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Osmocapillary phase separation at contact lines†

Qihan Liu * and Luochang Wang

Swollen soft materials have various uncommon wetting properties, such as anomalous contact angles,

extremely low adhesion, stimuli-responsive adhesion, and time-dependent wetting. These properties are

related to the solvent exudation near the contact lines. Existing studies assume that the phenomenon is

governed by the elastocapillary effect, predicting that a stiffer material suppresses the solvent exudation.

Here we show that the phenomenon is governed by the osmocapillary effect instead, predicting that a

stiffer material promotes solvent exudation while a higher osmotic pressure suppresses it. We combine a

small-deformation analytical model and nonlinear finite element simulations to develop a model that

quantitatively predicts a wide range of existing experimental data with no fitting parameters.

1. Introduction

Wetting is crucial for various industrial applications such as
bonding,1 lubrication,2 coating,3 and deicing.4 Wetting on
swollen soft materials, such as hydrogel, swollen rubber, and
soaked fibrous and porous materials, often exhibits unique
properties due to the solvent on the material surface. Here the
solvent refers to the liquid that swells the material, such as
water in a hydrogel, or uncrosslinked silicone polymer in a
silicone elastomer. Examples include anomalous contact
angle,5,6 extremely low adhesion,7,8 stimuli-responsive adhe-
sion,9,10 and time-dependent wetting.11,12 Existing studies show
that the solvent on the material surface is pulled out from the
swollen solid near the contact line (Fig. 1A).5,6 This phenom-
enon is often modeled as an elastocapillary effect,5,6,12–14 i.e.
the formation of the solvent phase is driven by surface tension
and limited by the elasticity of the swollen solid. Under this
picture, a stiffer solid would lead to a smaller solvent phase.
Here we show that the phenomenon is governed by a different
mechanism, osmocapillary phase separation.15–18 Osmocapil-
lary phase separation is still driven by the surface tension but is
limited by osmotic pressure instead of elasticity. Under this
picture, the stiffness of the solid plays a secondary role in
determining the size of the solvent phase; and a stiffer solid will
increase the size of phase separation rather than decrease it.
This new picture has significant implications for the design of
future related studies.

Osmocapillary theory assumes that the solvent on a swollen
solid surface is a phase separation caused by the competition

between capillarity and osmosis.15 The solvent molecules on
the surface and in the solid must be in thermodynamic
equilibrium, thus having the same chemical potential
m = m0 � OP. Here m0 is the chemical potential of the solvent
molecule at the ambient condition; O is the average volume per
solvent molecule; and P is the osmotic pressure of the swollen
solid. Here the osmotic pressure P may come from the free
energy of mixing between a polymer network and a solvent, or
the capillary action of a fibrous or porous matrix. In the latter
case, P is equivalent to pore pressure but with an opposite sign.
The thermodynamic equilibrium implies that the solvent phase
separation is under a uniform tension of P. On the boundaries
of the solvent phase, the surface tension generates Laplace
pressure gk, where g is the interfacial tension and k is the sum
of the local curvatures. The morphology of the solvent phase is
governed by the balance between osmotic pressure and the
Laplace pressure.

Fig. 1 (A) The osmocapillary phase separation near the contact line is
governed by the force balance between the osmotic pressure P in the
solvent, the interfacial tension g between different phases, and the elastic
stress s in the solid. The subscripts S,S,1,2 indicate solid, solvent, fluid 1,
and fluid 2. (B) An example simulation with g12/gtot = 0.86 where gtot = gS1/
gS2, gS2/gS1 = 2, P/G = 1. The solid height H, solvent height h, (both relative
to the initial flat surface), apparent contact angle y, and the tip angle j are
used to characterize the equilibrium configuration of the phase separation.
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2. Numerical and analytical modeling

Consider the contact between two fluids and a swollen solid
(Fig. 1A). The solvent and the two fluids are mutually immis-
cible. For example, the two fluids can be air and water while the
solid is silicone elastomer swollen in silicone oil. At equili-
brium, the two fluids are stress-free and the solvent is under
uniform hydrostatic tension P. These three liquid phases do
not require explicit modeling. We only need to model the stress
balance inside the solid and the following force balance con-
ditions at the phase boundaries:

1. At the solvent–fluid interfaces, the osmotic pressure P is
balanced by the Laplace pressure: P = gS1k or P = gS2k. gS1 or gS2

is the interfacial tension between the solvent and the fluid 1 or
2. k is the sum of the local principal curvature.

