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Friction dynamics: Displacement fluctuations during sliding friction

R. Xu,1, 2, 3 F. Zhou,1 and B.N.J. Persson1, 2, 3

1State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,
Chinese Academy of Sciences, 730000 Lanzhou, China

2Peter Grünberg Institute (PGI-1), Forschungszentrum Jülich, 52425, Jülich, Germany

3MultiscaleConsulting, Wolfshovener str. 2, 52428 Jülich, Germany

We have investigated the fluctuations (noise) in the positions of rectangular blocks, made from
rubber or polymethyl methacrylate (PMMA), sliding on various substrates under constant driving
forces. For all systems the power spectra of the noise exhibit large low-frequency regions with
power laws, ω−γ , with the exponents γ between 4 and 5. The experimental results are compared
to simulations and analytical predictions using three models of interfacial interaction: a spring-
block model, an asperity-force model, and a wear-particle model. In the spring-block model, small
sub-blocks (representing asperity contact regions) are connected to a larger block via viscoelastic
springs and interact with the substrate through forces that fluctuate randomly in both time and
magnitude. This model gives a power law with γ = 4, as also observed in experiments when no wear
particles can be observed. The asperity-force model assumes a smooth block sliding over a randomly
rough substrate, where the force acting on the block fluctuates in time because if fluctuations in the
number and size of contact regions. This model predict a power law with the exponent γ = 6 which
disagree with the experiments. We attribute this discrepancy to the neglect of load redistribution
among asperity contacts as they form or disappear. The wear-particle model considers the irregular
dynamics of wear particles of varying sizes moving at the interface. This model also predict power
law power spectra but the exponent depends on two trapping-release probability distributions. If
chosen suitable it can reproduce the exponent γ = 5 (which correspond to 1/f fluctuation noise in
the friction force) observed in some cases.

1 Introduction

All solid surfaces exhibit roughness extending over many
decades in length scale [1–3]. When two solids come
into contact, they generally touch only a small fraction
of the nominal contact area where asperities make con-
tact [4–10]. The asperity contact regions may undergo
stick-slip motion during sliding, which can be correlated
due to elastic coupling between different regions [11–15].
The stick-slip motion depends on the nature of surface
roughness, which can induce nearly random fluctuations
(noise) in the sliding distance.

Fluctuations in sliding friction have been studied previ-
ously using two different methods. One method involves
driving the slider at a constant speed and analyzing fluc-
tuations in the driving force[16]. However, accurately
measuring forces is challenging, making this method suit-
able only for systems with relatively large force fluctua-
tions. Another method involves detecting and analyz-
ing the sound waves emitted from the sliding junction
[17, 18]. However, correlating the sound wave frequency
spectra to the motion or the friction force acting on the
block, is not straightforward.

In a previous paper [19], we proposed a new approach
to study sliding dynamics by applying a constant driv-
ing force and analyzing the fluctuations in the position
of the block. The advantage is that, compared to force,
distances can be measured accurately using various meth-
ods, with one extreme example being the laser displace-

ment sensors used for studying gravitational waves, ca-
pable of measuring changes in distances down to ∼ 10−4

of the width of a proton [20]. In the experiments, solid
blocks were slid on nominally flat surfaces with different
roughness. If the average velocity of the center of mass of
a block is denoted by v, the sliding distance s = vt+ ξ(t),
where ξ(t) is the random fluctuation away from the mean
(ensemble averaged) block position. From the obtained
ξ(t), the displacement (position) power spectra were cal-
culated. Simulations using a simple block-spring model
yielded good agreement with experimental results.

In this paper, we extend the study in Ref. [19]. In ad-
dition to the two rubber blocks (compounds A and B)
used in Ref. [19], we introduce a PMMA block. As
substrates, we include a tile surface alongside the con-
crete and smooth glass surfaces used previously. The dis-
tance (or time) sampling frequency is optimized to cap-
ture higher-frequency noise than in the previous study.
In addition to the displacement power spectra, the force
power spectra are also calculated based on the obtained
ξ(t).

We present simulations and analytical studies using three
different models: I, the block-spring model from Ref.
[19], II, a wear particle model, and III, an asperity force
model. For models I and II, we derive analytical expres-
sions for how the power spectra depend on the sliding
block velocity and other parameters.

The results indicate that for all models, there exist broad
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frequency regions where the sliding distance and force
power spectra follow power-law behavior. The exponents
predicted by models I and II align with experimental re-
sults, whereas model III fails to provide an accurate de-
scription. The failure of model III arises from its inability
to account for the redistribution of load among asperities
when the block moves into or out of contact with a sin-
gle asperity. Including this effect would change the time
series for the friction force but would also make the fluc-
tuations in the force much smaller.

The mechanisms explored in this study, namely the
stochastic formation and rupture of asperity contacts and
the resulting force fluctuations, are relevant to a broad
range of physical systems beyond the current experimen-
tal setup. In particular, similar processes underlie mod-
els of earthquake dynamics, such as rate-and-state fric-
tion [21–25], where the evolution of microscopic contact
regions governs macroscopic stick-slip behavior. Analo-
gous interfacial phenomena are also important in sliding
electrical contacts, including those in railway power sys-
tems [26–28], and in the generation of friction-induced
acoustic noise in mechanical and structural applications
[17, 18, 29].

2 Sliding distance and force power spectra

Part of the following derivation was given in the earlier
study [19], but it is included here for completeness. The
equation of motion for the block is given by

M
d2x

dt2
= Fdrive + F,

where F = −Mgµ(t) is the friction force.

We express x(t) = vt+ ξ(t) and F (t) = F0(v)+F1(t) and
choose F0 so that Fdrive = F0. This gives

M
d2ξ

dt2
= F1(t) (1)

We define the displacement power spectrum as

Cx(ω) =
1

2π
∫

∞

−∞
dt ⟨ξ(t)ξ(0)⟩eiωt

(2)

The power spectrum can also be expressed as

Cx(ω) =
2π

T
∣ξ(ω)∣2,

where T is the total sliding time and

ξ(ω) =
1

2π
∫

T /2

−T /2
dt ξ(t)e−iωt.

Using equation (1), we obtain

−Mω2ξ(ω) = F1(ω),

thus

Cx(ω) =
2π

T
∣ξ(ω)∣2 =

2π

T
∣F1(ω)∣

2 1

M2ω4
=

1

M2ω4
CF (ω).

Therefore, the power spectrum of the friction force is

CF (ω) =M
2ω4Cx(ω) (3)

In a similar way, writing the friction coefficient as µ(t) =
µ0(v)+µ1(t), and choosing µ0 such that Fdrive−Mgµ0 = 0
gives

d2ξ

dt2
= −gµ1(t).

Using this equation, we obtain

−ω2ξ(ω) = −gµ1(ω),

thus

Cx(ω) =
2π

T
∣ξ(ω)∣2 =

2π

T
∣µ1(ω)∣

2 g
2

ω4
=
g2

ω4
Cµ(ω).

