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Avenida Colombo, 5790-87020-900 Maringá, Paraná, Brazil
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Abstract

A free energy density for the nematic phase with two symmetry elements — the director, n, and

the vector defining the helix direction, t — can be constructed as an extension of the Frank free

energy. This formulation has already proven effective in demonstrating that the phase transition

between the conventional nematic phase and the twist-bend nematic phase is of second order,

characterized by a finite wave vector. In this work, we theoretically investigate the possibility that

new periodic phases with finite wave vectors may be energetically favored over uniform structures

within the framework of this elastic model. We show that splay-twist-like periodic structures

naturally emerge from this theoretical approach. Furthermore, we demonstrate that the existence

of a critical wave vector, which determines the periodicity of the non-uniform structure, depends

on the elastic parameters, the sample thickness, and the anchoring energy strengths. A key role

is played by the elastic constant that couples the nematic director to the helix axis; a distinctive

feature of these materials. The splay-twist transition from the uniform nematic phase occurs only

when the magnitude of the coupling elastic constant exceeds a threshold value. In this study, we

specifically treat the case of a sample with symmetrical interfaces.
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I. INTRODUCTION

Heliconical phases can arise in chiral nematic (cholesteric) or smectic liquid crystals,

particularly in the presence of strong flexoelectric effects, applied electric fields, or specific

molecular architectures (e.g., bent-core or dimeric molecules) [1–7]. They are important

in soft matter physics, with potential applications in tunable photonic devices, bistable

displays, and responsive materials. The twist-bend nematic (NTB) phase is a well-known

example of such a self-assembled heliconical phase, observed in bent-core and dimeric liquid

crystal molecules. Exploring the possibility of splay-twist or splay-bend phases in this con-

text is particularly interesting because these phases could arise from similar mechanisms of

spontaneous symmetry breaking in nonchiral systems.

Since the experimental discovery of the twist-bend nematic (TBN) phase [8–10], extensive

research has been conducted in the field of modulated nematic phases. The properties of the

TBN phase have been thoroughly investigated both experimentally [11–20] and theoretically

[21–36]. Numerous theoretical approaches have been proposed [21–25, 33–36], and a variety

of models are available for describing the TBN phase as well as other modulated nematic

and smectic phases [37, 38].

Ten years ago, we proposed a generalization of the Frank elastic energy for conventional

nematics [39–41] to account for modulated nematic phases, in particular the twist-bend

nematic phase [25]. This model is based on the introduction of a torsion field that couples

to the nematic director field, enabling the emergence of modulated phases in a nematic

medium composed of achiral mesogenic molecules.

More recently, using the same elastic theory framework, we demonstrated that tuning the

elastic constant governing the coupling between the nematic and torsion fields can desta-

bilize the uniform nematic phase with respect to one-dimensional (1D) deformations of the

director, which may be either periodic or evanescent [42]. In the present paper, adopting

the same approach as in [42], we investigate whether fluctuations of the nematic director

can destabilize the uniform phase and promote the formation of a two-dimensional (2D)

modulated splay-twist nematic (STN) phase.

Our paper is organized as follows. Section II briefly recalls the free energy density in-

troduced in [25]. Section III presents the perturbation method, derives the second-order

approximation of the free energy density, and formulates the corresponding equilibrium
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equations. In Section IV, the problem is solved for a symmetric sample. Section V presents

the quadratic form of the free energy. In Section VI, a stability analysis of the energy is

carried out. In particular, the critical value of the coupling constant is determined, along

with the dependence of the instability wavevector on this coupling. Finally, Section VII is

devoted to concluding remarks and future perspectives.

II. ELASTIC ENERGY DENSITY OF MODULATED PHASES

Frank elastic energy of a nematic [39–41] was extended in [25] to include the case of

modulated nematic phases composed of achiral molecules. To this end, in addition to the

nematic director field n, a torsion field, represented by a unit vector t, was introduced. It

was argued that the nematic elastic energy density can then be expressed, up to second

order, in the following form:

f = f0 −
1

2
η(n · t)2 + κ1(n · t)(∇ · n) + κ2 n · (∇× n) + κ3 t · [n× (∇× n)] +

1

2
K11(∇ · n)2

+
1

2
K22 [n · (∇× n)]2 +

1

2
K33(n×∇× n)2 − (K22 +K24)∇ · (n∇ · n + n×∇× n)

+ µ1[t · (n×∇× n)]2 + ν1[t · ∇(t · n)]2 + ν2[t · ∇(n · t)(∇ · n)] + ν3[∇(t · n)]2

+ ν4[(t · ∇)n]2 + ν5[∇(n · t) · (t · ∇)n] + ν6∇(n · t) · (∇× n).