2. At the solid–fluid boundaries, the elastic stress s is
balanced by the Laplace pressure: s = gS1k or s = gS2k. gS1 or
gS2 is the interfacial tension between the swollen solid and the
fluid 1 or 2.

3. At the solvent–solid boundary, the elastic stress s is
balanced by both the Laplace pressure from the solid–solvent
interface and the osmotic pressure in the solvent: s = gSSk + P.
gSS is the solid–solvent interfacial tension.

4. Any of the three-phase contact lines between the solid,
solvent, and the two fluids must follow the Neumann’s law
requiring that the force balance between the three interfacial
tensions.19,20

The boundary value problem outlined above can be readily
implemented in finite element analysis by modeling the inter-
faces as a layer of shell elements in 3D or beam elements in
2D.18,21 The interfacial tension is implemented as pre-stress in
the shell or beam layers. To ensure that the interfacial tension
is deformation-independent, the tensile stiffness of the shell or
beam must be sufficiently low. The solid interfaces are allowed
to frictionlessly slide on the solid but not penetrate or detach
from it. The fluid interfaces are allowed to move freely in space
but not penetrate the solid. This implementation automatically
produces the correct Laplace pressure and ensures the force
balance at the contact lines. A uniform pressure P towards the
direction of phase separation is applied on all the solvent
interfaces to represent osmotic pressure.

We implement this algorithm for a simplified problem
(Section S1, ESI†). Here we study the contact angle of a fluid
droplet on a flat swollen solid with the following simplifi-
cations:

1. The solid is much larger than the size of the osmocapillary
phase separation. Then the dimension and the far-field bound-
ary conditions of the simulation negligibly affect the result.

2. The fluid droplet is much larger than the size of the
osmocapillary phase separation. Then the deformation near
the contact line is 2D plane strain. Also, the interface between
the two fluids will be flat (Fig. 1B red interface), the orientation
of which can be determined by Neumann’s law without simu-
lating this interface.

3. The swollen solid and the solvent have indistinguishable
surface properties: gS1 = gS1, gS2 = gS2, and gSS = 0. This is valid

for highly swollen gels where the solvent occupies a high
volume fraction,22 or systems where the solid and the solvent
are chemically similar thus having similar surface energies,
such as silicone elastomer swollen in silicone oil.6 In this case,
we only need to model the two interfaces (Fig. 3B blue and
green interfaces). Each interface represents the solid–fluid
interfaces when in contact with the solid and the solvent–fluid
interfaces when detached from the solid.

4. The solid follows the incompressible neo-Hookean model,
which represents the behavior of polymer networks. Note that
swellable polymer networks can have large volume changes,
thus being compressible, when connected to an environmental
source of the solvent. However, in the absence of an environ-
mental source, shear deformation is much easier than the
volumetric deformation, thus effectively incompressible, for
most swelling ratios according to the Flory–Rehner model.18

With these simplifications, the simulation is governed by
three dimensionless groups: g12/gtot with gtot = gS1 + gS2, gS2/gS1,
and P/G with G the shear modulus of the swollen solid. Here
g12/gtot characterizes the competition between fluid interfacial
tension g12 that tends to pull the solvent surface up and the
solvent interfacial tension gtot that tends to maintain a flat
solvent surface. gS2/gS1 characterizes the asymmetry of the solid
interfacial tension when in contact with different fluids. P/G
characterizes the competition between osmotic pressure that
tends to deform the solid and elasticity that resists the defor-
mation. We characterize the equilibrium configuration with
four experimentally measurable quantities: the maximum
heights of the deformed solid H and the solvent h relative to
the undeformed initial surface, the apparent contact angle of
the fluid–fluid interface y, and the tip angel of the solvent
j (Fig. 1B). Dh = h � H is taken an evaluation of the size of the
phase separation.

