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Brownian diffusion in non-harmonic potentials

Stefano Villa,a and Maurizio Nobilib

Brownian motion in confined systems is widespread in soft matter physics, biophysics, statistical
physics and related fields. In most of these systems a Brownian particle cannot freely diffuse in the
space but is confined by a potential well in a limited range of positions. When performing data
analysis, typically the harmonic assumption is made, assuming that in the regions explored by the
particle during its dynamics the confining potential is fairly well described by a harmonic potential.
This is however not valid a priori. In this work it is shown how the diffusion coefficient and the
potential width obtained through standard analysis underlying a harmonic approximation are affected
by increasing errors when moving away from the conditions under which harmonic approximation is
legitimate. These observations motivate the research of a more general method for properly obtaining
the diffusion coefficient for a particle diffusing in a generic potential well. Here a method is proposed
that allows retrieving the correct diffusion coefficient by comparing the original data and ad hoc
simulations without any a priori knowledge of the potential.

Introduction
The measurement of the Mean Squared Displacement (MSD) of a
Brownian particle is a useful tool to address the particle diffusivity
and the viscous properties of a fluid at thermal energy scales. For
a free particle, indeed, the slope of the MSD versus the lag-time
τ gives directly the diffusion coefficient of the particle and in-fine
the viscosity of the fluid in which the particle is moving. Such
technique has been largely used to find the viscosity in simple and
complex fluids1 and to probe the flow boundary conditions close
to confining walls2. In the case of anisotropic particles, Brownian
motion allows also to simply address the coupling between ori-
entational and translational degrees of freedom3. Unfortunately
in most relevant situations this simple method cannot be easily
employed, as the particle is not free but has a dynamics confined
by external fields. In this case, extracting the linear regime pro-
portional to the diffusion coefficient is not always straightforward
and lean on the experimentally accessible timescales. Among the
examples of such situations can be found the movement of par-
ticles confined in an optical trap4, by steric walls5, in magnetic
field6 and by DLVO interactions7–9. Caged dynamics can also be
observed in out-of-equilibrium crowded complex systems, as in
the case of foams10,11 and confluent cell monolayers12–14. In all
these systems, the MSD increases at short time scales, while for
longer timescales is plateauing. The plateau is the signature of
the presence of a confinement. In this situation, extracting the
particle diffusivity* by the linear best fit of the MSD at short time
scales can be tricky, as the linear part of the MSD are not always
accessible for typical experimental sampling rates15–22. The typ-
ical solution for this problem is to fit the full MSD with an ana-

a Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Ger-
many. E-mail: stefano.villa@ds.mpg.de
b Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier,
Montpellier, France. E-mail: maurizio.nobili@umontpellier.fr

* Here and in the following we only consider thermal passive systems, where parti-
cle diffusivity is properly defined. This can be in principle generalized to out-of-
equilibrium systems where an effective diffusivity can be defined, but a case-by-case
assessment must be carried out.

lytical fit function considering both the effect of the potential and
the thermal diffusivity. Such expression is available for harmonic
potentials23,24, but is missing for a generic potential. These last
cases are typically treated with an effective harmonic potential by
assuming that the generic potential do not deviate too much from
the harmonic one in the range of positions explored by the Brow-
nian particle. Consequently, the MSD expression for a harmonic
potential is typically used also for non-harmonic confinements25.
However, to what extent this assumption can be considered valid
has not been investigated.

In the present work we propose a method to disentangle the
viscous dominated behavior at short time scale from the poten-
tial dominated one at large time scale for a Brownian particle in a
generic non-harmonic potential. We focus on two examples of po-
tential whose non-harmonic terms are tuned by control parame-
ters. We computer generate particle Brownian displacements and
MSD in a fluid with given viscosity and external potential. The
diffusion coefficient and plateau values retrieved from the best
fit of the full MSD assuming a harmonic potential, are then com-
pared with the nominal ones to quantify the error underlying the
harmonic assumption during the analysis. Building up on these
results, a general method for obtaining the proper diffusion coef-
ficient independently from the specific expression of the confining
potential is proposed.

