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Symmetry-Informed Graph Neural Networks for Car-
bon Dioxide Isotherm and Adsorption Prediction in
Aluminum-Substituted Zeolites†

Marko Petkovićac, José-Manuel Vicent Luna∗a, El̄ıza Beate Dinnea, Vlado Menkovskibc and
Sofía Calero∗ac

Accurately predicting adsorption properties in nanoporous materials using Deep Learning models
remains a challenging task. This challenge becomes even more pronounced when attempting to gen-
eralize to structures that were not part of the training data.. In this work, we introduce SymGNN, a
graph neural network architecture that leverages material symmetries to improve adsorption property
prediction. By incorporating symmetry operations into the message-passing mechanism, our model
enhances parameter sharing across different zeolite topologies, leading to improved generalization.
We evaluate SymGNN on both interpolation and generalization tasks, using samples with varying
Si/Al distributions from 108 zeolite topologies for interpolation and assessing generalization on two
unseen frameworks. SymGNN successfully captures key adsorption trends, including the influence
of both the framework and aluminium distribution on CO2 adsorption. Furthermore, we apply our
model to the characterization of experimental adsorption isotherms, using a genetic algorithm to in-
fer likely aluminium distributions. Our results highlight the effectiveness of machine learning models
trained on simulations for studying real materials and suggest promising directions for fine-tuning with
experimental data and generative approaches for the inverse design of multifunctional nanomaterials.

1 Introduction
In recent years, there has been a noticeable increase in atmo-
spheric CO2 levels, with the corresponding rise in greenhouse
effects, highlighting the pressing need for effective carbon miti-
gation strategies. Carbon capture emerges as a viable approach
to address this issue1, and nanoporous materials, specifically ze-
olites, stand out as promising candidates2. Zeolites exhibit a no-
table capacity for gas adsorption, making them well-suited for
reducing carbon levels in the atmosphere. This capacity is com-
monly analyzed through adsorption isotherms, which describe

a Materials Simulation and Modelling, Department of Applied Physics and Science Ed-
ucation, Eindhoven University of Technology, Eindhoven
b Data and AI, Department of Mathematics and Computer Science, Eindhoven Univer-
sity of Technology, Eindhoven
c Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technol-
ogy, Eindhoven
∗ E-mail: j.vicent.luna@tue.nl, s.calero@tue.nl
† Supplementary Information available: Figure S1: Aluminium placement algo-
rithms example; Figure S2: Number of samples per zeolite topology; Figure S3:
Reduced simulation settings validation; Figure S4: RUPTURA validation; Figure S5:
Isotherm distribution from the generalization experiment for MEL, MFI, TON and
MOR; Figure S6: Heat of adsorption parity plots from the generalization experi-
ment for MEL, MFI, TON and MOR; Table S1: Reduced simulation settings; Table
S2: Model hyperparameters; Table S3: Error from the generalization experiment for
MEL, MFI, TON and MOR (PDF). See DOI: 00.0000/00000000.

how the amount of CO2 adsorbed varies with pressure and pro-
vide insights into the material’s efficiency and suitability for car-
bon capture. Their appeal extends further with attributes such as
high thermal stability3 and cost-effectiveness in synthesis when
compared to other adsorbents4.

Additionally, the extensive variety of synthesizable zeolite
topologies5, each characterized by distinct pore sizes and prop-
erties, adds a layer of versatility to their application. Within a
zeolite topology, there are multiple possible configurations, as
a result of different silicon and aluminium atom arrangements.
These configurations can have different CO2 adsorption proper-
ties, where the overall trend is that an increase in aluminium
atoms leads to better adsorption properties6. However, for the
same Si/Al ratio there can still be a considerable variance in
properties such as the heat of adsorption and the adsorption
isotherms.