In addition to the general finite element model, an analy-
tical solution can be found when the deformation of the solid is
linear (Section S2, ESI†). The assumption of linear deformation
will be valid when the osmotic pressure is small compared to
the modulus of the solid, i.e. P/G { 1, then the osmotic
pressure cannot significantly deform the solid. For P/G B 1
or larger, significant deviation between the nonlinear finite
element simulation and the analytical solution are expected.
The analytical solution predicts:

cos y ¼ gS1 � gS2
g12

; (1)

j = 1801 � a � b, (2)

Dh ¼ gS1
P

1� cos að Þ � ln 2
gS1 sin aþ gS2 sin b

2pG
; (3)

H ¼ gS1 sin aþ gS2 sinb
2pG

1þ ln
2x0P

gS1 sin aþ gS2 sinb

� �� �
: (4)

Here eqn (1) for the apparent contact angle y is identical to the
classical Young’s law for the contact angle.19,20 Eqn (2) for the
tip angle j comes from the force balance at the solvent–fluid
contact line, i.e. Neumann’s law.19,20 The meaning of the two
auxiliary variables, a ¼ y� arccos g212 þ gS1

2 � gS2
2

� ��
2g12gS1
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and b ¼ arccos � g212 þ gS2
2 � gS1

2
� ��

2g12gS2
	 


� y, are discussed
in Section S2 (ESI†). Eqn (3) for the phase separation size Dh
has two parts: the first term is the size of osmocapillary phase
separation assuming a flat solid surface. This term is indepen-
dent of the elastic property of the solid. The second term is the
deformation of the solid into the region of phase separation,
which follows from the linear elastic solution of a uniform
pressure distribution over a semi-infinite solid.23 Eqn (4) for
the solid height H follows the same linear elastic solution but
accounts for the deformation outside the region of phase
separation. x0 is a parameter to match the far-field boundary
condition with the asymptotic behavior solved in the semi-
infinite domain. Eqn (3) shows that a stiffer solid (higher
modulus G) increases the phase separation size Dh. This
contrasts with the existing interpretation of the phenomenon,
which suggests that Dh scales with the elastocapillary length,
thus decreasing with the stiffness of the material.5,6,12–14

3. Results and discussion

We first study the cases of g12/gtot Z 1. Then a force balance
cannot be formed at the solvent–fluids contact line (recall
Fig. 1B). The solvent will spontaneously spread onto the inter-
face between fluid-1 and fluid-2, forming a thin interfacial
layer.24 In this case, the two solvent–fluid surfaces will be
tangent at the top tip, resulting in a tip angle j = 0, and the
contact line configuration is equivalent to the case of g12/gtot = 1
and. We are left with two dimensionless groups gS2/gS1 and P/G,
and three characterization quantities: the apparent contact
angle y, the solid height H, and the phase separation size Dh.
By symmetry, we only need to study the cases of gS2/gS1 Z 1. H
and Dh can be nondimensionalized by either of the two
material length scales: elastocapillary length gtot/G or the
osmocapillary length gtot/P (Fig. 2). Depending on whether
the shear modulus G or the osmotic pressure P are used in
the definition, these two length scales reflect the magnitudes of
elastocapillary and the osmocapillary effects. We find that DhP/
gtot B 1 and HG/gtot B 1 for any combination of P/G and gS2/gS1.
In contrast, DhG/gtot and HP/gtot vary by orders of magnitude.
This suggests that the solid deformation is governed by the
elastocapillary effect while the solvent phase separation is
governed by the osmocapillary effect.