Therefore, the power spectrum of the friction coefficient
is

Cµ(ω) =
ω4

g2
Cx(ω).

Instead of considering the sliding motion as a function of
time, one could consider it as a function of the average
sliding distance s = vt. The random displacement ξ can
be considered as a function of the average distance s = vt
and can be Fourier decomposed into a sum of exp(iqs)
waves with different amplitudes and wavenumber q. The
advantage of this approach is that results for different
sliding speeds may be very similar when considered as
a function of s or q, because one expects the random
forces acting in asperity contact regions to depend on
the location of the rubber block on the substrate sur-
face rather than on time, at least if thermal activation is
unimportant. However, the same effect can be achieved
by shifting the Cx(ω) spectra, measured at different slid-
ing speeds, along the frequency axis.

From (2) we get

⟨ξ(t)ξ(0)⟩ = ∫
∞

−∞
dω Cx(ω)e

−iωt,

from which we obtain the mean-square (ms) displacement

ξ2rms = ⟨[ξ(0)]
2
⟩ = 2∫

∞

0
dω Cx(ω) (4)

where we have used that Cx(−ω) = Cx(ω). In a similar
way, the ms value of the noise in the friction coefficient
is given by

µ2
rms = ⟨[µ1]

2
⟩ = 2∫

∞

0
dω

ω4

g2
Cx(ω).
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We have derived a relation (3) between the power spectra
of the sliding distance and the friction force. One may
ask under what conditions will measurements performed
with a constant driving force (as done in this study) or
a constant driving speed (as done in the study of Ref.
[? ]) give the same result. For the very low-frequency
noise, which result from variation of the substrate sur-
face properties over length scales larger than the size of
the sliding block, the two cases will give different results
which is clear in the limiting case where the local friction
becomes so large as to stop the sliding in the case of a
constant driving force. Similarly, for very small sliding
blocks, where the asperity stick-slip motion may involve
the whole bottom surface of the block, one would expect
a difference between the two cases. However, for large
systems, if the upper surface is moving at a constant
speed the local slip events at the interface will, because
of self averaging, give rise a a nearly constant sliding fric-
tion force. In this case assuming a constant driving force
(which result in the same average sliding speed as in the
constant sliding speed case) will result in the same dis-
tribution of slip events at the interface, and the same
information will be contained in the (force or distance)
noise spectra in both cases.

elastic block, mass M

substrate

(a) (b) driving force Fdrive 

macro-asperity
contact region

elastic springs

miniblock, mass m

elastic springs

microblock

miniblock

(c)

FIG. 1. A block-spring model. (a) The sliding block interacts
with the substrate in N asperity contact regions randomly
distributed at the interface. The asperities experience ran-
domly fluctuating forces from the substrate. (b) The Equiv-
alent block-spring model. (c) Multiscale extension including
microblocks. Note that the effects of microblocks are not in-
cluded in the simulation results presented in this study.

3 Model I: block-spring model

The spring-block model used in this work is based on the
framework introduced in our earlier study [19], in which
a large elastic block is connected to N viscoelastic sub-
blocks representing asperity contact regions. These sub-
blocks are coupled via springs and dampers and are sub-
jected to random forces originating from the substrate.

Fig. 1 illustrates the model: a large block of mass M is
connected to N miniblocks of mass m via springs with
stiffness k0 and damping coefficient η0. The miniblocks
are also coupled laterally via springs with stiffness k1 and
damping coefficient η1. Random lateral forces fi(t) act
on the miniblocks, simulating the disordered interactions
at the sliding interface. A schematic extension of the
model to include smaller-scale microblocks is shown in
Fig. 1(c), although these are not explicitly included in
the simulations presented in this study.

The theory assumes that on the miniblocks in Fig. 1
act a kinetic friction forcefk and a randomly fluctuating
forces fi(t) with a time average ⟨fi⟩ = 0. We assume
that fi(t) changes randomly with the sliding distance at
an average rate denoted as 1/a. We set a equal to the
typical diameter D of the macro asperity contact regions,
as sliding over a distance D is expected to renew the
asperity contacts. If the large block moves from x to
x+a during the time period ∆t, the force on a miniblock
(coordinate xi) changes randomly between t and t +∆t
from its old value to

fi = αfkin(ri − 0.5) (5)

where ri is a random number uniformly distributed be-
tween 0 and 1, and α is a parameter expected to be of
order 1. These random fluctuations in fi are interpreted
as resulting from changes in the contact between the as-
perities on the block and the substrate. The average fre-
quency of fluctuations of the random force fi is v/a. In
Appendix A, we show that for v/a≪ ω ≪ ωc, we obtain:

Cx(ω) ≈
α2

ω4

v3

12πNa
(6)

The scaling Cx ∼ ω
−4 implies that the force power spec-

trum CF is independent of frequency in the specified in-
terval.

4 Simulation results for model I

In the simulations we assume Fdrive = 10 N and Fkin =

Nfkin = 5 N, where N is the total number of miniblocks.
If D is the diameter of an asperity contact region theory
predict[30] that spring constant k0 ≈ ED. Using a rubber
slider with E ≈ 107 Pa and assuming a typical diameter
D ≈ 1 mm, we get k0 = 10

4 N/m. The mass of the large
block is M = 1 kg and the mass of a miniblock is assumed
to be a few times ρD3 ≈ 10−6 kg; we usem = 10−5 kg. The
lateral coupling between the miniblocks depends on the
separation between macroasperity contact regions. As-
suming a separation of orderD, we get k1 ≈ k0, but as the
separation is likely larger, we take k1 = 10

2 N/m. How-
ever, simulations show that displacement power spectra
are nearly the same for all 0 < k1 < k0, so the exact
value of k1 is not critical for this study. The damping

3
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1
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(a)
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-20

-18
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α = 0.5
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g

1
0
 C

x
 (

m
2
s
)

f = fkin [1+α(r-0.5)]

big-block
vibration

miniblock
vibrations

(b)

FIG. 2. (a) Displacement power spectrum Cx(ω) for different
model parameters. (b) Effect of varying the noise strength
parameter α on the power spectrum Cx(ω). Adapted from
[19].

η0 is chosen such that the vibrational motion of a con-
tact region, if free, would be nearly overdamped, giving
η0 ≈

√
(k0/m); we use η0 = 0.8 × 104 s−1. The damping

η1 determines the increase in friction force with increas-
ing sliding speed. We compare the theory to experimen-
tal data obtained for an average speed of v = 0.5 mm/s,
choosing η1 so that the friction force equals Fdrive at this
speed. The sliding distance needed to renew the contact
regions is set to D, so a = 1 mm. The parameters above
with α = 1 and N = 30 are used as the “standard” or
“reference” case. When parameters differ from this case,
we will specify only the differing parameters.