It must be noted that in some real systems - especially in biolog-
ical ones - anomalous diffusion is present18,19,26–28. The present
work focuses on the simpler case of normal diffusion, but the pro-
posed method can be extended to a wider plethora of phenomena,
upon a proper adaptation of the simulation.

Methods
In typical diffusion experiments the information on the dynamics
is accessed through the MSD analysis. For a given trajectory and
considering a given lag time τ, the displacement occurring along
the direction x at time t during the interval τ is ∆x(t,τ)= x(t + τ)−
x(t). The MSD at lag time τ is then given by the time average〈
∆x(t,τ)2〉

t .
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Noting U (x) as the conservative potential acting on the particle
and

√
2kBT ξW (t) the stochastic force, where W (t) is the white

noise, the Langevin equation writes:

mv̇ = F (x)−ξ v+
√

2kBT ξW (t) , (1)

where m is the mass of the particle, v its velocity along x,
F (x) = dU (x)/dx and ξ = kBT

D is the drag coefficient, with D the
diffusion coefficient. In the overdamped limit, typical in soft mat-
ter systems, the eq. 1 results in

ξ v = F (x)+
√

2kBT ξW (t) , (2)

At first, the case of a harmonic potential U(x) =mω0
2(x−x0)

2/2
is considered, where x0 and ω0 are the equilibrium position and
the characteristic frequency of the harmonic potential respec-
tively. In this case an analytical expression for the MSD can be
found23,29 as:

〈
∆x(t,τ)2

〉
t
=

2kBT
mω02

[
1− e−ωµ τ

(
cosh ω̃τ +

ωµ

ω̃
sinh ω̃τ

)]
, (3)

where ωµ = ξ/2m and ω̃ =
√

ω2
µ −ω2

0 .
When ω0 ≪ ωµ , the MSD results in the simpler expression:

〈
∆x(t,τ)2

〉
t
=

2kBT
mω02

(
1− e−

ω2
0 τ

2ωµ

)
. (4)

The equation (4) is commonly employed as fitting function
of the MSD in order to obtain the drag coefficient of particles
confined in harmonic potentials, as for example in an optical
trap29. Please note that in the limit of τ → 0, Eq. 4 reduces to〈
∆x(t,τ)2〉

t >= 2Dτ, as for a free Brownian motion. Meanwhile
at large time lag τ → ∞,

〈
∆x(t,τ)2〉

t reaches a plateau value given
by the equi-partion theorem: 1

2 mω0
2 〈∆x(t,τ)2〉

t = kBT .
For general potentials there is usually no analytical expressions

for the MSD and numerical simulations are required. In order to
fit an MSD in a generic potential, we need first to numerically
generate the MSD data. To this scope, we generalized the pro-
cedure of Volpe and Volpe30 developed for harmonic potentials.
From eq. 2 a finite differential equation can be obtained in the
form of:

xi = xi−1 +
F (xi−1)

ξ
δ t +

√
2

kBT
ξ

δ twi , (5)

where the discrete index i runs from 1 to the trajectory length
N and δ t is the time interval used as simulation step. wi is a Gaus-
sian random number with zero mean and unit variance†. The un-
derlying assumption is that the force F acting on the colloid does
not change significantly over the time ranging from discrete time
points i−1 and i. In order to satisfy this condition, the simulation

† For the reason why W (t) can be discretized as wi/
√

δ t, see Volpe and Volpe 30 and
Øksendal 31 dissertations.

time step δ t must be chosen sufficiently small. Equation 5 is then
used to simulate a trajectory of N points. From the obtained par-
ticle positions xi at times iδ t, the discrete squared displacement at
time τ = nδ t is calculated as ∆x2

i,n = (xi+n−xi)
2 and then averaged

over all the N −n points to obtain the MSD
〈

∆x2
i,n

〉
N−n

.

