the orthonormal eigenfunctions cn(s). The
thick black vertical line marks the wave-number k of the spatiotemporal
forcing, k = 5(2p/L) and k = 10(2p/L). The blue line indicates the amplitudeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

an2 þ bn2
p

of the n-th eigenmode. The picture resembles a ‘‘spatial-
resonance’’ scenario because the maximal variation of coefficients occurs
around k, even if the other contributions can not be considered negligible.

Fig. 5 Trajectory of the tail position xL(t),yL(t) of a flagellum of N + 1 = 41
beads (length L = Nb), bending rigidity B = 20 and under a active
perturbation with k = 5, o = 0.10. Black dots are the simulated data and
the red curves represent the fit with eqn (21) and (22).
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such that F2 C A2(L) + B2(L), where

AðLÞ ¼
X1
n¼1

1ffiffiffiffiffiffiffi
Wn

p 1

an2
þ 1

bn2

� �
bnln þ anðgoÞ
ln2 þ ðgoÞ2

;

BðLÞ ¼
X1
n¼1

1ffiffiffiffiffiffiffi
Wn

p 1

an2
þ 1

bn2

� �
bnðgoÞ � anln
ln2 þ ðgoÞ2

:

(23)

are the amplitudes predicted by eqn (20), for shorthand nota-
tion we dropped the indexes o,k. The satisfactory numerical
values of n are reported in Table 1. Once we set an ‘‘optimal’’
value for n, we can compare the simulated trajectory of the
flagellum tail (last monomer), describing a Lissajous-like figure
in Fig. 6 with the corresponding result obtained by using
eqn (8) and (19) at various values of o and stiffness B

xLðtÞ
L
¼ 1� 1

2L

ðL
0

ds @syðs; tÞ½ �2 (24)

yLðtÞ
L
¼AðLÞ

L
cosðotÞ þBðLÞ

L
sinðotÞ: (25)

The dashed lines in Fig. 6 represent the theoretical Lissajous
plots that by tuning n converge and overlap with the
simulation data.

The scattering (spread) observed in the simulation data is
presumably due to the interplay of chaos and thermal noise
which we do not investigate here. The reader can refer to ref. 67
for a discussion of possible chaotic behaviors in anchored
polymers driven by a localized oscillating force. It is, however,
clear that on passing from o = 0.01 to o = 0.10, the positions of
the tail turn out to be more scattered, even if the thermal noise
in the simulation is the same. This is an intriguing role of the
active forcing at high frequencies, which introduces a sort of
‘‘stochastization effect’’ that dominates over the small thermal
noise, as shown in eqn (19).

It is interesting to discuss how the bi-lobed Lissajous-like
behavior of the tail emerges in terms of the continuum theory
from eqn (24) and (25). Fig. 6 shows that such Lissajous figures
are characterized by a frequency ratio 2 : 1, corresponding to a
frequency doubling of the x-motion: ox = 2oy. Indeed, the
frequencies of a Lissajous’ figure are known to satisfy the
relationship

Nx�ox = Ny�oy,

Table 1 Table reporting the values of the estimated n obtained by
comparing the amplitudes F2 = ay

2 + by
2 of the fitting eqn (22) with the

expected amplitudes A(L)2 + B(L)2 from the semiflexible flagellum theory

o 0.01 0.10 1.0
B = 10 n = 0.1696 n = 0.1950 n = 0.5632
B = 20 n = 0.3375 n = 0.3710 n = 0.7150

Fig. 6 Trajectory described during the beating process by the position of the tail (last-monomer) of a flagellum with N = 40 monomers of length b = 1,
for two bending constants and two frequencies as indicated in the panels. The motion recalls a bi-lobed Lissajous figure, the points are the simulation
results, whereas the curves are the predicted trajectory described by eqn (26a) and (26b). The red-thick Lissajuous figures correspond to the optimal n
reported in Table 1. For comparison, we also plot the dashed blue lines corresponding to the flagellum with n = 0 to underscore the important role of the
stretching contribution.
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with Nx and Ny being the number of intersections of the curve
with generic horizontal and vertical lines respectively and in
our specific case Nx = 2 and Ny = 4, thus ox = 2oy.