(1)

The usual Frank expression for the free energy density [39–41] can be recovered if we put

t = 0 in Eq. (1), as can be easily verified. In this perspective, the present energy density

may be regarded as a generalization of the Frank energy that can be used as a theoretical

framework to describe the orientational properties of those actual and potential stable phases

of liquid-crystalline systems characterized by the elements of symmetry t and n.

III. PERTURBATION & EQUILIBRIUM EQUATIONS

To investigate the stability of a uniform planar orientation against small nematic fluc-

tuations, we consider a slab-shaped sample of thickness d. Following the approach of [42],

we introduce a Cartesian coordinate system where the x-axis defines the planar easy axis,

and the z-axis is perpendicular to the confining surfaces, located at z = −d/2 and z = d/2.

3
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The basis unit vectors ei, with i = x, y, z, represent the Cartesian directions. The uniform

nematic orientation under analysis is given by n0 = ex.

Small perturbations of the nematic director are described by the fluctuation vector u =

uxex + uyey + uzez, such that the perturbed director is expressed as n = n0 + u. Since

we are concerned with infinitesimal deviations from the planar orientation, the components

ui are considered small quantities. The normalization condition |n| = 1 then imposes the

constraint:

ux ≈ −
1

2
(u2y + u2z). (2)

Consequently, ux is a second-order quantity in terms of the director variations.

Additionally, we assume that our “generalized” nematic state is characterized by t = ex.

The surface treatment enforces an easy axis along ex as discussed in [42]. Within the Rapini-

Papoular approximation, the surface energy is given by fs = −(w/2)(n · ex)2. Expanding

this expression up to second order and using Eq. (2), we obtain:

fs = −w
2

+
w

2
(u2y + u2z), (3)

where w denotes the anchoring energy strength of both surfaces. That is, we restrict our

investigation to the case of two surfaces with identical anchoring direction and energy, w1 =

w2 = w, which we call symmetric boundary conditions (BCs). These symmetric BCs also

assume that splay and twist deformations have the same anchoring energy.

In the problem we are analyzing here uy = uy(y, z) and uz = uz(y, z), i.e., the perturbation

lies in a plane normal to the bounding surfaces. The energy density is given by

f(ui, ui,j) = f0 −
1

2
η +

1

2
η(u2y + u2z) + κ2(uz,y − uy,z) + κ1(uy,y + uz,z) +

+
1

2
K11 (uy,y + uz,z)

2 +
1

2
K22 (uz,y − uy,z)2

− 2(K22 +K24)(uy,yuz,z − uy,zuz,y), (4)

in which ui,j = ∂ui/∂xj. Finally, the total energy per unit length is

F =

∫
D
f(ui, ui,j) dy dz +

∫
γ

fsds (5)

where D is the surface of the sample perpendicular to the x−axis, and γ is its border.

Hereafter, summation convention on repeated indices is assumed when appropriate. The

first variation of F is

δF =

∫
D

{
∂f

∂ui
− ∂

∂xj

(
∂f

∂ui,j

)}
δui dydz +

∫
γ

(
νj

∂f

∂ui,j
+
∂fs
∂ui

)
δuids. (6)

4
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where νj denotes the outwards geometrical normal characterizing the surface while x1 = x,

x2 = y, x3 = z. The functions minimizing Eq. (5) are solutions of the partial differential

equations [43]
∂f

∂ui
− ∂

∂xj

(
∂f

∂ui,j

)
= 0, (7)

for all points in D, and on γ satisfy the boundary condition:

νj
∂f

∂ui,j
+
∂fs
∂ui

= 0. (8)

In the following we are interested in the possibility of periodic deformation along y−z plane.