In order to be as general as possible, the physical quanti-
ties have been made non-dimensional by normalizing over the
timestep δ t and the lengthscale ℓ as it follows: U ′ = U/kBT ,
x′ = x/ℓ, D′ = (Dδ t)/ℓ2, and h′w = hw/ℓ. For notational simplicity,
from here on we redefine the non-dimensioned quantities without
the prime: U ′ →U , x′ → x, D′ → D and h′w → hw.

The force F (xi) in eq. 5 is given by the x-derivative of a
conservative potential U . In the present work, two set of non-
harmonic potentials have been chosen respectively symmetric and
non-symmetric with respect to their minimum at x = x0. A useful
parameter to systematically study the effect of non-harmonicity
upon the simulated MSD is the half width of the potential hw at a
value Ud = 1 (kBT in dimensioned units).

By defining
x− = x(U =Ud ,x < 0) (6)

x+ = x(U =Ud ,x > 0) (7)

the half-width at U =Ud writes:

hw =
x++ x−

2
(8)

At first, it is considered the case of a symmetric potential. To
this end, a polynomial with even exponents is taken having the
form:

U (x) =Ud

[
(1−ρ)

(
x

hw

)2
+

ρ

np

np

∑
j=1

(
x

hw

)2 j+2
]

(9)

where ρ is an non-harmonicity parameter ranging from 0 to
1 that establishes the relative weight of the non-harmonic terms
compared to the harmonic one: for ρ = 0 the potential is har-
monic, while for ρ = 1 the harmonic term is missing. Also, in
equation 9, np is an integer number indicating the number of even
exponents larger than 2 considered in the polynomial series. In
the present work, np is systematically chosen equal to 9 (corre-
sponding to a polynomial degree 20), as no significant changes
in the results have been observed for higher values of np. The
spatial dependence is chosen so that x0 = 0, U(0) = 0 and the half
potential width at U =Ud is equal to hw.

In figure 1.a are shown examples of the considered non-
harmonic potentials for different values of ρ.

Although considering higher order symmetric terms is the first
logical step for exploring the effect of non-harmonic potentials,
in most real cases the potential is also non-symmetric. For such
types of potential one can define an asymmetric parameter α in
order to quantify the degree of asymmetry:

α =

∣∣∣∣ (x0 − x−)− (x+− x0)

hw

∣∣∣∣ (10)

α is zero for a symmetric potential wells and increases for in-
creasing asymmetry between the left and the right sides of the

2 | 1–9
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Fig. 1 non-harmonic (.a) and asymmetric (.b) potentials as defined in
the text for different values of ρ and α respectively as a function of the
non-dimensioned space coordinate x.

D = 1.76 Ud = 1
hw = 1 np = 9

ρ ∈ [0,1] α ∈ [0,2]
n. points per simulation 2 ·106hw

Table 1 Summary of the simulations parameters and other relevant quan-
tities.

potential with respect to the equilibrium position.
A typical example of non-symmetric potential in colloidal dy-

namics experiments is the combination of a Van der Waals (or
DLVO) and a gravitational potentials. This is the case of a col-
loid sedimented near a wall or an interface7. A simplified version
of such potential can be obtained adding an hyperbolic repulsive
term (Van der Waals) to a linear term (gravity), in the form of:

U (x) =
A

x− xd
+B(x− xd)+C (11)

defined for x > xd . Such potential allows the independent tuning
of hw and α while keeping simple the algebras. By imposing the
minimum of U at x = 0 and U (0) = 0 the expression becomes:

U (x) =
A

x− xd
+B(x− xd)−2

√
AB (12)

with xd =−
√

A/B. By making explicit hw and α according to their
definition in Eq. 8 and 10 respectively, A and B result in:

A = hwUd

(
α
−3 − 1

2
α
−1 +

1
16

α

)
(13)

B =
Ud

hwα
(14)

Examples of the asymmetric potentials obtained with the ex-
pression in 11 are reported in figure 1.b for α ranging from 0.02
to 1.9.