This ratio is expected as a straightforward consequence of
the quasi-inextensibility of the chain, in fact by substituting
eqn (25) into eqn (24), and expressing formally the integrals as
Lh� � �i, we get

xLðtÞ
L

¼ S þQ� P

4
cosð2otÞ � R

2
sinð2otÞ

yLðtÞ
L
¼ AðLÞ

L
cosðotÞ þBðLÞ

L
sinðotÞ;

where we have defined

P = h[A0(s)]2i, Q = h[B0(s)]2i, R = hA0(s)B0(s)i,

with S = 1 � (P + Q)/4, and used the following trigonometric
identities

cos2(ot) = [1 + cos(2ot)]/2

sin2(ot) = [1 � cos(2ot)]/2

to make explicit the frequency doubling of the x-motion. The
above equations, after simple manipulation, can be recast in
the traditional form of Lissajous figures

xL(t)/L = S + Sx cos(2ot + Dx) (26a)

yL(t)/L = Sy cos(ot + Dy), (26b)

upon setting Sx cos(Dx) = (Q � P)/4, Sx sin(Dx) = R/2 and Sy

cos(Dy) = A(L)/L, Sy sin(Dy) = B(L)/L. In conclusion, the tail’s
behavior can be mathematically explained by considering that
the solution (8) and (19) evaluated at s = L results in a
combination of sin(ot) and cos(ot) which can be rearranged
in the form (26a) and (26b). Moreover, the shape figure depends
not only on the frequency (2 : 1) and amplitude ratio (Sx : Sy) but
also on the phase shift, D = Dy � Dx.

It’s worth noting that each internal monomer of the flagel-
lum also undergoes a similar type of Lissajous motion, albeit
the greatest amplification is observed in the free tail.

Another quantity often used to characterize the dynamical
response of the flagellum and its conformational properties is
the end-to-end distance, which for the hinged system to the
origin simply reads

Ree
2(t) = x2(L,t) + y2(L,t).

Fig. 7 reports the time behavior of Ree(t) obtained from the
simulations of a flagellum of 41 beads (black curve) and
compares it with the theoretical prediction (red curve) derived
by squaring eqn (26a) and (26b). The observable Ree(t) exhibits a
cyclical behavior with the active-force period 2p/o which is well
reproduced by the theoretical curve (red) once the free para-
meter n in eqn (4) is properly set, as reported in Table 1.

3.1 Spatial modulation

So far, we have analyzed the influence of the force cycle, defined
by o, on the flagellum beating dynamics, now, we would like to

focus on the role of k in shaping the spatial conformation of the
flagellum. To check if the spatial modulation induced by the
perturbation is sustained by the filament dynamics, we com-
puted the bond–bond correlation starting from the hinged
point, x0 = 0, y0 = 0,

CbðnÞ ¼ u1 � un n ¼ 1; . . . ;N; (27)

with un = rn+1 � rn being the bond vector connecting the

positions of two consecutive beads. The notation f ðtÞ indicates

Fig. 7 Simulated time course (black) of the squared end-to-end distance
Ree

2 of a flagellum with N + 1 = 41 beads each of diameter b = 1,
corresponding to a length L = Nb. The chain has a bending rigidity strength
B = 10 and perturbation k = 5, o = 0.01 and o = 0.10. The simulations show
a periodic behavior with a main frequency o that is double the forcing
frequency. The red curve represents the expected Ree

2 obtained by the
solution (8) and (19).

Fig. 8 Bond–bond correlation C(n) for filaments of N = 40 monomers,
with bending stiffness B = 10 and B = 20, both having the same o = 0.10.
Black dots represent simulation data, while red dots represent theoretical
predictions. Both the simulation and theoretical plots reveal spatial mod-
ulation with five peaks, consistent with the active-force wave number k =
5(2p/L), where L = Nb. The average is taken over a long equilibrium
simulation run at temperature T = 0.001. The red plots, drawn from
eqn (29), show a pattern of peaks similar to the simulation data.
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the time average, which in our case, coincides with the average
over a period, 2p/o, of the active force. Fig. 8 presents the
simulated data for Cb(n) (black points) averaged over a long
equilibrium run at low temperature T = 0.001, corresponding to
a flagellum of bending stiffness B = 10, (upper panel) and B = 20
(lower panel) both perturbed with frequency o = 0.10. Cb(n)
exhibits five peaks, consistent with the oscillations imposed by
the active-force wave number, k = 5(2p/L), indicating that the
chain’s stiffness can support the external modulation.

Simulations also show that the bond orientation becomes
more correlated as the bending stiffness increases, this is
expected since the persistence length is higher for B = 20. The
faster decay of the correlation for B = 10 is also indicative of
weaker persistence, and a ‘‘visual estimate’’ of the persistence
length of the flagellum can be obtained from the onset of a large
deviation of the tail region from the horizontal dashed line.