Due to the large configuration space of possible zeolite topolo-
gies and Si/Al configurations, experimentally studying each con-
figuration to find structures with desirable properties is impossi-
ble. In this context, simulations provide a powerful alternative,
enabling the prediction of adsorption properties without the need
for extensive synthesis and testing7–12. However, certain compu-
tational methods, particularly classical simulations such as Grand
Canonical Monte Carlo (GCMC), require sampling at multiple
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pressures to generate adsorption isotherms and fully character-
ize a material’s adsorption behavior. This can be computationally
expensive, making it challenging to efficiently screen large num-
bers of candidate structures.

To this end, Deep Learning (DL) can be a powerful tool for ac-
celerating the discovery and characterization of materials13–16.
For predicting the properties of crystals, several Graph Neural
Network (GNN) architectures17–21 and Transformer-based mod-
els22,23 have been proposed, which operate on atomic types and
positions within the unit cell. In addition, generative models
have been increasingly explored for the design of novel mate-
rials, allowing the discovery of structures with targeted proper-
ties24–27. Furthermore, various DL approaches have been specif-
ically tailored for nanoporous materials, such as zeolites and
Metal-Organic Frameworks (MOFs). Some of these methods
focus on predicting adsorption behavior across different adsor-
bates28–33, while others aim to design new materials with opti-
mized adsorption and structural properties34,35.

Most of these models explicitly respect and leverage the sym-
metries present in a crystal by being invariant or equivariant to
the Euclidean group E(3), as well as the periodic boundary con-
ditions. Each crystal has an associated Space Group (SG), which
is a subgroup of E(3) and determines the equivalent atomic po-
sitions within the unit cell. By incorporating this information,
geometric constraints can be directly embedded into the neural
network architecture. Although several approaches for predict-
ing crystal properties account for space group information, they
either neglect symmetries at the unit cell level36 or lack general-
izability across materials with different topologies37. These ap-
proaches introduce separate parameters in the GNN for the node
and message update functions for nodes/edges, which are consid-
ered symmetrically equivalent. Complementary to these efforts,
Li et al. 38 recently demonstrated that incorporating quantum me-
chanical descriptors into GNNs can enhance generalizability in
chemical property prediction, highlighting the broader value of
embedding physical principles into model architectures.

In this work, we introduce SymGNN, a symmetry-informed
graph neural network architecture designed to incorporate crys-
tal symmetries into message passing. By leveraging symmetry
operations, our model enables more effective parameter sharing
across different zeolite topologies, leading to improved general-
ization. We demonstrate that SymGNN successfully predicts both
adsorption isotherms and heats of adsorption for unseen topolo-
gies, capturing key adsorption trends by effectively modeling the
influence of both the framework structure and the Si/Al distribu-
tion on adsorption properties. Finally, we show that our model
can be applied to characterize experimental adsorption isotherms
by inferring structural properties such as the Si/Al ratio, poten-
tially enhancing materials charaterization and analysis.

2 Crystal Symmetries

2.1 Unit Cell

In crystalline materials, the arrangement of atoms follows a re-
peating periodic structure, which is described using the Bravais
lattice Λ. A Bravais lattice defines the periodic arrangement of

points in space, and the structure of the entire crystal can be
generated by translating these points along the lattice vectors.
Equation 1 describes the Bravais lattice, where ai are the linearly
independent basis vectors of the lattice and mi are their integer
multiples. This defines the periodicity of the lattice in a three-
dimensional space.

Λ =

{
3

∑
i

miai | mi ∈ Z

}
(1)

From the Bravais lattice, we can define the unit cell U , which
represents the smallest repeating unit in the crystal structure. The
unit cell can be defined using the basis vectors of the crystal lat-
tice, as shown in Equation 2. Here, xi are the fractional coordi-
nates of the points in space belonging to the unit cell.

U =

{
3

∑
i

xiai | 0 ≤ xi < 1

}
(2)

The set of atoms S contained within a unit cell is defined by
Equation 3, in which Zi is the atomic number, and xi is the position
in fractional coordinates of an atom. By combining the bravais
lattice and the set of atoms in the unit cell, we can fully describe
the crystal structure.