In this case D is the domain limited by a rectangle of sides λ and d, and γ its contour, where

λ is the periodicity of the deformation to be determined. For simplicity, we rewrite the

fundamental equations above in an explicit form as follows. For i = y, z, as we consider

here, Eqs. (7) become:

∂f

∂uy
− ∂

∂y

[
∂f

∂uy,y

]
− ∂

∂z

[
∂f

∂uy,z

]
= 0,

∂f

∂uz
− ∂

∂y

[
∂f

∂uz,y

]
− ∂

∂z

[
∂f

∂uz,z

]
= 0. (9)

Likewise, the BCs, Eqs. (8), become:

± ∂f

∂uy,z
+
∂fs
∂uy

= 0 and ± ∂f

∂uz,z
+
∂fs
∂uz

= 0, (10)

at z = −d/2 (−) and z = d/2 (+).

Taking into account the free energy density, Eq. (4), the partial differential equations for

uy(y, z) and uz(y, z), stated in Eqs. (9), are found to be:

K11 uy,yy +K22 uy,zz + (K11 −K22)uz,zy − η uy = 0, (11)

K22 uz,yy +K11 uz,zz + (K11 −K22)uy,yz − η uz = 0. (12)

These equations have to be solved with the BCs expressed by Eqs. (10), which simply read:

±{−κ2 +K22 uy,z + (K22 + 2K24)uz,y}+ w uy = 0, (13)

±{κ1 +K11 uz,z + [K11 − 2(K22K24)]uy,y}+ w uz = 0. (14)

IV. MODULATED SOLUTIONS

We look for solutions of the type

ui(y, z) = Li(z) +Mi(y, z), (15)

5
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where, as before, i = y, z. Substituting the ansatz (15) into Eqs. (11) and (12) we get that

Li(z) are solutions of the ordinary differential equations:

K22 L
′′
y − η Ly = 0, (16)

K11 L
′′
z − η Lz = 0, (17)

whereas Mi(y, z) are solutions of the partial differential equations:

K11My,yy +K22My,zz + (K11 −K22)Mz,zy − ηMy = 0, (18)

K22Mz,yy +K11Mz,zz + (K11 −K22)My,yz − ηMz = 0. (19)

In this framework, they have to be solved with the BCs:

±(−κ2 +K22 L
′
y) + wLy = 0, (20)

±(κ1 +K11 L
′
z) + wLz = 0, (21)

and

±{K22My,z + (K22 + 2K24)Mz,y}+ wMy = 0, (22)

±{K11Mz, z + [K11 − 2(K22 +K24)]}My,y) + wMz = 0, (23)

respectively. The components Ly(z) and Lz(z) of the ansatz correspond to the case where

the fluctuations components depend only on z. This case corresponds to a 1D deformation

of the director field, which can be periodic or not, and has been analyzed in [42]. Hereafter,

we investigate the possibility of periodic 2D solutions Mi(y, z), i = y, z, that satisfy the

homogeneous bulk differential equations and BCs. To accomplish this task, we seek solutions

of the form

My(y, z) = G(z) sin(qy) and Mz(y, z) = F (z) cos(qy), (24)

where q = 2π/λ [44]. Note that for q = 0, My(y, z) = 0 and Mz(y, z) = F (z), i.e. we recover

the case of 1D deformation treated in [42].

Substituting Eqs. (24) into Eqs. (18) and (19), we get:

K22G
′′(z)− (η + q2K11)G(z)− q(K11 −K22)F

′(z) = 0, (25)

K11 F
′′(z)− (η + q2K22)F (z) + q(K11 −K22)G

′(z) = 0, (26)

for −d/2 ≤ z ≤ d/2, to be solved with the BCs

±{K22G
′ − q(K22 + 2K24)F}+ wG = 0, (27)

±{K11 F
′ + q[K11 − 2(K22 +K24)]G}+ wF = 0. (28)

6
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Eqs (25) and (26) form a system of linear ordinary differential equations with constant

coefficients, to be solved with the BCs Eqs (27) and (28) that are also linear with constant

coefficients, therefore the solutions are of exponential form. In addition, from the structure

of these equations, it follows that each of the functions F (z) and G(z) must be either

symmetric or antisymmetric with respect to z, with the additional constraint that if G(z) is

even, then F (z) must be odd, and vice versa. For definiteness, we have chosen to consider

this case in what follows. Therefore, for a cell with identical interfaces, the solutions of the

linear system defined by Eqs. (25) and (26) take the form

G(z) = A1 cosh(µ1 z) + A3 cosh(µ3 z),

F (z) = B1 sinh(µ1 z) +B3 sinh(µ3 z). (29)

A1, A2, B1, B3 are integration constants, and µ1, µ3 are two parameters to be determined.