A theoretical prediction of bond–bond correlation behavior
can be obtained from the continuum model by using the
following formula

CbðsÞ ¼ b2
@rðs; tÞ
@s

� @rð0; tÞ
@s

(28)

in which bqsr(s,t) is the continuum analogue of a bond vector in
eqn (27). The overbar denotes the time average over a force
cycle (2p/o) and we recall that, throughout the text, we set b = 1
to eliminate inessential parameters. Fig. 8 presents the simu-
lated data for Cb(n) (black points) averaged over a long equili-
brium run at low temperature T = 0.001, corresponding to a
flagellum of bending stiffness B = 10, (upper panel) and B = 20
(lower panel) both perturbed with frequency o = 0.10. Cb(n)
exhibits five peaks, consistent with the oscillations imposed by
the active-force wave number, k = 5(2p/L), indicating that the
chain’s stiffness can support the external modulation.

In the WBA, the bond vector can be written as

@r

@s
¼ 1� 1

2

@y

@s

� �2

;
@y

@s

 !

therefore, Cb(s) to the leading order becomes

CbðsÞ ’1�
1

2

@yðs; tÞ
@s

� �2
� 1

2

@yð0; tÞ
@s

� �2
þ

� @yðs; tÞ
@s

@yð0; tÞ
@s

:

By using eqn (19) and the average properties of trigono-
metric functions over a period, after simple algebraic manip-
ulations, C(s) can be recast to the form

CbðsÞ ¼ 1� 1

4
½A0ðsÞ �A0ð0Þ�2 þ ½B0ðsÞ �B0ð0Þ�2
� 	

(29)

where A and B are the expressions in eqn (23). Notice that
correctly Cb(s = 0) = b2 = 1, as expected from the ‘‘quasi-
inexensibility’’ of the flagellum bonds.

For a comparison, Fig. 8 also displays the corresponding
quantity Cb(s) derived from the continuum model, eqn (29) (red

points). Although a precise quantitative agreement between
Cb(n) and Cb(s) is lacking especially in the tail region where
the application of WBA is questionable, it is noteworthy that
they exhibit five similar oscillations driven by the active forcing
modulation, k = 5(2p/L).

This suggests that the qualitative structure of the beating
dynamics remains consistent when passing from the discrete to
the continuum models.

4 Conclusions

The main purpose of this study was to investigate the selection
of flagella conformations arising from the bending resistance
of a slender semi-flexible structure to an extended force
(mimicking the activity of molecular motors) and driving its
evolution across different spatiotemporal patterns character-
ized by o,k.

In particular, we developed an effective mechanical theory,
that upon ‘‘tuning’’ the longitudinal stretching term, can
explain (at least qualitatively) some important features of the
beating dynamics observed in the simulation, such as the
bond–bond spatial correlation and temporal oscillation of the
flagellum tail which, in a certain frequency range of the active
force, describes Lissajous’ figures of 2 : 1 frequency ratio. The
theory clearly explains that such a 2 : 1 frequency ratio arises
from a frequency doubling of the x-oscillation, which in turn, is
a natural consequence of the chain inextensibility.

Furthermore, our theoretical analysis sheds light on the
ranges of o and k of the active force required to confer a
prescribed spatial modulation to the flagellum and produce a
significant effect on its beating dynamics. Indeed, as explained
in Section 2.2, for high-frequencies forcing (o c 1) the ampli-
tude of periodic modulations of transversal profile y(s,t) is
largely suppressed, and thermal fluctuations dominate the
flagellum dynamics.

Additionally, the wavelength, 2p/k, of the active forcing must
be consistent with the persistence length, lp, of the flagellum,
as high levels of spatial modulation cannot be energetically
sustained by a system with a given bending stiffness, see
Appendix C for a less qualitative argument. Such a result could
play a key role in designing bio-inspired self-propelled engines.

We also provided evidence (see Appendix D) that, as long as
WBA holds, anisotropies in hydrodynamical interaction, which
are crucial for self-propulsion, play a little role in the selection
of conformations of flagella.