Results
Using the simulation procedure described in the previous section,
about 1.6 ·105 Brownian independent trajectories (each one made
of 2 ·106 ·hw points) have been simulated using the potential func-
tions Eq.(9),(12). Simulations have been made for different val-
ues of potential well width hw, non-harmonic parameter ρ and
potential asymmetry α. It must be noted that for avoiding diver-
gence at x = xd in simulations with the asymmetric potential, the
left-side of U(x) was approximated for U > 5 with the tangent to
the potential at U = 5.

The simulation parameters and other relevant quantities are
reported in Table 1.

For each generated trajectory the MSD was then computed and
fitted with the analytical MSD expression for a harmonic potential
(eq. (4)) to obtain the diffusion coefficient D f it and the plateau
value h2

f it . For the MSD, only one point every 2000 · hw was con-
sidered. Thus, the MSD time step is dtMSD = 2000 · hwδ t. This is
made to reduce the computational time and to be closer to the
sampling rate of real experiments, where the linear part of the
confined MSD typically does not exceed the first 2-3 experimen-
tal points. The obtained D f it and h f it are then compared with

1–9 | 3
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Fig. 2 Values of eh (a,b) and eD (c,d) as a function of hw obtained
by fitting trajectories simulated from Eq. 9. In the shown data ρ is
equal to 10−5 (a,c) and to 1 (b,d). Points are averages over 35 different
simulations while the error bars indicate the standard deviation and the
standard deviation of the mean.

the simulation inputs D and hw in order to assess the validity of
the harmonic approximation in the MSD analysis. For the sake of
comparison the relative errors eD = (D f it −D)/D in the diffusion
coefficient and eh = (h f it − hw)/hw in the potential width related
to the MSD plateau have then be computed.

Please note that such comparison is independent on the chosen
value of the input diffusion coefficient in the limit of relatively
slow diffusion when the force can safely assumed constant be-
tween two successive time steps.

As an output of the analysis it was also noticed that the discrep-
ancies are also independent of the value of hw, as it can be seen
in figure 2. Simulations have been performed for different values
of hw in the range 0.25-25. In figure 2, eD and eh are reported as
a function of hw for different values of ρ for simulations using the
symmetric non-harmonic potential. Points are the averages over
different simulations while the error bars indicate the standard
deviation and the standard deviation of the mean. Within a given
potential and for a given control parameter ρ they are all equal
within the statistical incertitude. Similar results are obtained for
the asymmetric potential for each considered value of α. Conse-
quently, in the following we focus on the dependence of eD and
eh from ρ and α.

In figure 3.a,b,c are shown the main results relative to the simu-
lations within the non-harmonic symmetric potential described by
Eq. 9. In Fig. 3.a are shown the MDSs obtained for hw = 1 for in-
creasing value of the non-harmonicity parameter ρ. As expected,
for low values of ρ the MSD is close to the one expected for a
particle moving within a harmonic potential (black crosses). As
ρ increases, both the plateau values and the diffusion coefficients
decreases. This trend can be better visualized in Fig. 3.b and Fig.
3.c, where eh and eD are respectively reported as a function of ρ.
The black lines are averages over 35 simulations, while the gray

shadow region represent the corresponding standard deviation of
the mean. The MSD fit undervalues the diffusion coefficient up
to 8% as ρ increases from 0 to 1. It may be surprising that the
slope of the MSD changes with ρ if the input D is the same for
all simulations, but it must be pointed out that in the present
data the linear regime of the MSD holds only for very low values
of τ/dtMSD. For larger time scales the effect of the potential is
strong enough to affect the slope of the MSD (i.e., the dynamics
is already subdiffusive). This is the case for the intermediate re-
gion of the curve shown in the inset of Fig. 3.a. The deviation of
D f it from D is therefore originated by the wrong assumption of a
harmonic potential underlying the equation 4 used for the fit.