Substituting Eqs (29) into Eqs (25) and (26) yields a homogeneous system of two equations,

which admits a non-trivial solution only if Bk = RkAk, where

R1 = −µ1

q
and R3 = − q

µ3

. (30)

µ1, µ3 are defined by the expressions:

µ1 =

√
q2 +

η

K11

and µ3 =

√
q2 +

η

K22

. (31)

The set of BCs, Eq. (27) and (28), reduces to

{K22G
′(d/2)− q(K22 + 2K24)F (d/2)}+ wG(d/2) = 0, (32)

{K11 F
′(d/2) + q[K11 − 2(K22 +K24)]G(d/2)}+ wF (d/2) = 0. (33)

These BCs, using the solutions Eq. (29), may be put in matrix form as follows:a11 a13

a31 a33

 .

 A1

A3

 = 0, (34)

in which:

a11 = w cosh

(
µ1
d

2

)
+ [−(K22 + 2K24)qR1 +K22µ1] sinh

(
µ1
d

2

)
,

a13 = w cosh

(
µ3
d

2

)
+ [−(K22 + 2K24)qR3 +K22µ3] sinh

(
µ3
d

2

)
,

a31 = wR1 sinh

(
µ1
d

2

)
+ [−2(K22 +K24)q +K11(q +R1µ1)] cosh

(
µ1
d

2

)
,

a33 = wR3 sinh

(
µ3
d

2

)
+ [−2(K22 +K24)q +K11(q +R3µ3)] cosh

(
µ3
d

2

)
. (35)
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Thus, nontrivial solutions can be obtained by imposing that

P = det

a11 a13

a31 a33

 = 0, (36)

Solving Eq. (36) implies handling a nonlinear transcendental equation of the form:

qc = f(qc, d, w,K11, K22, K24, η), (37)

thus exploring many possibilities in a parameter space formed by four elastic constants,

the thickness of the sample, and the anchoring strength [44]. Once a physically meaningful

solution is obtained for Eq. (37), we have to analyze the sign of the corresponding quadratic

form representing the excess free energy density promoted by the nonuniform structure

represented by Mi(y, z), for i = y, z.

V. THE QUADRATIC FORM OF ENERGY

In the preceding section, we obtained the analytical profile of the nematic director fluc-

tuations.

uy(y, z) = Ly(z) +G(z) sin(qy),

uz(y, z) = Lz(z) + F (z) cos(qy), (38)

where G(z), F (z) are given by Eq. (29). Substituting these expressions into Eq. (4), the free

energy density separates in three contributions:

f = f
1D

+ fc + f
2D
, (39)

where the free energy of the uniform planar state (the ground state) was taken to be zero.

f
1D

refers to the 1D-deformation, specifically the Ly(z), Lz(z) components of the solutions,

and its expression is given in [42]. fc includes coupling terms between the Li(z) and Mi(y, z)

solutions, while f
2D

refers to the 2D-deformations.

Averaging the bulk free energy density over a period λ = 2π/q and considering only 2D

deformations yields

f
2D

(z) =
1

4
η[G(z)2 + F (z)2] +

1

4
K11[qG(z) + F ′(z)]2

+
1

4
K22[qF (z) +G′(z)]2 − (K22 +K24)q[G(z)F ′(z) + F (z)G′(z)]. (40)
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The bulk energy is calculated by integration of the latter equation along the z−direction.

Likewise, the surface part of the free energy density, after averaging over y may be written

as:

fs =
1

4
w
[
F (d/2)2 + F (−d/2)2 +G(d/2)2 +G(−d/2)2

]
. (41)

Finally, the total energy of the system is expressed as a quadratic form:

F =
1

2

2∑
k=1

2∑
l=1

MklAkAl, (42)

in which the elements of the matrix M are formally given by

Mij =
∂2F

∂Ai∂Aj
. (43)

To analyze the stability of the solutions, one must examine the signs of the principal minors of

the matrix M. The uniform state is stable as long as these minors have positive determinants,

namely M1 = M11 and M2 = M11M22 −M12M21. If at least one of them become negative,

the uniform state can no longer be considered stable [45]. In such a case, the system may

instead favor a non-uniform structure which, in the scenario under analysis, corresponds to

a periodic structure characterized by a small but nonzero wave vector q.