We performed simulations of the spring-block model us-
ing the same parameter set as in Ref. [19] (which was
motivated by physical arguments), referred to as the “ref-
erence case”: N = 30, v = 0.5 mm/s, a = 1 mm, k0 = 10

4

N/m, k1 = 10
2 N/m, M = 1 kg, m = 10−5 kg, η0 = 0.8×10

4

s−1, and α = 1.

Figure 2(a) shows the simulation results for the displace-
ment power spectrum Cx(ω) in the reference case and
for several variations, including increased sliding speed,

decreased renewal length a, and increased number of
miniblocks. Figure 2(b) illustrates the effect of varying
the noise strength parameter α. The spectra exhibit an
ω−4 scaling over a broad frequency range, with the en-
tire spectrum shifting to higher frequencies as the sliding
speed increases as predicted by (6) (see also Appendix
A).

The origin of the ω−4 behavior for ω < ωc has been dis-
cussed in detail in Ref. [19], where it was shown that if
the fluctuations in the friction force acting on the block
are temporally uncorrelated on long time scales, the cor-
responding power spectrum CF (ω) becomes independent
of frequency for low ω, which result in Cx(ω) ∼ ω

−4 ac-
cording to (3). At high frequencies, Cx(ω) tends to flat-
ten. As detailed in Appendix A, this behavior arises from
the response of the large block to the damped oscillations
of the miniblocks, which are driven by the random forces
acting on them.

AB

C

v

v’
v=0

FIG. 3. A block (green) sliding with velocity v on a sub-
strate with two wear particles. Particle B is moving relative to
the substrate with velocity v′, while particle A is trapped by
the substrate’s roughness. Particle A may be released (break
loose) if asperity C collides with it.

5 Model II: wear particle model

If wear particles form, they could contribute to fluctu-
ations in the sliding friction force. Wear particles may
undergo irregular motion resulting from trap-and-release
(or break-loose) processes that occur at variable rates
(see Fig. 3). This may lead to fluctuations in the friction
force with a ω−1 frequency dependency. This behavior is
analogous to Schottky’s original explanation of ω−1 noise
in vacuum tubes, where he proposed that charge carri-
ers become trapped in capture sites and are released at
variable rates [31–33]. A similar effect may occur due to
contamination particles (such as dust), which are always
present on surfaces exposed to the normal atmosphere.
Noise with a frequency spectrum proportional to ω−1, of-
ten referred to as 1/f noise, is very common, although no
generally accepted theory exists to explain its origin. In
Appendix B, we present a simple model that resembles
the one proposed for noise in vacuum tubes. However,
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this model only results in a ω−1 dependence under certain
conditions.

asperity contact regions

v
(a)

fx

asperities which
will make contact
with the rubber

asperities which
have made 
contact with 
the rubber

asperities in 
contact with
the rubber

v

(b)
w

w

v v

trailing
edge

leading
edge

(c)

x

FIG. 4. (a) An elastic block with a flat bottom surface
sliding on a rigid, randomly rough substrate. (b) An asperity
that comes into contact with the block at the leading edge will
remain in contact until the trailing edge, exerting a constant
friction force fx on the block. Here, we assume no local stick-
slip at the asperity level. The total force acting on the block
is the sum of the forces from each asperity contact region,
fluctuating randomly in time due to random variations in the
number and size of the asperity contact regions. (c) A one-
dimensional (1D) model is used to calculate the force on the
sliding block. All asperity contact regions are projected onto
the x-axis, and the force acting on the block is determined
by all the asperities between the moving (velocity v) vertical
boundary lines separated by the width w of the block.

6 Model III: asperity force model

Here we present a model that is simpler than the one
studied in Sec. 3. We assume that the sliding block has a
flat surface (no roughness), while the substrate has ran-
dom roughness. When an asperity makes contact with
the block at the leading (front) edge, it remains in con-
tact and exerts a constant friction force on the block until
it exits at the trailing edge; see Fig. 4. In this scenario,
fluctuations in the force acting on the block result solely

from stochastic fluctuations in the number of asperity
contact regions and fluctuations in the size of those re-
gions.

The friction force time series for the model shown in Fig.
4 is obtained as follows. Time is discretized into steps
of length ∆t. We choose ∆t small enough that during
this interval, at most one new asperity contact is formed
at the leading edge, and at most one asperity contact
disappears at the trailing edge. The x-axis (in the sliding
direction) is discretized into steps of length ∆x = v∆t.
We associate a random force f(i) with each x = i∆x
grid point, where f(i) = 0 with the probability 1 − p and
f(i) = rf0 with the probability p, where r is a random
number uniformly distributed between 0 and 1.

If w is the width of the block in the sliding direction, then
there will be Nw = w/∆x grid points within the width w.
On average, there will beN = pNw = pw/∆x asperity con-
tact regions, each exerting an average force f0/2, giving
a total average friction force Ff = Nf0/2 = pwf0/(2∆x).
The actual number of asperity contact regions will fluc-
tuate in time, so that Fx(t+∆t) = Fx(t)+f(i+Nw)−f(i).
We obtain the displacement power spectrum Cx(ω) from
the force power spectrum CF (ω) using equation (3).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800  1000

model III,  N=30

time  (s)

F
x
(t

) 
 (

N
)

FIG. 5. The tangential (friction) force as a function of sliding
time for (on average) N = 30 asperity contact regions.

7 Simulation results for model III

We present numerical results for simulation Model III
using the following parameters: Ff = 5 N, sliding speed
v = 0.5 mm/s, and p = 0.1. The mass of the block is M =
1 kg and the width of the block in the sliding direction
is w = 1 cm.

Fig. 6 shows the displacement power spectrum as a func-
tion of frequency (log-log scale). Results are shown for
N = 30 and N = 300 asperity contact regions. Note that
the power spectrum Cx ∼ ω

−n with n = 6, which is larger
than the experimentally observed range of n between 4
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FIG. 6. The displacement power spectrum as a function of
frequency (log-log scale). Results are shown for N = 30 and
N = 300 asperity contact regions. The other parameters are
Ff = 5 N, sliding speed v = 0.5 mm/s, and p = 0.1. The mass
of the block is M = 1 kg and the width of the block in the
sliding direction is w = 1 cm.

and 5. Additionally, the power spectrum at low frequen-
cies is larger than observed experimentally.

The reason this model fails to accurately describe reality
is that when the block moves into or out of contact with
an asperity, it alters the load carried by other asperities.
Accounting for this effect would reduce the magnitude of
the fluctuations in the friction force acting on the block.

M

M’

Leonardo da Vinci experiment

rubber

road surface time-distance
data to computer

table

FIG. 7. A simple friction slider (schematic) measures the
sliding distance x(t) via a displacement sensor.

8 Experimental setup: Leonardo da Vinci slider

The experimental setup is similar to that used in Ref.
[19], and is shown in Fig. 7, where a displacement sensor
tracks the position of the slider under constant driving
force. The slider consists of two rubber or PMMA blocks
glued to a wood plate, with one block positioned at the
front and the other at the back. The nominal contact
area is A0 ≈ 10 cm2. The normal force FN is determined
by the total mass M of lead blocks placed on top of the
wood plate. Similarly, the driving force is determined by

the total mass M ′ of lead blocks and the container (the
mass of the ropes is neglected).