Although the modeling of active-like dynamics is not fully
realistic from a biological point of view, we expect that the
theory could be generalized to describe different scenarios,
including cases where the active force has true ‘‘internal’’ origin
by modeling the action of molecular motors distributed along
the flagella. Thus, this work constitutes a first step towards
more realistic description of active bio-filaments giving insight
into the mechanism that arises from the interplay between
mechanical and active forces, which is responsible for their
conformation dynamics.
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The source files for Fig. 2–8 of the manuscript are available at
https://github.com/cecconif/flagellum-wlc-data. Each file can
be opened using the graphical software Grace, which can be
found and downloaded from the site https://plasma-gate.
weizmann.ac.il/Grace/. Such files also contain, at the end, the
raw data used to generate the figures.
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Appendices
A Derivation of the eigenmodes

In this appendix, we derive the eigenmodes which are solutions
of the equation

e
d4cnðsÞ
ds4

� 2n
d2cnðsÞ
ds2

¼ lncnðsÞ (30)

satisfying the boundary conditions:

cnð0Þ ¼ 0;
@2cnðsÞ
@s2

����
0

¼ 0

@2cnðsÞ
@s2

����
L

¼ 0; 2n
@cnðsÞ
@s

����
L

¼ e
@3cnðsÞ
@s3

����
L

Since eqn (30) is linear, its solution requires solving the
associated characteristic polynomial

em4 � 2nm2 � ln = 0,

the roots of which are, complex m = �ia and real m = �b, where

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
e


 �2
þl
e

r
� n

e
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
e


 �2
þl
e

r
þ n

e
;

then, it is straightforward to obtain the following algebraic
identities

b2 � a2 = 2n/e (31)

l = ea4 + 2na2 = eb4 � 2nb2. (32)

Then the general solution of eqn (30) can be written as

c(s) = A sin(as) + B sinh(bs) + C cos(as) + D cosh(bs); (33)

the coefficients A, B, C, D and the eigenvalues l are determined
by imposing the four boundary conditions plus the normal-
ization. The condition at s = 0 obviously implies that C = D = 0,
while the condition in s = L implies

a2 sin(aL)A � b sinh(bL)B = 0

b cos(aL)A � a cosh(bL)B = 0,

to simplify, we used the identity e(b2 � a2) = 2n. In matrix form,
the boundary conditions lead to the following linear systems

0 0 1 1

0 0 �a2 b2

a2 sinðaLÞ �b2 sinhðbLÞ 0 0

b cosðaLÞ �a coshðbLÞ 0 0

2
6666664

3
7777775

A

B

C

D

2
6666664

3
7777775
¼

0

0

0

0

2
6666664

3
7777775
:

To exclude the nontrivial solution A = B = D = 0, the
determinant of the coefficient matrix should be zero, therefore
we have the condition a3 sin(aL)cosh(bL) = b3 cos(aL)sinh(bL)
that can be recast to

a3 tan(aL) = b3 tanh(bL) (34)

After simple algebraic manipulations, we obtain from
eqn (33) the final expression of the eigenfunctions (Fig. 9),

cnðsÞ ¼Wn
1

an2
sin ansð Þ
sin anLð Þ þ

1

bn2
sinh bnsð Þ
sinh bnLð Þ

� �
; (35)

Wn being a normalization constant such thatðL
0

dscn
2ðsÞ ¼ 1;

then using the trigonometric identities, sin�2(p) = cot2(p) + 1,
sinh�2(p) = coth2(p) � 1, and eqn (34), this can be
expressed as

Wn
�2 ¼ L

2n2 þ eln
ln2

þ coth bnLð Þ
bn3

3n
ln
� Ln coth bnLð Þ

ebn3

� � (36)

B Solution of the mode amplitude equation

We derive the evolution of the n-th mode amplitude, yn(t), that
obeys the equation

g
dyn

dt
þ lnyn ¼ an cosðotÞ þ bn sinðotÞ (37)

The solution of this first-order equation in the stationary

Fig. 9 First five eigenfunctions cn(s) as a function of the arclength
coordinate, s. Oscillations are associated with the generalized wavenum-
ber an, which must be compared with the wavenumber k of the active
force modulation.
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regime is

ynðtÞ ¼
e�lt=g

g

ðt
�1

dzelz=g an cosðozÞ þ bn sinðozÞ½ �

after a change of variable t � z - z

ynðtÞ ¼
ð1
0

dz
e�lz=g

g
an cos½oðt� zÞ� þ bn sin½oðt� zÞ�f g

and expanding cos[o(t � z)] and sin[o(t � z)], we obtain

yn(t) = (anZ1 � bnZ2)cos(ot) + (anZ2 + bnZ2)sin(ot)

where

Z1 ¼
1

g

ð1
0

dte�lt=g cosðotÞ ¼ l
l2 þ ðgoÞ2

Z2 ¼
1

g

ð1
0

dte�lt=g sinðotÞ ¼ go
l2 þ ðgoÞ2:

Thus re-arranging, we can write

ynðtÞ ¼
anl� bnðgoÞ
l2 þ ðgoÞ2 cosðotÞ þ anðgoÞ þ bnl

l2 þ ðgoÞ2 sinðotÞ;

which is the searched solution, eqn (18) of the main text.
The same expression could have been obtained, by substi-

tuting the test function (similar to the known term) yn(t) =
C1 cos(ot) + C2 sin(ot) into eqn (37) and choosing the coeffi-
cients C1, C2 to make both members equal.