Concerning the potential width, it can be seen in figure 3.b that
the MSD is plateauing at lower values when ρ increases, in spite
of the fact that all the potentials have been built with the same
half-width hw at kBT . For the upper limit of ρ this discrepancy
overcomes the 20%.

The MSD’s plateau value represent the square of the maximum
displacement the particle explores on average inside the potential
well. In order to rationalize why for the same potential width the
presence of non-harmonic symmetric terms reduces hw it is possi-
ble to recur to a simple qualitative argument. As it can be seen in
Eq. 5, the instantaneous displacement of the particle depends on
the resultant force given by the sum of the stochastic force plus
the conservative one. If the simulated particle at a given time
step is located in a position x, in the following simulation step it
can move further away from the equilibrium position only if the
stochastic noise is larger than the absolute value of the conserva-
tive force in that point. In this view, the limit of the displacements
is therefore given by the comparison between F(x) and the width
of the stochastic term distribution. In other words, for a given
stochastic noise, the maximum displacement from the minimum
depends on the local slope of the potential. This has been qual-
itatively tested by computing for a non-harmonic potential the
distance ∆x between the position of the potential minimum and
the point where the slope of the potential is the same as one of
the harmonic potential at kBT (∆x = hw in the harmonic case).
In figure 4.a, the relative difference between ∆x and hw has been
plotted versus ρ. There it can be seen that indeed the trend with ρ

is similar to the one of eh. For increasing ρ, therefore, the distance
from the equilibrium that the particle can reach before reaching
an overwhelming recall force decreases, thus resulting in a lower
plateau value in the MSD, as observed in figure 3.b.

The slow increase that can be seen in eh for ρ approaching 1
can be understood considering the limit case of a box potential.
There, the potential is zero in the range (−hw,hw) and becomes
infinite for x<−hw or x> hw. The particle is therefore expected to
diffuse as a free particle in the range −hw < x < hw and the MSD
should plateauing at h2

w, as in the harmonic case. Consequently,
we expect that by approaching the box potential at the largest
values of ρ the difference eh with respect to the harmonic case
has to reduce as observed in Fig. 3.b.

The results of the simulations with the asymmetric potential
can be seen in figure 3.d,e,f. As for the non-harmonic potential,
in Fig. 3.d some examples of the MSD are reported, in this case for
increasing α. Good agreement is found between the MSD simu-
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Fig. 3 (a,d) Normalized mean squared displacement obtained from different simulations using the unhamronic (a) and the asymmetric (d) potential.
Different colors represent different values of ρ (a) and α (d) according to the legend. On the x-axis it is reported the delay time scaled over
dtMSD = 2000 · hwdt (here, hw = 1). Values of eh (b,e) and eD (c,f) as a function of ρ (b,c) and α (e,f) obtained from simulations using the non-
harmonic and the asymmetric potential respectively. Each black curve is the average over 35 different simulations. The shadow region represent the
standard deviation of the mean.
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Fig. 4 Relative difference between ∆x and hw computed as a function of
ρ (a) and α (b) using equation 9 and 11 respectively. Here ∆x is defined
as the average distance (left and right) from the potential minimum to
the coordinate where the slope of the potential is equal to the slope of
the harmonic potential at kBT .

lated at low α and the one for harmonic potential (black crosses).
As α increases both the fitted diffusion coefficient and plateau
value deviates from the from the one of the harmonic potential,
but with some differences in the trend. Contrary to the case of
the non-harmonic potential, now h f it is systematically larger than
the potential width (Fig. 3.e), signaling that by increasing the
asymmetry the particle thermally explores a larger region of the
potential. As for the non-harmonic potential, the sign of the de-
viation is the same of the one of the relative difference between
∆x and hw as a function of α plotted in Fig.4.b, thus highlight-
ing a similar mechanism. In this case ∆x is always larger than
hw. As α increases, indeed, the coordinate on the right-side of the

potential where the slope reaches the one of the parabolic poten-
tial at kBT moves away from the equilibrium position faster than
how the corresponding coordinate on the left-side approaches the
equilibrium.