The sliding distance x(t) as a function of time t is mea-
sured using a Sony DK50NR5 displacement sensor with
a resolution of 0.5 µm. This distance sensor does not
exhibit any observable noise as evidenced by a flat, time-
invariant signal when no sliding motion is present. This
simple friction slider setup can also be used to calculate
the friction coefficient µ = M ′/M as a function of slid-
ing velocity and nominal contact pressure p = Mg/A0.
Note that with this setup, the driving force is specified,
allowing the study of the velocity dependency of friction
only on the branch of the µ(v) curve where the friction
coefficient increases with increasing speed.

We also performed some studies where instead of the set-
up shown in Fig. 7 the substrate was put on a tilted (an-
gle α) plane. In this case the driving force Mgsinα and
the normal force Mgcosα are the tangential and normal
part of the gravitational force acting on the mass M . In
all cases the force sensor was not in direct contact with
the slider system and the slider was located on a stiff
vibrational isolated table and the experiments was per-
formed in the basement of a building. Still we cannot
exclude that some external vibrations may influence the
results.

Both rubber compounds used in our studies are tire tread
rubber consisting of styrene butadiene rubber with car-
bon black fillers, supplied by two different tire compa-
nies. Before the friction studies the rubber and PMMA
surfaces was cleaned by soap water and dried. The glass
surface was also cleaned by soap water, and all surfaces
was cleaned by a soft brush between each sliding experi-
ments to remove wear (and dust) particles. All the sub-
strate surfaces have been used in earlier studies and their
surface roughness power spectra was reported on in Ref.
citefootwear,concrete.

9 Experimental results

We have measured the sliding distance x(t) for three dif-
ferent systems: one rubber block (compound A) sliding
on a rough concrete, a smooth silica glass, and a tile sur-
face; a second rubber block (compound B) sliding on a
concrete and a glass surface; and a PMMA block sliding
on a concrete and a tile surface. Experimental results for
compound A on concrete and glass surfaces were origi-
nally presented in Ref. [19]. They are shown here for
reference and comparison with new systems. All tests
were conducted under different normal loads and driving
forces. The experimental conditions are summarized in
Tables I, II, and III in Appendix C.

Fig. 8(top) shows the noise ξ(t) = x(t) − vt of the block
position as a function of time for compound B on con-
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FIG. 8. Top: The noise ξ(t) = x(t) − vt in the big block
position as a function of time for sliding of the rubber com-
pound B on concrete. The average velocity v = 0.054 mm/s.
Bottom: A magnified segment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-7 -6 -5 -4 -3

concrete-A

glass-A

glass-B

log10 v  (m/s)

µ

33 kPa
61 kPa

FIG. 9. The friction coefficient as a function of the sliding
speed for rubber compound A on a concrete surface (squares)
on a smooth silica glass surface (circles), and for compound B
on the glass surface (triangles). The blue and green symbols
are for the nominal contact pressures 33 and 61 kPa, respec-
tively.

crete. The average sliding speed is v = 0.054 mm/s and
the total sliding time ≈ 900 s. Fig. 8(bottom) shows the
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(b)

FIG. 10. The sliding distance power spectrum Cx(ω) as a
function of the frequency. The experimental result is for a
PMMA block sliding on (a) a rough concrete block and (b) a
tile surface.

PMMA wear
particles

tile surface

distance sensor

FIG. 11. Wear particles deposited on the tile surface after
sliding the PMMA block one time at the speed v ≈ 83 mm/s
and the normal force ∼ 33 N.

sliding distance for the time segment 318 s to 378 s.

For rubber sliding on a smooth glass surface, we fre-
quently observe highly non-uniform motion, where the
sliding speed fluctuates significantly over large distances.
Most technological rubbers contain mobile components,
such as wax, which can diffuse to the rubber surface.
During sliding, the wax film is gradually removed, result-
ing in slow changes in the friction force. These changes
typically occur over sliding distances on the order of
10 cm. In contrast, rubber sliding on a concrete sur-
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face exhibits much more stable and reproducible motion,
possibly because the concrete asperities can penetrate the
wax film.

Fig. 9 presents the (average) friction coefficient as a func-
tion of the sliding speed for compound A on concrete
(squares) and on the glass surface (circles), and for com-
pound B on the glass surface (triangles). The blue and
green symbols correspond to nominal contact pressures of
p0 = 33 kPa and 61 kPa, respectively. Within the experi-
mental noise level, the friction coefficient is independent
of the contact pressure, consistent with previous studies.
This suggests that the real area of contact is proportional
to the normal force, as expected from contact mechanics
theory [8]. It also indicates that the contact area is small
compared to complete contact and that macroscopic ad-
hesion is absent, which would otherwise lead to a friction
coefficient that increases as the pressure p0 decreases.
Although adhesion interactions are always present and
contribute to the contact area, they are too weak in this
case to manifest macroscopically as a pull-off force. Con-
sequently, the real contact area vanishes continuously as
p0 approaches zero [34].

Fig. 10 presents the sliding distance power spectrum
Cx(ω) as a function of frequency for a PMMA block slid-
ing on (a) the concrete and (b) the tile surface. In this
system, significant wear occurs, resulting in white powder
deposits on the sliding track (see Fig. 11). The slope of
the curve in Fig. 10(b) is close to −5, consistent with ear-
lier studies [16], which found that wear particles at the
sliding interface lead to such power spectrum behavior
(see also Sec. 5).

-25
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experiment 2
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theory

rubber on concrete
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FIG. 12. The sliding distance power spectrum Cx(ω) as a
function of the frequency. The experimental result is for rub-
ber compound A sliding on a concrete surface, the theoretical
result is for the reference case. Adapted from [19].

The red and blue lines in Fig. 12 shows measured power
spectra Cx(ω) for the rubber compound A on the con-
crete surface. The theory curve (green line), to be dis-
cussed below, has the slope −4 in the low frequency part

of the power spectrum. In Appendix C we present more
power spectra for the rubber compound A on concrete,
silica glass and the tile surfaces. On concrete we find
the exponent γ ≈ 4 and for the glass surface and tile sur-
faces between 4 and 5. We also present results for rubber
compound B on the concrete (where γ ≈ 4.3) and glass
(where γ ≈ 5) surfaces.

10 Comparison of theory with experiment

The experimental data presented in Sec. 9 shows that
the displacement noise power spectra exhibit a power-
law behavior of the form Cx(ω) ∼ ω

−γ over a wide (low)
frequency range, with γ in the range from 4 to 5. The
theoretical model predicts a low-frequency exponent of
−4 for “clean” surfaces, consistent with observations for
rubber A sliding on concrete.