S = {(Zi,xi) | xi ∈U} (3)

2.2 Space Group

Crystals exhibit a high degree of symmetry, which plays a crucial
role in determining their physical properties. The symmetry of
a crystal can be described mathematically by a space group G.
A space group encompasses the full set of symmetry operations
that can be applied to the crystal, leaving it invariant. As such, it
captures all of the rotational, reflectional, and translational sym-
metries of the structure.

Each element of the space group is a group action g. Each
group action consists of a tuple of a linear transformation W and
a translation vector t. The elements of a space group act on a
position x as shown in Equation 4.

g ·x = Wx+ t (4)

One important property of space groups is their closure under
multiplication. This means that when two elements of the space
group are multiplied, the result is another element of the same
space group. This closure property is described by Equations 5
and 6.

W′ = W1W2 (5)

t′ = W2t1 + t2 (6)

2.3 Group Orbit

The orbit of an atom is the set of all positions which the atom can
be mapped to by elements of the space group, and can be for-
mally defined using Equation 7. Atoms that belong to the same
orbit are considered to be equivalent under the space group sym-
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metry. The cardinality (or size) of an atom’s orbit depends on
its position within the crystal. Specifically, an atom located in
the least symmetric position will have an orbit that includes all
the space group operations, meaning its orbit will have the same
cardinality as the space group. In contrast, an atom in a more
symmetric position will have a smaller orbit, as some space group
operations may map the atom to equivalent positions within the
unit cell, reducing the total number of distinct positions in the
orbit.

Orbit(x) = {g ·x | g ∈ G} (7)

Next, we will define the set of operations that can map each
position in an orbit to every other position, except the original
position. For orbits with the same cardinality as the space group,
this set will coincide with the full set of space group operations,
minus the identity operation. However, for smaller orbits (those
with fewer positions), some of the space group operations may be
redundant as they do not contribute to mapping positions within
the orbit. In such cases, the set of operations that maps one po-
sition to another will be a proper subset of the full space group.
Mathematically, this set of operations is defined in Equation 8.

Ops(x) = {g ∈ G|g ·x ∈ Orbit(x)∧g ·x ̸= x} (8)

2.4 Generators

To define the generators of the set of operations associated with
an orbit, we need to identify the minimal set of operations that,
when combined (with repetition) through multiplication, can
generate all other operations that map positions within the orbit.
These generators are crucial because they form the core opera-
tions that preserve the symmetry of the crystal while minimizing
redundancy.

Mathematically, we define the set of generators, Gen(Ops(x)),
as the minimal subset of operations (Equation 9) such that every
operation in Ops(x) can be expressed as a product of elements
from this set (Equation 10). This set of generators can be thought
of as the building blocks for the full set of orbit operations.

Gen(Ops(x))⊆ Ops(x) (9)

⟨Gen(Ops(x))⟩= Ops(x) (10)

In this equation, ⟨S⟩ denotes the subgroup generated by the set
S. As such, every element g ∈ Ops(x) can be defined using the
generators, as shown in Equation 11.

g = gn1
i gn2

2 ...gnk
k , ni ∈ Z, g1,g2, ...,gk ∈ Gen(Ops(x)) (11)

However, there can still be multiple minimal yet distinct sets of
generators for a given set of symmetry operations. For example,
in the cyclic group of order 4 (C4), both a 90-degree rotation
and a 270-degree rotation can independently generate all other
elements of C4. To ensure a consistent choice of generators for a
given position x, we adopt the generator sets defined for different
space groups as provided by the Bilbao Crystallographic Server
(BCS)39.