VI. STABILITY ANALYSIS

Hereafter, we examine the stability of the solutions, considering separately the cases η = 0

and η 6= 0.

1. η = 0

First, we treat the case of the absence of elastic coupling between the two fields. In the

special case for η = 0, µ1 = µ3 = q, R1 = R3 = −1, the elements aij are given by

a11 = a13 = w cosh

(
q
d

2

)
+ 2 (K24 +K22) q sinh

(
q
d

2

)
,

a33 = a31 = −w sinh

(
q
d

2

)
− 2(K22 +K24)q cosh

(
q
d

2

)
, (44)

and therefore P = 0 identically. The total energy per unit length, in the case under consid-

eration, is given by

F =
1

2
(A1 + A3)

2 [w cosh(q d) + 2(K22 +K24)q sinh(q d)] ,

9
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from which it follows that the minimum of F is reached for A1 + A3 = 0, i.e. for a non

deformed state.

2. η 6= 0

Before proceeding to the general case η 6= 0, it is convenient to define the reduced wavevec-

tor qr = q/q0 and the reduced coupling elastic constant ηr = η/η0, where we introduced a

reference wavevector q0 = π/d and a reference coupling constant η0 = K11q
2
0. In Figure 1,

η=1.1 ηc

η=1.00001 ηc

η=0.9 ηc

η=0

0.0 0.2 0.4 0.6 0.8
qr

10

20

30

40

50

60

70

M1

η=1.1 ηc

η=1.00001 ηc

η=0.9 ηc

η=0

0.2 0.4 0.6 0.8
qr

-50

50

100

M2

Figure 1. M1 left panel and M2 right panel, versus the reduced wavevector qr = q/q0 for a few

representative values of η as shown in the graph. For η/ηc > 1, M2 change sign while M1 > 0, and

the uniform nematic phase is destabilized.

the left panel shows the first principal minor determinant M1, while the right panel shows

M2 = det[M] as a function of qr, for four representative values of ηr/ηc, where ηc is the

critical value of η < 0 below which periodic solutions emerge. The curves in Figure 1, were
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calculated using the following parameter set: K11 = 5×10−11 N, K22 = K11/5, K24 = 0.9K22

[14, 35], d = 10µm and w = 2 × 10−5 J/m2. It is observed that M1 remains positive for

all values of ηr. However, M2 becomes negative when ηr/ηc > 1. Notably, for η > 0, M2

remains positive, indicating that the 2D-perturbations of the splay-twist nematic phase are

suppressed. Solving numerically the equation M2 = 0, we find that the critical value of the

coupling constant is ηc = −0.165491η0. The analysis of this case is particularly insightful,

as it permits an analytical treatment that sheds light on the role of various parameters in

the emergence of non-uniform periodic structures, as discussed in the following sections.

In generalM2 may have more than one zero. However, due to the harmonic approximation

used in the energy expansion, only the longest wavelength mode of the instability is retained.

By solving the equation M2 = 0 numerically, we obtained the two dotted curves shown in

Figure 2, which represent the variation of qr as a function of ηr. Both solutions intersect the

horizontal axis (q = 0) at finite values of the coupling constant, denoted ηc1 and ηc2 < ηc1 .

However, only the rightmost curve fulfills the condition P = 0 that allows a non trivial

solutions for Ai, and hence a deformed state as discussed above, Eq.(36). Therefore the

critical value of the coupling constant is given by ηc1 = ηc. In the same figure, the solution

to the condition P = 0 is shown as the red continuous line. The asymptotes at ηc and ηc2

also indicated in the figure, are calculated in the next section.