Fig. 12 is adapted from Ref. [19], where the displacement
noise power spectrum Cx(ω) for the rubber compound
A sliding on the concrete block is compared with the
theoretical results (green and gray curves) obtained for
the reference case (N = 30 miniblocks, v = 0.5 mm/s,
a = 1 mm, and α = 0.4). Note that the experimental data
exhibit the same ∼ ω−4 scaling as the theoretical curve.

In the simulations, the displacement power spectrum ex-
hibits a high-frequency roll-off caused by the damped os-
cillations of the miniblocks (see Appendix A). This fea-
ture is not observed in the experimental data, likely due
to the limited frequency resolution of the current mea-
surement system. Furthermore, to explain measurements
performed with higher distance resolution, it may be nec-
essary to extend the theory from the single-length scale
model currently used to a multiscale model (see Fig.
1(b)). Thus surface roughness occurs at many length
scales, with macroasperities having smaller asperities on
top of them. This results in the breakup of macroasper-
ity contact regions into smaller microasperity contact ar-
eas. In our theory, we could model these smaller con-
tact regions with microblocks elastically connected to the
miniblocks, as illustrated in Fig. 1(c). The motion of the
microblocks generates higher frequency force fluctuations
than would arise with only the miniblocks, which could
be significant at the higher frequencies not probed in the
present experiments.

Friction force fluctuations have also been observed in a
study involving an alumina pin sliding on a steel surface
[16]. At a constant sliding speed of v = 1 cm/s, the force
power spectrum exhibited a ∼ ω−1 dependence at low fre-
quencies, which corresponds to a displacement spectrum
∼ ω−5. The authors of Ref. [16] attributed this behav-
ior to the presence of wear particles. After these par-
ticles were removed, the displacement power spectrum
flattened to ∼ ω0. This observation is consistent with our
experiments for PMMA sliding on tile surfaces, where the
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exponent is closer to −5. Rubber wear particles are also
generated on concrete surfaces [35, 36], but their influ-
ence on the displacement noise power spectrum may be
smaller, possibly because they become trapped in surface
cavities.

It would be of interest to investigate in greater detail
the role of wear particles, specifically how their size dis-
tribution and concentration influence the slope of the
displacement power spectra. One particularly relevant
study would involve introducing particles of various sizes
into a system that initially exhibits a ω−4 spectrum, to
examine whether the slope shifts toward ω−5. We plan to
carry out such investigations and will report the results
in future work.

Another interesting extension of our study would be to
study how external vibrations may influence the noise
spectrum. If the sliding system would be exposed to an
external periodic vibration with a frequency which differ
from the region where the noise power spectrum Cx(ω)
is studied, then it would show up in the measured data
only if it would change the asperity slip dynamics.

Wear particles are crucial for sliding contacts between
metals used to transmit electric current [28]. Sliding gen-
erally involves wear and irregular fluctuations (noise) of
the contact resistance. In Ref. [28], the noise in the
voltage was measured for different metal-metal contacts
under a fixed electric current. While the power spectra of
the voltage fluctuations were not shown, the dependency
of the rms voltage Vrms (which is a frequency integral of
the voltage power spectra) on different physical parame-
ters was presented and showed power law behavior.

Rapid events at a sliding interface generate air pres-
sure fluctuations (sound waves). The primary sources of
acoustic radiation are believed to be interactions of as-
perities at the interface and structural vibrations [17, 18].
Acoustic noise often originates from forming and break-
ing surface asperity contacts. For elastically stiff materi-
als, asperity contact regions are typically a few microm-
eters in size. Breaking and forming asperity contacts act
like small hammer strokes at a high rate. Since surface
roughness is random, these impacts occur randomly, me-
chanically exciting the structure. The Fourier transform
of a pulse is constant, resulting in a wide noise spectrum.

An important length scale for electric, acoustic, and fric-
tion noise is the distance over which the asperity con-
tact population is entirely renewed. If both surfaces have
similar roughness, this distance is of the order of the di-
ameter D of the macroasperity contact region. Rabi-
nowicz [37] measured this distance D and found it typi-
cally ∼ 10 µm for metallic contacts. Using this one can
estimate[17, 18] that the noise from breaking and form-
ing asperity contacts typically overlap in time and is per-
ceived as steady-state noise by the human ear.

Sliding friction can also excite vibrational eigenmodes of
the contacting solids, generating sound waves. Rayleigh
[38] found that when a glass was set ringing by running
a moistened finger around its rim, the frequency of the
ring matched that of the sound produced when the glass
was tapped. He proposed that the ringing was caused by
the friction of the finger exciting tangential motion in the
glass. However, in this case, the vibrational eigenmodes
are most likely not produced by the breaking and forming
of asperity contacts, but rather result from stick-slip mo-
tion of the finger on the glass surface. This stick-slip be-
havior is caused by a decrease in friction with increasing
sliding velocity, which occurs before full hydrodynamic
lubrication is established [29].

11 Summary and conclusion

We have shown that the stochastic formation and rupture
of asperity contacts lead to characteristic displacement
noise spectra. While the average friction force remains
constant under steady sliding, the instantaneous force
fluctuates around this mean value, leading to correspond-
ing fluctuations in the sliding velocity. In this study, we
extend the analysis to include additional material combi-
nations (e.g., PMMA on tile) and systematically explore
the spectral features of these fluctuations under varying
interfacial conditions.

For the case of sliding on rough concrete, the displace-
ment fluctuations of the block exhibit a power spectrum
that decays as ω−4 over a broad frequency range. As
demonstrated in Ref. [19], this behavior is well captured
by a spring-block model in which fluctuating interfacial
forces arise from the stochastic formation and rupture of
asperity contact regions.

For sliding on tile and smooth glass surfaces, the expo-
nent of the displacement power spectrum varies between
−4 and −5, depending on the block material, compound
composition, and experimental conditions. An exponent
close to −5, which corresponds to a ∼ ω−1 power spectrum
of the friction force, appears to result from the presence
of contamination layers or wear debris. This behavior is
approximated by Model III and is further discussed in
Appendix B.

The variations in displacement exponents across different
surfaces and rubber compounds are attributed to a com-
bined effect of contamination (or wear debris) and differ-
ent wear mechanisms at the sliding interface. Abrasive
wear typically occurs on rough surfaces, whereas smear-
ing is more likely on smooth surfaces. The contribution
from wear debris is more pronounced on smooth surfaces,
as debris may become trapped in deep valleys or cavities
on rough surfaces and thus have less influence. Addition-
ally, wear rates vary with rubber compound composition,
which in turn influences the nature of the fluctuations in
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the sliding motion.

The displacement power spectrum shifts along the fre-
quency axis with varying sliding speeds. This shift can be
understood by considering that higher sliding speeds re-
sult in more frequent formation and breaking of asperity
contacts, effectively compressing the time scale of fluctu-
ations. Thus, as the sliding speed v increases, the entire
power spectrum shifts to higher frequencies. Conversely,
at lower sliding speeds, the time intervals between asper-
ity interactions increase, causing the power spectrum to
shift to lower frequencies.