Concerning the diffusion coefficient, eD decreases as the poten-
tial deviates from the harmonic case for low values of α. In this
region the trend is therefore the same as for the non-harmonic po-
tential: an underestimation of the real diffusion coefficient. The
amount of the deviation is greater but comparable to the one of
the non-harmonic case.

In general, the deviation of the diffusion coefficient in the case
of a non harmonic potential may therefore be significant and
potential-dependent, thus making questionable the use of a har-
monic potential to fit the MSD data. This open the question on
how to properly extract a diffusion coefficient from experimental
data of Browinian diffusion of a confined particle in the most gen-
eral case, when the analytical expression for the MSD is missing.

In the following it is proposed a method to overcome such dif-
ficulties which is based on the combination of experimental data
analysis and ad hoc simulations, named iterated simulation (IS)
method.

The iterated simulation (IS) method for retrieving diffusivity
in a generic confinement

To illustrate the proposed method, here a simulated trajectory
x(t) has been chosen with known potential Uk(x) and diffusion

1–9 | 5

Page 5 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/1
0/

20
25

 5
:1

6:
13

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SM00475F

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00475f


-2 0 2 4 6 8

x

0

0.2

0.4

0.6

0.8

1

p
(x
)/
p
(x
0
)

=0.002
=0.8

=1.2
=1.7

-2 0 2

x

0

5

10

U

0 2 4 6

x

0

5

10

U

0 2 4 6

x

0

5

10

U
0 5 10

x

0

5

10

U

a b c

d e

Fig. 5 Simulated datasets used for testing the IS method. In the sim-
ulations, α (from red to blue): 0.002, 0.8, 1.2, 1.7. hw = 1 nm (0.5).
D = 1.76. (a) normalized histogram of the positions for each trajectory.
(b-e) Potentials obtained from (a) using Boltzmann relation (continuous
lines) compared with the potential used for the dataset simulation(green
dashed lines) for increasing asymmetry.

coefficient Dk. The chosen potential is the asymmetric. In the fol-
lowing, such simulation will be referred to as the original dataset,
playing the role of experimental data from which we want to ex-
tract the diffusion coefficient. Consequently, both the potential
and the diffusion coefficient have to be recovered only knowing
the trajectories of the original dataset and then compared with
Uk(x) and Dk to test the efficiently of the proposed method.

From the particle positions x a probability distribution p(x) is
calculated, as shown in Fig. 5.a. From the probability distribu-
tion, the confining potential is retrieved using Boltzmann equa-
tion as7,32:

U (x) =−kBT ln
p(x)
p(x0)

+U0 (15)

where x0 is the equilibrium position that corresponds to the
x−coordinate of the p(x) maximum and U0 is the value of the po-
tential in x0. After a proper smoothing of the potential, performed
with a moving average, the corresponding force can be evaluated
as F(x) = (Ux+dx −Ux−dx)/2dt, where dx is the bin size.

In figure 5.b-e are shown potential profiles obtained from the
probability distributions in Fig. 5.a. Green dashed lines represent
the analytical function of the potential given as input to numeri-
cally calculate the trajectories used in the p(x) of Fig. 5.a. It can
be seen the good agreement between the input potential and the
one obtained from the statistical analysis of the original datasets,
except for the higher values of x due to the scarce statistics.

The force obtained from the probability distribution is then
used to replace the analytical expression for the force in Eq.5
and used to simulate a series j of simulations x′j(t) having the
same timestep of x(t) and different diffusion coefficients Din var-
ied within a reasonable range of values.

In order to retrieve the input diffusion coefficient Dk, we fit
the MSD of the original dataset x(t) with the expression 4, thus
obtaining D f it , as in standard analyses. Similarly, each MSD ob-
tained from the set of simulations x′j(t) for different Din is fitted
with the same expression, obtaining a different value of D′

f it for
each Din.