3. P expansion for q → 0

The critical value ηc of η for q → 0 can be evaluated from Eq. (36). In the limit q → 0,

expanding P in power series of q, we get:

P = α(η)
n1(η)n2(η)

q
+m(η) q, (45)

where

α(ηr) =
√
ηr, (46)

n1(ηr) = K11q0
√
ηr cosh

(π
2

√
ηr

)
+ w sinh

(π
2

√
ηr

)
, (47)

n2(ηr) = w cosh

(
π

2

√
K11

K22

ηr

)
+ q0

√
K11K22ηr sinh

(
π

2

√
K11

K22

ηr

)
. (48)

For the set of elastic parameters considered in our analysis, m(ηr) takes negative values in

the range ≈ −1 < ηr < 0, as shown in Figure 3.
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-0.24 -0.22 -0.20 -0.18
ηr

0.05

0.10

0.15

0.20

0.25

qr

Figure 2. The reduced wave-vector qr of the instability versus ηr. The black solid points are

calculated from the condition M2 = 0. The red line is calculated from P = 0. The vertical line at

ηr = −0.165491 corresponds to the minimal value, |ηc| given by Eq. (52). Numerical values as in

previous simulations. For qr → 0, ηr goes to its critical value ηc which is the weakest value of |ηr|

where the uniform nematic destabilizes. The second vertical line at ηr = −0.2 would correspond

to another branch of instability.

The condition P = 0 gives

qr =

√
−α(ηr)

n1(ηr)n2(ηr)

m(ηr)
. (49)

From (49), taking into account Eqs. (46), (47), and (48), it follows that q is a real quantity

for n2(ηr) ≤ 0, vanishing for n2(ηc) = 0, i.e., for

w cosh

(
π

2

√
K11

K22

ηc

)
+ q0

√
K11K22ηc sinh

(
π

2

√
K11

K22

ηc

)
= 0. (50)

Figure 2 shows two branches of the numerical solutions of Eq. (50). Modulated solutions

appear only for ηr < ηc. In addition a second threshold appears at smaller value of ηr.

Others branches also may appear at even lower values of ηr as it can be calculated from

Eq. (50). Rearranging the latter equation we get for ηc the equation

dw

πK22

= −
√
K11

K22

ηc tanh

(
π

2

√
K11

K22

ηc

)
. (51)
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-1.0 -0.8 -0.6 -0.4 -0.2
ηr

-1.5

-1.0

-0.5

m / w2

Figure 3. Function m = m(ηr) in the range −1.009 ≤ ηr ≤ 0. m is plotted in units of w2.

Since the instability takes place for ηc < 0, Eq. (51) can be rewritten as

dw

πK22

=

√
K11

K22

|ηc| tan

(
π

2

√
K11

K22

|ηc|

)
. (52)

Equation (52) is of some importance for this analysis since it allows the investigation of the

dependence of ηc on the anchoring energy w and the thickness d of the sample. The first

two thresholds for ηr are depicted by the vertical asymptote lines in Figure 2.

Returning to the numerical analysis, we observe that it is straightforward to track the

evolution of this zero as a function of qr. Indeed, Figure 4 shows a typical plot of δ = wd/K22

vs. ηc obtained from the roots of the equation M2 = 0, represented by solid points, which

were calculated numerically by solving Eq. (36). The continuous line in Figure 4 represents

the approximate solution given by Eq (52), in the limit q → 0. Note that as ηc → 0 the

anchoring energy w → 0 as well. Writing δ as δ = d/L22, we conclude that |ηc| increases as

the twist extrapolation length of the interfaces, L22, becomes shorter, that is, for stronger

anchoring as expected.

The above analysis shows that, for a given liquid crystalline material characterized by a

set of elastic constants K11, K22, K24 and η, the uniform nematic phase becomes unstable

when the magnitude of η exceeds a critical value ηc. For a given material, this critical

coupling elastic constant, ηc, depends on the sample thickness and on the anchoring energy.

In other words, confinement and surface effects can suppress splay-twist fluctuations.
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-0.1-0.2
ηc

0.00001

0.00002

δ

Figure 4. Dependence of the reduced anchoring energy δ = wd/K22 as a function of ηr, for a fixed

value of the instability wavevector qr = 10−5. Solid points are numerical solutions of M2 = 0 while

the continuous line is calculated analytically from the approximated solution Eq (52).