Building upon our previous study [19], where the fre-
quency range of displacement measurements was lim-
ited by sensor resolution, we have evaluated several com-
mercially available high-resolution displacement sensors.
However, their performance did not meet the require-
ments of our system. We still plan to improve the ex-
perimental setup using a displacement sensor with sig-
nificantly enhanced resolution. This would allow access
to much higher frequency components of the block mo-
tion and potentially capture the transition from static
to kinetic friction with improved temporal resolution, an
aspect particularly relevant in the context of earthquake
dynamics.

To model this behavior, it may also be necessary to ex-
tend the current model to account for the hierarchical
nature of real surface roughness, with smaller asperities
located on top of larger ones. We plan to investigate
this using a hierarchical distribution of sliding blocks,
with smaller blocks attached to larger blocks (as illus-
trated in Fig. 1(c)), and so forth. For many systems, the
breakloose friction force depends on the time of station-
ary contact, e.g. due to slow increase in the contact area
from (thermally activated) creep motion, or slow (ther-
mally activated) bond formation in the contact area. In
the models we studied above there is no such mechanism
which could increase the breakloose friction force, but
it would be interesting to extend the model to include
a strengthening of the contact with the time of station-
ary contact. This is the physical origin of rate-and-state
models of sliding dynamics, which have been found to
agree with experimental observations.
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Appendix A

The equation of motion for the big block

Mẍ = Fdrive − k0∑
i

(x − xi) −mη0∑
i

(ẋ − ẋi) (A1)

and for the miniblocks

mẍi = −k0(xi−x)−mη0(ẋi−ẋ)−mη1ẋi−fkin−fi(t) (A2)

Without the fluctuating force fi(t) the motion is steady
at the sliding speed v. We write

x = xa + vt + ξ(t)

xi = vt + ξi(t)

where

Nk0xa = Fdrive

N(mη1v + fkin) = Fdrive

Using these results and taking the Fourier transform of
(A2) gives

−mω2ξi = −k0(ξi − ξ) − iωmη0(ξi − ξ) − iωmη1ξi − fi(ω)

or

Q1(ω)ξi(ω) = P1(ω)ξ(ω) − fi(ω) (A3)

where

Q1(ω) = −mω2
+ k0 + iω(η0 + η1)

P1(ω) = k0 + iωmη0
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From (A1) we get

−Mω2ξ(ω) = −k0∑
i

(ξ − ξi) − iωmη0∑
i

(ξ − ξi)

or

Q0(ω)ξ(ω) = P0(ω)
1

N
∑
i

ξi(ω) (A4)

where

Q0(ω) = −Mω2
+Nk0 + iωNmη0

P0(ω) = Nk0 + iωNmη0

Combining (A3) and (A4) gives

Q0(ω)ξ =
P0(ω)

Q1(ω)
(P1(ω)ξ −

1

N
∑
i

fi(ω))

ξ(ω) = Z(ω)
1

N
∑
i

fi(ω) (A5)

where

Z(ω) = −
P0(ω)

S(ω)

S(ω) = Q0(ω)Q1(ω) − P0(ω)P1(ω)

= (−Mω2
+Nk0 + iωNmη0)(−mω2

+ k0 + iωm(η0 + η1))

−(Nk0 + iωNmη0)(k0 + iωmη0)

For ω << ωc we get

S(ω) ≈ iωmNk0η1

and

Z(ω) ≈ −
1

iωmη1
(A6)

We will calculate the power spectrum of ξ(t). We assume
that the fluctuating forces fi are uncorrelated so that
⟨fi(t)fj(t

′)⟩ = 0. We get

1

N2∑
ij

⟨fi(t)fj(t
′
)⟩ =

1

N2∑
i

⟨fi(t)fi(t
′
)⟩ =

1

N
⟨f(t)f(t′)⟩

where f(t) stands for any of the fi(t). Note that

⟨f2
(t)⟩ = α2f2

kin ∫

1

0
dr (r − 0.5)2 =

1

12
α2f2

kin (A7)

The fluctuating force f(t) takes the value un for tn < t <
tn+1, where both un and tn are random variables but with

⟨tn+1 − tn⟩ = τ0. The Fourier transform of the fluctuating
force

f(ω) =
1

2π
∑
n

un

iω
(e−iωtn − e−iωtn+1)

=
1

2π
∑
n

un

iω
e−iωtn (1 − e−iω(tn+1−tn))

The power spectrum of the fluctuating force

Cf(ω) =
2π

T
⟨∣f(ω)∣2⟩

=
1

2πT
∑
n

⟨u2
n⟩

2

ω2
(1 − ⟨cosω(tn+1 − tn)⟩) (A8)

Here we have used that averaging over un and tn are in-
dependent processes and also that ⟨unum⟩ = ⟨un⟩⟨um⟩ = 0
if n ≠ m. The sum in (A8) is over N ′ terms where the
total sliding time T = N ′a/v. Each of these terms gives
the same result so if we denote tn+1−tn = τn and use that

⟨u2
n⟩ = α

2f2
kin ∫

1

0
dr (0.5 − r)2 =

1

12
α2f2

kin

we get

Cf(ω) =
v

12πa
f2
kin

α2

ω2
(1 − ⟨cos(ωτn)⟩)

Since ⟨τn⟩ = τ0 = a/v and since in our applications typi-
cally ωτ0 >> 1 the average

⟨cos(ωτn)⟩ ≈ 0

To evaluate ⟨cos(ωτn)⟩ for a general case assume that
τn = τ is a random variable with the average ⟨τ⟩ = τ0.
We get

⟨cos(ωτ)⟩ =
1

2
(⟨eiωτ

⟩ + ⟨e−iωτ
⟩)

Using the cumulant expansion truncated at the second
order

⟨eiωτ
⟩ = eiω⟨τ⟩−s

2ω2/2

where

s2 = ⟨τ2⟩ − ⟨τ⟩2 = ⟨(τ − τ0)
2
⟩

Thus we get

⟨cos(ωτ)⟩ = e−s
2ω2/2cos(ωτ0)

Using that τ = t1 − t2 and that t1 is a random number
uniformly distributed between 0 and τ0 and t2 a random
number uniformly distributed between τ0 and 2τ0 we can
write τ = τ0 + τ0(r − r

′) where r and r′ are uniformly

11
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distributed between 0 and 1. Using this gives s2 = τ20 /6
Hence for ωτ0 >> 1 we get ⟨cos(ωτn)⟩ ≈ 0 and

Cf(ω) ≈
v

12πa
f2
kin

α2

ω2
(A9)

From (A5) we get

Cx(ω) =
2π

T
⟨∣ξ(ω)∣2⟩ = ∣Z(ω)∣2

2π

T

1

N
⟨∣f(ω)∣2⟩

= ∣Z(ω)∣2
1

N
Cf(ω) (A10)