C A simple criterium

In this appendix, we discuss a simple energetic argument that
justifies the physical limits of the flagellum response.

The argument compares the energy of a perturbation mode
and the energy of the flagellum solution (11), using the con-
tinuum energy formula59

E ¼
ðL
0

ds
e
2

@2r

@s2

� �2

þn @r

@s

� �2
" #

(38)

The active perturbation reads

Fðs; tÞ ¼ 2
f0

L
sinðks� otÞ

where, the pre-factor 2f0/L is the necessary scale to make the
amplitude of F(s,t) and the flagellum longitudinal oscillation
y(s,t) of the same order. When substituted into eqn (38), F(s,t)
requires an energetic cost

EðkÞ ¼ f0
2

4
ek4 þ 2nk2
� 	

:

This cost has to be compared with the energy of the flagellum
solution, which can be computed using its expansion in eigen-
modes, which due to their orthogonality, yields (11)

Ef ¼
f0

2

4

X1
n¼1

�an
2 þ �bn

2

ln2 þ ðgoÞ2
ln;

note that, with respect to the expressions (16) and (17), the

forcing amplitude, f0, has been factored out, thus we obtain

ek4 þ 2nk2 ’
X1
n¼1

�an
2 þ �bn

2

ln2 þ ðgoÞ2
: (39)

This equation suggests a criterion that determines the range of
k and o. Specifically, once k is chosen, the equation determines
a range of feasible o values around the solution of the equa-
tion. Conversely, if o is assigned, a range of feasible k values
can be derived from the equation.

In other words, if E(k) is too large due to a high value of k, we
introduce too much energy into the system, which must be
balanced by choosing a small o, and vice versa, if k is too small,
it requires a very large o.

This situation is also critical because, at high frequencies,
the system dynamics are significantly attenuated, leading to a
decoupling between the flagellum’s dynamics and the fast
oscillating perturbation: in this regime, the flagellum perceives
this rapid oscillation as additional ‘‘noise’’.

D Anisotropic hydrodynamic drag

In this appendix, we justify neglecting anisotropic effects of the
drag coefficient used in our model of flagellar dynamics. The
overdamped anisotropic dynamics of the i-th bead of the
flagellum is governed by the stochastic differential equation,

Gi _ri ¼ �
@V

@ri
þ hiðtÞ þ

ffiffiffiffiffiffiffi
2D
p

xiðtÞ; (40)

where the diffusion coefficient D is proportional to the tem-
perature T, while Gi is the drag tensor projecting the velocity :ri

into components parallel and perpendicular to the local
filament axis:

Gi
:ri = g8(:ri�ti)ti + g>(:ri�ni)ni. (41)

The coefficients g8 and g> are the drags along the tangent and
normal directions, respectively. The vectors ti and ni denote the
unit tangent

ti ¼
riþ1 � ri

riþ1 � rij j

and normal vector ni�ti = 0 referred to bead i, with the boundary
condition on the last bead tN+1 = tN.

By inverting Gi, or equivalently projecting eqn (40) along ti

and ni we obtain the Brownian dynamics in the anisotropic drag

_ri ¼
1

gk
� 1

g?

 !
Fi � tið Þti þ

Fi

g?
; (42)

where

Fi ¼ �riV þ hiðtÞ þ
ffiffiffiffiffiffiffi
2D
p

xiðtÞ

is the total effective force.
Eqn (42) was integrated using the same Euler scheme to

obtain the flagellum conformations presented in Fig. 10. The
comparison shows that the conformations are weakly affected
by drag anisotropy. This observation is further supported by
looking at the trajectories of the terminal monomer, which
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form Lissajous figures that remain essentially unchanged,
apart from a slight adjustment in their aspect ratio (see Fig. 11).