Then, we compare the simulated apparent contact angle
y, normalized phase separation size Dhgtot/P, and nor-
malized solid height Hgtot/G with the linear analytical model
(eqn (1)–(4)) in Fig. 3. Here different normalizations are used
for Dh and H according to the governing effects identified in
Fig. 2. The analytical model agrees with the simulation in the
limit of small P/G, i.e. when the osmotic pressure cannot
significantly deform the solid. An increase in the asymmetry
of the solvent–fluid interfacial tension, gS2/gS1, results in a
higher apparent contact angle y (Fig. 3A). Then the fluid–fluid
interfacial tension g12 has a less vertical component to pull the
solid or the solvent up, resulting in decreases in both the phase
separation size Dh (Fig. 3B) and the solid height H (Fig. 3C). At

high P/G, however, the apparent contact angle y increases
from the constant values; the phase separation size Dh
decreases and the solid height H increases less than the linear
analytical model.

The deviations from the linear analytical model at large P/G
are caused by the nonlinear deformation illustrated in Fig. 3D.
The linear analytical solution is accurate at low P/G because the
solid is negligibly deformed. As P/G increases, the high osmo-
tic pressure relative to shear modulus can significantly deform
the solid. If we rescale the simulation under the constant
osmocapillary length gtot/P (Fig. 3D left column), we see that
the solid gradually deforms into the region of phase separation,
causing the solid height H to increase and the phase separation
size Dh to decrease as predicted by the linear analytical model.
However, as the solid deforms upward, the width of the phase
separation decreases, reducing the total suction applied by the
phase separation. Since the linear analytical model did not
account for this change in the width of phase separation, it
overestimates the solid deformation in Fig. 3B and C. Moreover,
as the solid deforms into the region of phase separation, the
bottom of the osmocapillary phase separation rotates towards
the direction of the fluid–fluid interface (red dashed lines in
Fig. 3D). This leads to the increase in y observed in Fig. 3A. On
the other hand, if we rescale the simulation under the constant
elastocapillary length gtot/G (Fig. 3D right column), we see that
the solid profile outside the region of phase separation is
negligibly affected by P/G. As P/G increases, the size of phase
separation becomes negligible and the surface profile
approaches a purely elastocapillary ridge,25,26 whose size is
limited by the elastocapillary length. In fact, we observe that
Hgtot/G approaches a limiting value of H = 1.09 sin y gtot/G at
high P/G, as represented by the dashed lines in Fig. 3C.

Next, we study the cases of g12/gtot o 1, which will result in a
finite tip angle j according to the contact line force balance
illustrated in Fig. 1B. It is found that eqn (1) (Young’s law)
decently predicts the apparent contact angle y in all cases
(Fig. 4A). Eqn (1) does underpredict y for g12/gtot close to 1
and slightly overpredicts it for small g12/gtot, and the deviation
increases with P/G. This can be attributed to the rotation of the
phase separation at high P/G discussed in Fig. 3D. Eqn (2)
(Neumann’s law) perfectly predicts the tip angle j independent

Fig. 2 (A) The osmocapillary length gtot/P governs the phase separation
size Dh. (B) The elastocapillary length gtot/G governs the solid height H red,
green, magenta, black, and blue correspond to gS2/gS1 = 1, 2, 3, 4, 5.
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of P/G (Fig. 4B) because the local force balance at the solvent–
fluids contact line is not affected by the deformation of the
solid. The phase separation size Dh (Fig. 4C) and the solid
height H (Fig. 4D) both reduce with g12/gtot because g12 is the
driving force that pulls the solvent and the solid upward.
Eqn (3) underpredicts Dh and eqn (4) overpredicts H at large
P/G, consistent with the observations in Fig. 3B and C.
The limiting behavior, H = 1.09 sin y gtot/G, remains valid at
large P/G.

4. Experimental comparison

We compare our theoretical model with the experimental
results by Cai et al.6 The experiments characterized the contact
between a water droplet and a piece of silicone gel in the air.
Silicone gel, corresponding to the solid in this paper, is swollen
in silicone oil so that the solvent and the solid have identical
surface properties, identical to our assumption. Denote
air as fluid 1 and water as fluid 2. Then, g12 = 72.2 mN m�1,
gS1 = 19.7 mN m�1, gS2 = 43.2 mN m�1, corresponding to the
cases of g12 Z gtot where the solvent spreads onto the fluid
interface. Cai et al. have directly measured y, j, h, and H using

confocal microscopy. They have fitted the gel modulus using
the scaling relation G = G0f