For v/a << ω << ωc we can use (A6), (A9) and (A10) to
get

Cx(ω) ≈
α2

ω4

vf2
kin

12πNa(mη1)2
(A11)

In the numerical simulations we used Nfkin = Fdrive/2 so
that mη1v = fkin. Using this we get

Cx(ω) ≈
α2

ω4

v3

12πNa
(A12)

-14.7

-14.6

-14.5

-14.4

-14.3

-14.2

-14.1

 10.3  10.4
time  (s)

x
 -

v
t 
 (

µ
m

) tn

tn+1

miniblock
oscillations

FIG. 14. The sliding distance of the big block as a function of
time for a very short time period from the simulation used to
obtain Fig. 13. Note the damped oscillations in the center of
mass position, which occur every time a miniblock experiences
a change in the substrate force at random time points tn. On
average, during the time period ∆t, the block slides a distance
of v∆t, and forN miniblocks, there will beNv∆t/a changes in
the friction. Thus, the average time interval between changes
in the friction is ∆t = a/Nv. In the present case, N = 30,
a = 1 mm, and v = 0.5 mm/s, giving ∆t ≈ 0.07 s.

Fig. 13 shows the sliding distance power spectrum Cx(ω)
as a function of frequency for the standard (or reference)
parameters. The green curve represents the simulation
results, and the violet curve shows the theoretical predic-
tion (A10). The theory agrees well with the simulation
results in the overlapping frequency region. The roll-off

region is caused by the damped oscillatory motion of the
miniblocks when they experience changes in friction with
the substrate. This is illustrated in Fig. 14, which shows
the sliding distance of the big block as a function of time
for a very short time period from the simulation used to
obtain Fig. 13. Note the damped oscillations in the cen-
ter of mass position that occur every time a miniblock
experiences a change in the substrate force at random
time points tn. On average, during the time period ∆t,
the block slides a distance of v∆t, and for N miniblocks,
there will be Nv∆t/a changes in the friction. Thus, the
average time interval between changes in the friction is
∆t = a/Nv. In the present case, with N = 30, a = 1 mm,
and v = 0.5 mm/s, this gives ∆t ≈ 0.07 s, which is consis-
tent with the figure.

-14

-13

-12

-11

-10

 0  1  2  3
log10 v  (µm/s)

lo
g

1
0
 C

x
  

(m
2
/s

)

rubber - concrete

Cx ~ v
5/3

slope 5/3

FIG. 15. The velocity dependency of Cx for ω ≈ 0.4 s−1 for
rubber block sliding on concrete surface (log-log scale). The

slope of the line is −5/3 corresponding to Cx ∼ v
−5/3.

The theory above can be slightly generalized as follows.
Let fkin(ẋi) be the (non-random part) of the kinetic fric-
tion force acting on a miniblock from the substrate. Writ-
ing xi = vt + ξi(t) we get to first order in ξi

fkin(ẋ) = fkin(v) + f
′
kin(v)ξ̇i

where fkin(v) was denoted as fkin + mη1v above and
f ′kin(v) by mη1. In this case, the sliding speed is de-
termined by

fkin(v) = Fdrive/N

Using that mη1v = vf
′
kin(v) and (A7) we can write (A11)

as

Cx(ω) ≈
v3

πNaω4

⟨f2⟩

[vf ′kin(v)]2

Since there is no reason for vf ′kin(v) and
√
⟨f2⟩ to have

the same velocity dependency it is clear that the velocity
dependence of Cx(ω) may be more complex than the
∼ v3 predicted by (A10). Thus, for rubber sliding on
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the concrete surface we find (see Fig. 15) Cx ∼ v5/3.
Assuming that N and a are velocity independent this
gives

⟨f2⟩

[vf ′kin(v)]2
∼ v−4/3

In the studied velocity range the friction force on concrete
increases by approximately linear with lnv (see Fig. 9)
so we expect vf ′kin(v) to be nearly independent of the
velocity which implies that the rms of the fluctuating
force,

√
⟨f2⟩, acting on a miniblock scale with the velocity

roughly as ∼ v−2/3.

Using (4) and the equations above it is easy to calculate
the mean-square (ms) displacement

ξ2rms = 2∫
ω1

ω0

dω Cx(ω) (A13)

Here ω0 and ω1 are the lowest and highest frequency in
the problem. We take ω0 = π/t0 where t0 is the total
sliding time so that vt0 = L0 is the sliding distance. The
highest frequency it taken as ωc but the exact value is
not very important since it turns out the most important
contribution to the integral in (A13) is from π/t0 < ω <
1/τ0. For these ω we can expand

⟨cos(ωτ)⟩ ≈ 1 −
1

2
ω2
⟨τ2⟩

In this frequency region (A12) must be multiplied by the
factor ω2⟨τ2⟩/2 giving

Cx(ω) ≈
α2

ω2

v3⟨τ2⟩

24πNa

Using this in (A13) gives

ξ2rms ≈
α2

ω0

v3⟨τ2⟩

12πNa
=

7

72π2

L0a

N

or ξrms ≈ 0.1
√
(L0a/N). As expected from random walk

arguments the rms displacement away from the sliding
distance L0 = vt scales as the square root of the sliding
distance.

Thus if a distance increases with a + b(0.5 − r), where
r is a random number between 0 and 1, at time points
separated by τ then after n + 1 time steps the length
xn+1 = xn+a+b(0.5−r). We get ⟨xn+1⟩ = ⟨xn⟩+a and hence
⟨xn⟩ = na. Writing xn = na+ξn we get ξn+1 = ξn+b(0.5−r)
giving

⟨ξ2n+1⟩ = ⟨ξ
2
n⟩ + b

2
⟨(0.5 − r)2⟩ = ⟨ξ2n⟩ +

b2

12

Iterating this gives

⟨ξ2n⟩ =
nb2

12
=
L0

a

b2

12

Appendix B

We present a simple model of the contribution of wear
particles to the fluctuations in the friction force. Assume
that there are N wear particles that perform irregular
motion at the sliding interface. We write the friction
force as Fx(t) = F0 + F1(t) where the ensemble-average
of the fluctuating force F1(t) vanish. We have

F1 =∑
n

fn(t)

where fn is the force on the block from the wear particle
n (with n = 1, ..,N). The condition ⟨F1(t)⟩ = 0, where
⟨..⟩ stand for ensemble average, is satisfied if we choose
⟨fn(t)⟩ = 0. We assume no interaction between the wear
particles so that ⟨fm(t)fn(t

′)⟩ = ⟨fm(t)⟩⟨fn(t′)⟩ = 0 if
m ≠ n. This gives

CF (ω) =
2π

T
⟨∣F1(ω)∣

2
⟩ =

2π

T
∑
n

⟨∣fn(ω)∣
2
⟩

We assume that fn(t) takes the value cn1 if t1 < t <
t2, and cn2 when t2 < t < t3 and so on. Here cnj (j
odd number) is determined by the friction force acting
on the block from the particle n when trapped on the
substrate surface and cnj (j even) when sliding relative
to the substrate. We get

fn(ω) =
1

2π
∑
j

cnj

iω
e−iωtj (1 − e−iωτnj) (B1)

where τnj = tj+1 − tj . We assume that tj − tk are ran-
dom variables which is reasonable since the trapping and
releasing of a particle depends on the surface roughness
of the two solids (see Fig. 3) which is assumed to be
random.