The correct diffusion coefficient is found when both fits return
the same value of the diffusion coefficient in the range of the er-
ror bars. Practically, because of the randomly generated white
noise and the finite number of points per simulation, simulations
made with identical parameters return different MSDs. To gain in
stability a number of simulations are thus generated for a given
Din and fitted with eq. 4 until the standard deviation of the ob-
tained values of the diffusion coefficient stabilizes at a given value
σD. The average D′

f it for a given Din is then compared with D f it

obtained by fitting the original dataset. When D′
f it ≈ D f it , the cor-

responding Din is taken as the effective diffusion coefficient Dout

resulting from the IS method. A summary of the IS method is
shown in figure 6.

FIT

ORIGINAL DATASET

SIMULATIONS
FIT

Fig. 6 Sketch summarizing the procedure to measure the diffusion co-
efficient for a particle diffusing in a generic confinement potential, as
described in the text.

In order to test the efficiency of the IS method, some examples
are reported in Fig. 7 for different values of α. Each plot refers
to one of the datasets in figure 5. Among all the possible simu-
lations, for each α the original dataset has been chosen so that
they have a discrepancy between Dk and D f it corresponding to
the average one as depicted in figure 3. Each blue point is the av-
erage D′

f it made over 500 independent simulations with a given
Din. The continuous and the dashed blue lines are respectively
the linear fit of the different D′

f it and the input Din. It can be seen
once again the discrepancy between the input and the fitted dif-
fusion coefficients, negligible for small α but increasing for larger
values of the asymmetry parameter. Similarly, red continuous and
dashed lines represent the fitted D f it and the diffusion coefficients
Dk used to build the original dataset. In the same figures it is also
illustrated how Dout is defined: the coordinate where the linear
fit of D′

f it intersects D f it . For helping the comparison between Dk,
D f it , and Dout , lines transfer the intersect coordinate on the y-axis
(green line). It can be seen that for low values of α both D f it and
Dout coincide with Dk. For increasing values of the asymmetry,
D f it underestimates more and more Dk , while Dout shows a bet-
ter estimation of Dreal . The corresponding numerical values are
reported in table 2: for the reported cases the maximum deviation
of the obtained diffusion coefficient from the value used to build
the trajectory is of the order of 2%, while the error made with the
standard fit of the MSDs is systematic and reaches the 10%. The
IS method here used on simulated data sets can thus be reliably
employed for measuring the diffusion coefficient of experimental
data for particles diffusing within a generic potential.

Although this method is applied here to the one-dimensional
case, a generalization to the multidimensional case - 2D and 3D,
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α Dk D f it Dout

0.002 1.76 1.76, 0% 1.76, 0%
0.8 1.76 1.66, −6% 1.73, −2%
1.2 1.76 1.62, −8% 1.74, −1%
1.7 1.76 1.59, −10% 1.78, 1%

Table 2 Comparison of the diffusion coefficients obtained with MSD fit-
ting and IS methods with the ones used to build the data for different
values of α. The numbers correspond to the data shown in figure 7. In
the columns D f it and Dout are reported the obtained diffusion coefficients
and their percentage deviations from Dk.

also considering rotational degrees of freedom - is possible. A
thorough examination of these cases is beyond the scope of this
paper. In this section, we will provide a concise overview of the
primary features of the transition to the multi-dimensional case.
The extension to a multidimensional case results in an increase in
the number of differential equations and the introduction of cou-
pling terms between them. The coupling terms may arise from the
non-separability of the potential and from the roto-translational
coupling. In order to generalize the IS method, the potential
must first be obtained as for the 1D case, from the multidimen-
sional histogram of positions. It is then possible to recover the
different components of the force by means of space derivatives
of the given potential. Subsequently, the set of coupled differen-
tial equations (one for each degree of freedom) can be obtained
by utilizing the recovered force. The coupling between different
degrees of freedom (e.g. roto-translation) should be eventually
taken into account. The differential equations can then be used
for implementing numerical simulations. Finally, the MSDs can
be obtained from each degree of freedom from the original and
simulated datasets and compared, as previously described, in or-
der to get the diffusivity value for each degree of freedom.