0.56, where G0 is the shear modulus
of the dry network and f is the polymer volume fraction at the
swollen state. However, they did not measure the osmotic
pressure P Since Dh is governed by the osmocapillary effect
and H is governed by the elastocapillary effect (recall Fig. 2), we
use Dh/H in lieu of P/G to compare the experimental results
with the theoretical model. This approach is supported by the
simulation results showing that Dh/H monotonic decreases
with P/G (Fig. S4, ESI†), then any functional dependence on
P/G can be one-to-one mapped onto Dh/H.

The experimental data show that the apparent contact angle
y increases with P/G while the tip angle j remains constant,
qualitatively agreeing with our results. However, the exact value
does not match, likely due to the limited resolution of the
imaging technique near the contact line (Section S3, ESI†).

The experimental data also show that the phase separation
size Dh increases with swelling yet the solid deformation
H decreases with swelling. Since swelling reduces the ratio P/
G, this observation again qualitatively agrees with our results in
Fig. 3B and C. To quantitatively compare with the observed
solid and liquid heights, H and h, over a wide range of P/G, we

Fig. 3 In the limit of g12/gtot = 1, how P/G and gS2/gS1 affect (A) apparent contact angle y, (B) phase separation size Dh, and (C) solid height H. Crosses are
simulation results. Solid lines are the analytical solution (eqn (1)–(4)). The dashed lines in (C) are the limiting behavior H = 1.09 sin y gtot/G. Red, green,
magenta, black, and blue correspond to gS2/gS1 = 1, 2, 3, 4, 5. (D) Sample surface profiles from nonlinear finite element simulation for gS2/gS1 = 2 under
different rescaling. Blue, green, and black lines represent the two solvent–fluid interfaces and the gel surface. The red dashed lines connect the solvent–
fluid–solid contact lines to show the rotation of the phase separation.

Fig. 4 With gS2/gS1 = 2, how g12/gtot and P/G affect (A) apparent contact angle y, (B) tip angle j, (C) phase separation size Dh, and (D) solid height H.
Crosses are simulation results. Solid lines are the analytical solution. The dashed line in (D) is the limiting behavior H = 1.09 sin y gtot/G. Red, green, and
blue correspond to P/G = 4, 1, 0.25.
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use the limiting behaviors identified through the nonlinear
finite element simulation to correct the linear analytical model,
eqn (3) and (4):

1. If eqn (3) predicts negative phase separation size Dh o 0,
set Dh = 0 because physically this size cannot be negative.

2. If eqn (4) predicts a solid deformation H exceeding the
elastocapillary limit, set it to the limiting value H = 1.09
sin y gtot/G.

We have verified that the linear analytical solution with
these two corrections can decently represent our simulation
results (Fig. S5, ESI†). Using the silicone oil–air interfacial
tension gS1

and silicone oil–water interfacial tension gS2
as the

only input parameters, the modified model can perfectly pre-
dict the experimental measurement with no fitting parameter
(Fig. 5).

5. Conclusion

In conclusion, we have shown that the solvent near a contact
line is osmocapillary phase separation, distinct from the com-
monly studied elastocapillary deformation. The size of the
phase separation Dh is governed by the osmocapillary length
gtot/P and gradually decreases with the dimensionless ratio
between osmotic pressure and shear modulus, P/G, and the
asymmetry of the solvent–fluid interfacial tensions, gS2/gS1. This
is contrary to the common belief that the phase separation size
Dh decreases with the stiffness of the material G. People
observed smaller Dh with higher G simply because a dryer
polymer network has both a higher P/G and a higher G.15 This
suggests the need to independently monitor the osmotic pres-
sure P in future studies. We also show that the apparent
contact angle y increases with P/G. Since deformation can
affect P, this can lead to deformation-dependent contact angle,

a feature that was previously associated with deformation-
dependent surface energy.25 This suggests the need to carefully
check for the osmocapillary phase separation when studying
the contact angle on elastomers.
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