We consider first so large frequencies ω that in general
ω∣tj − tk ∣ > 2π when j ≠ k. In this case, we get from (B1)

∑
n

⟨∣fn(ω)∣
2
⟩ ≈

2

(2π)2
∑
nj

c2nj

ω2

which gives CF ∼ ω−2 and Cx ∼ ω−6. The situation
for small ω is more complex and the exponent n in
the frequency dependency of the force power spectrum,
CF ∼ ω

−n, could be a non-integer as observed in some of
the experiments presented in Sec. 8.

For arbitrary frequency, we get from (B1)

∑
n

⟨∣fn(ω)∣
2
⟩ =

2

(2π)2
∑
nj

c2nj

ω2
(1 − cos(ωτnj))

If we assume that τnj (n fixed) are random variables with
the average τAn when trapped and τBn when sliding we
can write T = N ′n(τAn + τBn) where N ′n is the number of

13
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times the particle n is trapped (or released) during the
time T . Using this we get

CF (ω) =
2π

T
∑
n

⟨∣fn(ω)∣
2
⟩

=
1

π
∑
n

c2An

ω2(τAn + τBn)
(1 − e−s

2
Anω

2/2cos(ωτAn))

+
1

π
∑
n

c2Bn

ω2(τAn + τBn)
(1 − e−s

2
Bnω

2/2cos(ωτBn))

where

c2An =
1

N ′n
∑

j odd

c2nj , c2Bn =
1

N ′n
∑

j even

c2nj

and

s2An = ⟨τ
2
An⟩ − ⟨τAn⟩

2

and similar for s2Bn.

In most cases, there will be a large number of wear par-
ticles of different sizes (and shapes). Let us number the
particles after increasing size where n = 1 is the smallest
and n = N is the biggest. It is natural that particles with
different sizes will have different relaxation times τn so
we can write

N =∑
n

→ ∫ dn = ∫ dτ
dn

dτ

Defining the probability of relaxation times by

P (τ) =
1

N

dn

dτ

then

∫

∞

0
dτ P (τ) = 1

In the present case, we have two relaxation processes,
one associated with leaving the trapped state with the
probability distribution PA(τ) and one associated with
going from the sliding state into the trapped state with
the probability distribution PB(τ). Hence we need to
replace

∑
n

→ N ∫
∞

0
dτdτ ′PA(τ)PB(τ

′
)

Using this and denoting c2An = c
2
A(τ) and similar for c2Bn

we can write

CF (ω) =
N

π
∫

∞

0
dτdτ ′

PA(τ)PB(τ
′)

ω2(τ + τ ′)

×[c2A(τ) (1 − e
−ατ2ω2/2cos(ωτ))

+c2B(τ
′
) (1 − e−ατ

′2ω2/2cos(ωτ ′)) ] (B2)

where we have assumed s2n = ατ
2
n. If

PA(τ)c
2
A(τ) ∼ τ

−β , PB(τ)c
2
B(τ) ∼ τ

−β′

then from (B1) CF (ω) ∼ ω
β+β′−3. For β+β′ = 2 this gives

CF (ω) ∼ ω−1. This is similar to the ω−1 “flicker noise”
in vacuum tubes (and other electronic devices) which is
usually explained as resulting from a set of trapping sites
with different (release) relaxation times. For flicker noise
one can argue [39] for why the probability distribution of
relaxation times is such as to give a ω−1 noise but for the
friction case we have no argument for why β + β′ should
equal to 2.

Appendix C

Here we summarize in Table I, II, and III the conditions
under which the experimental results presented in this
study were obtained. We also present the power spectra
for compound A on the concrete, silica glass and tile sur-
faces and for rubber compound B on the concrete and
glass surfaces.

Fig. 16 shows the sliding distance power spectrum Cx(ω)
as a function of frequency for rubber compound A sliding
on (a) the concrete block, (b) the silica glass plate, and
(c) the tile surface, at different sliding speeds. In all
cases, the slope of the curves ranges from −4 to −5, with
the slope for the concrete surface being approximately
−4. This indicates that the low-frequency power spectra
in these cases are approximately proportional to ω−4.

For compound A sliding on the glass surface at high
sliding speeds, the distance power spectrum exponent is
approximately −4.75, whereas at low sliding speeds, it
matches that observed for the concrete surface. Addi-
tional measurements on the smooth glass surface using
another rubber compound (compound B) showed a dis-
placement exponent of approximately −5, as shown in
Fig. 17(b). This suggests that different interfacial pro-
cesses may occur on the glass surface compared to the
concrete surface.

Fig. 16(c) shows the sliding distance power spectrum
Cx(ω) as a function of frequency for rubber compound
A sliding on a tile surface. The slope of the curve is close
to −4 at high sliding speeds and −5 at low sliding speeds.
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Rubber A - concrete

No. FN [N] Fdrive [N] µ [-] v [µm/s]

1
32.86

14.26 0.43 16
2 17.74 0.54 37
3 18.66 0.57 101

4

60.72

22.08 0.36 2.24
5 39.30 0.65 146
6 44.66 0.74 268
7 49.38 0.81 425

Rubber A - glass

No. FN [N] Fdrive [N] µ [-] v [µm/s]

1
32.86

29.46 0.90 0.10
2 31.56 0.96 0.08

3

60.72

63.60 1.05 0.08
4 66.14 1.09 370
5 68.52 1.13 374
6 71.22 1.17 610

Rubber A - tile

No. FN [N] Fdrive [N] µ [-] v [µm/s]

1

32.86

17.14 0.52 52
2 21.64 0.67 164
3 26.90 0.83 704
4 30.48 0.94 1600

5

60.72

22.16 0.37 3.46
6 33.62 0.55 80
7 38.50 0.63 136
8 41.16 0.68 176
9 60.12 0.99 2011

TABLE I. Experiment conditions for compound A sliding on
concrete, glass, and tile.

Rubber B - concrete

No. FN [N] Fdrive [N] µ [-] v [µm/s]

1
32.86

17.74 0.54 11
2 19.46 0.59 20

3
60.72

43.88 0.72 54
4 49.38 0.81 191

Rubber B - glass

No. FN [N] Fdrive [N] µ [-] v [µm/s]

1
32.86

41.12 1.25 13
2 46.10 1.40 94

3
60.72

55.60 0.92 0.71
4 66.24 1.09 0.77

TABLE II. Experiment conditions for compound B sliding on
concrete and glass.
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Processed power spectrum data are available at Zenodo: 
https://doi.org/10.5281/zenodo.15374445.
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