The transition from the uniform nematic state to the splay-twist nematic phase can be

described within the framework of Landau-de Gennes theory as a second order phase transi-

tion, with the modulation wavevector q serving as the order parameter. The corresponding

free energy density of the STN phase can be expressed as:

fst = fu +
1

2
a(η − ηc)q2 +

1

4
bq4 + . . . (53)

where the elastic coupling, η, between the two fields plays the role of the temperature, while

a, b are positive phenomenological parameters, and fu denotes the free energy density of the

uniform nematic phase. Minimization of the free energy yields q = ±
√
−a(η − ηc)/b. By

fitting the curve qr(ηr) shown in Figure 2, with a function of the form q = [−a(η − ηc)/b]β,

one finds β = 0.50 and a/b = 1.31.

Finally, It is important to clarify that there is no competition between the splay-twist

and twist-bend modulations. It is now well established that the bend elastic constant K33

remains positive [18] even in the vicinity of the twist-bend phase. According to our previous

work [25] which analyzed the emergence of the twist-bend phase, it was shown that for

K33 > 0, this phase appears for positive values of the elastic constant η above a critical

value ηTB, that is, η > ηTB > 0. In contrast, the splay-twist periodic deformation predicted

in the present paper occurs only for η < ηc < 0, and therefore does not interfere with the
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twist-bend phase.

VII. CONCLUDING REMARKS

We explored the possibility that a nonuniform equilibrium configuration could be ener-

getically favored in a context involving heliconical liquid crystals.

To this end, we started from an elastic energy density proposed as an extension of the

Frank free energy for liquid-crystalline media, in which there are essentially two fundamental

symmetry elements: the director, n, a hallmark of conventional liquid crystals, and the

helix director, t, which appears to be crucial for the existence of periodic structures in

systems composed of bent-core or dimer molecules. This same free energy expression, which

we proposed in recent years, has already proven capable of describing the emergence and

stability of a periodic structure characteristic of the experimentally observed twist-bend

phase [25].

Our analysis follows a simple yet thermodynamically rigorous approach to investigating

this possibility [44]. We assumed the existence of a uniform planar-like structure in the

medium described by this elastic model and explored the possibility that a nonuniform

structure could arise due to fluctuations of the director in the plane perpendicular to this

uniform configuration. The general equations of the problem were analytically established

for a slab-shaped sample of thickness d, characterized by the presence of a finite anchoring

energy (weak anchoring) and the absence of an external field.

Within this system, everything behaves as if this new symmetry element, represented by

the helix director t, acts as a (intrinsic) field and plays a crucial role in the emergence of these

new structures. A periodic solution ansatz was proposed, and we were able to demonstrate

that it can be energetically favored in the liquid-crystalline medium depending on the values

of the elastic parameters, the sample thickness, and the anchoring energy. This occurs

because the periodic solutions satisfy boundary conditions such that a wave vector q assumes

realistic critical values as a function of the other macroscopic parameters characterizing the

sample, in the form of a transcendental equation of the type q = f(q, d, w,K11, K22, K24).

In fact, a numerical analysis of the involved solutions reveals the real possibility that a

splay-twist-like phase is inherently present in the free energy density expression we proposed

and may soon be experimentally observed.
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To achieve this result, we fixed the values of the anchoring energy, the sample thickness,

and the other elastic parameters, except for the parameter η, a new elastic constant that

acts as the coupling strength between the director and the helix direction. We demonstrated

how this parameter plays a crucial role in the emergence of a critical wave vector associated

with the favored periodicity in the system, i.e., the periodic structure that modifies the sign

of the quadratic form in a linearized elastic model, causing it to transition from positive

definiteness —corresponding to the uniform planar structure — to an energy regime where

the minors of the matrix representing the quadratic form become negative.

A more comprehensive analysis, which would make the present work excessively long

but could be developed as a complementary study, should explore a broader range of elas-

tic parameter values, particularly those of the sample thickness and the anchoring energy.

Moreover, the general case of a non-symmetric cell could be of interest, that is, a cell where

anchoring energy is different for the two interfaces and/or the twist and splay anchoring

energies are unequal.

This should be addressed in future work, as the study of the emergence of such structures

as a function of surface properties may be important not only for the liquid-crystalline

systems considered here but also, more broadly, for many finite-size systems in condensed

matter physics.
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