Conclusions
The present work has pointed out the limitation of the MSD fitting
method for retrieving the potential well width and the diffusion
coefficient for Brownian trajectories confined in non harmonic po-
tentials. Two types of potentials have been considered: a symmet-
ric but non-harmonic one and an asymmetric one. By comparing
the parameters used to build an input numerical trajectory with
the best-fit outputs of the MSD obtained from simulations, it has
been shown how the commonly assumed equivalence between
the MSD plateau value and the potential square width at U = kBT
breaks down for nonharmonic potentials. In addition, an incor-
rect value of the diffusion coefficient is also found. Building up on
this, the simulation framework has been used to devise a method
able to correctly evaluate the diffusion coefficient without any a
priori knowledge of the confining potential. The method is based
on the comparison of the MSD of the relevant dataset with ad
hoc simulations. This method can be used to check if the effect
of non-harmonicity is relevant in specific cases and to increase
the precision of the obtained diffusion coefficient by removing
the systematic error introduced by the non-harmonicity. This ap-
proach is particularly valued for situations where a precise mea-
surement of the diffusion coefficient is important2. Moreover, it
can in principle be generalized to the 2D or 3D case, provided that

a b
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Fig. 7 Results of the process for obtaining Dout using the simulation
procedure described in the text. The original datasets are simulations
made using potential in Eq.11 with α equal to 0.002 (a), 0.8 (b), 1.2
(c) and 1.7 (d). Blue points represent the D′

f it obtained averaging the
diffusion coefficient fitted over 500 simulations. Error bars represent the
standard deviation σD. The continuous and the dashed blue lines are the
linear fit of the scattered points and Din respectively. The continuous
and dashed red lines refers to the original dataset and are D f it and Dk
respectively. The green continuous lines represent Dout .

1–9 | 7

Page 7 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/1
0/

20
25

 5
:1

6:
13

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SM00475F

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00475f


attention is paid in adding the proper coupling terms to the differ-
ential equations that will replace eq.5. The present work focused
on tracking-based methods for quantifying the dynamics. How-
ever, other techniques can also be used to estimate the MSD of a
single particle or an ensemble of particles (e.g., FCS33, DWS34,
DDM35). In principle, the proposed IS methodology could be
applied in conjunction with experimental techniques that do not
rely on single-particle trajectory reconstruction. However, with
tracking-free methods it is lost the direct access to the potential
measurement. Alternative ways for accessing (or knowing) the
potential would therefore be needed. Provided this, and for sym-
metric potentials (radial in the 2D case), the presented analysis
can be extended to tracking-free methods.

Even though the relevant cases of anomalous diffusion have not
been considered in the present work, the same working principle
can per se be adapted to such rich systems. For this, simulations
should however be adapted case by case for modeling super- or
sub-diffusive behaviors. The present work only considers the pas-
sive case. The possibility of generalizing the same arguments and
method to the active case depends on whether it is allowed to con-
sider the activity as an effective temperature. This can be verified
when the active motion is isotropic, sufficiently homogeneous in
time and space, and with a persistence length small compared to
the size of the well36.

Recently, the IS method has been applied to the study of the
viscous drag of spherical21 and ellipsoidal22 colloids in the vicin-
ity of an Air-Water interface, where the superposition of a gravity
potential and DLVO interactions results in an asymmetric non-
harmonic potential7. There, the method has made it possible to
verify the validity of the harmonic approximation in the studied
cases. We believe that the proposed methodology is not only lim-
ited to the colloidal field but can potentially be employed in any
confined Brownian dynamics when a precise evaluation of the dif-
fusivity is required.
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