A similar conclusion could have been derived from the
theoretical side by using the WBA. Indeed, let us consider the
continuum model, eqn (4),

G_r ¼ 2n
@

@s
g @srj jð Þ@r

@s

� �
� e

@4r

@s4
þ hðs; tÞ; (43)

now, the drag matrix G takes the form

G = g8ttT + g>nnT (44)

denoting, as above by t and n, the unitary vectors along the
tangential and orthogonal directions of the flagellum,
respectively.

According to eqn (7), when the weakly bending approxi-
mation holds, t and n can be parametrized as

t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
@syð Þ4

r 1� 1

2
@syð Þ2

@sy

0
@

1
A

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
@syð Þ4

r �@sy

1� 1

2
@syð Þ2

0
@

1
A:

(45)

Inserting these expressions into eqn (44) leads to

G ¼

gk þ p
@syð Þ2

1þ @syð Þ4
.
4

�p
@syð Þ 1� @syð Þ2

.
2

h i
1þ @syð Þ4

.
4

�p
@syð Þ 1� @syð Þ2

.
2

h i
1þ @syð Þ4

.
4

g? � p
@syð Þ2

1þ @syð Þ4
.
4

0
BBBBBBBB@

1
CCCCCCCCA
(46)

thus

G ¼ gk 0
0 g?

� �
þ dG; (47)

where, p = g> � g8 and the elements of dG are at least O(qsy). Let
us notice that, from eqn (44), G�1 is easily obtained by sub-
stituting g8 and g> with 1/g8 and 1/g>, arriving at

G�1 ¼
1
.
gk 0

0 1=g?

0
@

1
Aþ g?

�1 � gk
�1

1þ 1

4
@syð Þ4

�
@syð Þ2 � @syð Þ 1� 1

2
@syð Þ2

� �

� @syð Þ 1� 1

2
@syð Þ2

� �
� @syð Þ2

0
BBBB@

1
CCCCA:

(48)

Retaining only terms up to the first order in qsy, G�1 takes
the form

G�1 ¼

1

gk
0

0
1

g?

0
BBBB@

1
CCCCA�

1

g?
� 1

gk

 !
@syð Þ

0 1

1 0

 !
: (49)

By applying this tensor to the external force h(s,t) we get

G�1
0

f0 sinðks� otÞ

 !
¼

gk
�1 � g?

�1

 �

@syð Þf0 sinðks� otÞ

f0=g? sinðks� otÞ

0
@

1
A:

(50)

Showing that the anisotropic drag leaves unaltered the force
along y. Therefore, the time evolution of y(s,t) from eqn (4) and
(43) are identical at leading order in qsy, being equal to eqn (9)
with g or g> as drag coefficient. Moreover, since within the
weakly bending approximation x is enslaved to y, we can

Fig. 10 Snapshots of the flagellum stationary dynamics for isotropic
(g8 = g> = 1.5) and anisotropic (g8 = 1, g> = 2g8) drag (blue solid lines with
circles and red dashed lines with stars, respectively), for a chain of length
L = Nb (N = 40, b = 1) and bending modulus B = 10.

Fig. 11 Trajectory described during the beating process by the position of
the tail (last-monomer) of a flagellum with N = 40 monomers of length
b = 1, for isotropic and anisotropic drag (p = 0 blue solid line and p = 1 red
dashed line, respectively).
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conclude that the overall dynamics is weakly affected by drag
anisotropies.

The above theoretical considerations are also confirmed by
numerical simulation, as shown in Fig. 10 and 11.

In conclusion, both simulation results and theoretical ana-
lysis indicate that drag anisotropy plays a minor role when the
system is anchored and unable to swim. In this constrained
scenario, the absence of net translation suppresses the influ-
ence of anisotropic drag on the flagellum’s dynamics and
conformations.
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Primary cilia regulate mTORC1 activity and cell size through
lkb1, Nat. Cell Biol., 2010, 12(11), 1115–1122.

9 G. Wheway, L. Nazlamova and J. T. Hancock, Signaling
through the primary cilium, Front. Cell Dev. Biol., 2018, 6, 8.

10 D. E. Jaalouk and J. Lammerding, Mechanotransduction
gone awry, Nat. Rev. Mol. Cell Biol., 2009, 10(1), 63–73.

11 P. P. Lele, B. G. Hosu and H. C. Berg, Dynamics of mechan-
osensing in the bacterial flagellar motor, Proc. Natl. Acad.
Sci. U. S. A., 2013, 110(29), 11839–11844.

12 R. Ma, G. S. Klindt, I. H. Riedel-Kruse, F. Jülicher and
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