3 Methods

3.1 Zeolite Frameworks
For this work, we used 108 different zeolite topologies with vary-
ing structural features. For each topology, varying configurations
of silicon and aluminium atoms were generated, with the lowest
Si/Al ratio being 3. The different configurations for each topol-
ogy were generated using the ZEORAN6 program and the POR-
RAN program, which is a Python extension of ZEORAN. These
programs make use of four different algorithms to place alu-
minium atoms in an all-silica zeolite. These algorithms place
the aluminium atoms either in clusters, chains, uniformly (max-
imum entropy) or randomly. Depending on the algorithm, the
resulting structures may violate the Löwenstein rule (Al–O–Al
linkages), which recent studies have shown can occur in prac-
tice40–43. As demonstrated in Romero-Marimon et al. 6 , the
different aluminium placement algorithms lead to variations in
properties such as the heat of adsorption (HOA). While some
generated structures may not be (commonly) observed experi-
mentally, their inclusion in the dataset can help a model learn
a broader range of configurations, potentially improving robust-
ness and generalization. A more detailed description of the algo-
rithms can be found in the SI†. Si/Al configurations for the MOR,
RHO, MFI and ITW zeolite topologies were taken from Petković
et al. 30 . For the other structures, atomic coordinates for pure sil-
ica were taken from IZA44, following which Si/Al configurations
were generated using the aforementioned algorithms. In total,
27648 structures were generated.

3.2 Computational Details
In this study, we investigated the CO2 adsorption isotherm and
heat of adsorption (−∆H). These properties can give us insight
into the CO2 adsorption in zeolites. The heat of adsorption can
give an indication about the interaction strength between the ze-
olite and the adsorbate, whereas the isotherm can tell us about
the adsorption capacity of a zeolite at different pressures. To cal-
culate the heat of adsorption, simulations using the Widom parti-
cle insertion method in the canonical ensemble (NV T ) were per-
formed45 for 200,000 cycles. For the CO2 adsorption isotherms,
simulations were carried out using the grand canonical ensemble
(µV T ), where the loading was calculated for a range of pressures
between 0.01 and 10,000 kPA.

The isotherms were calculated for the MOR, MFI, MEL, TON,
and ITW zeolites. These frameworks were selected for isotherm
calculations due to the availability of extensive heat of adsorp-
tion data from previous studies30,37, as well as their represen-
tation of diverse topological characteristics. To obtain an adsorp-
tion isotherm for a single Si/Al configuration of a zeolite, multiple
simulations need to be carried out. To generate a large dataset of
adsorption isotherms efficiently, some simulations were sped up
by using a reduced number of unit cells, depending on the zeolite.
We validated this approximation by comparing isotherms varying
the Si/Al ratio using full (i.e., the number of unit cells ensures
that the simulation box is longer than twice the cutoff in each di-
rection) and reduced simulation boxes of each zeolite. We found
that the number of unit cells can be reduced for MOR, MFI, and
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MEL, without compromising the adsorption results. However, us-
ing the reduced simulation box, we found more fluctuations for
TON and ITW. Therefore, we use the full simulation box for these
two zeolites. The full and reduced number of unit cells and the
verification procedure and results of the verification can be found
in the SI†. Finally, we fitted the 2-site Langmuir-Freundlich model
(Equation 12) using RUPTURA46, which can smooth out possible
fluctuations as a consequence of using reduced simulation boxes.

q(p) =
2

∑
i

qsat
i

bi pνi

1+bi pνi
(12)

The RASPA software47 was used to carry out all the simula-
tions. The force field and point charges used for the simulations
were taken from Romero-Marimon et al. 6 . It extends the force
field introduced in Garcia-Sanchez et al. 48 , by accounting for
atoms breaking the Löwenstein rule. For each zeolite configu-
ration, sodium cations were introduced to balance the difference
in charge as a result of the aluminium substitutions. The simula-
tions were carried out at room temperature (298K).

3.3 Dataset
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Fig. 1 Heat of adsorption for all datapoints as a function of the aluminium
proportion. Note that the color is in log-scale.

In Figure 1, the relationship between the proportion of alu-
minium atoms and the heat of adsorption is visualized. Overall,
there is a slight trend for an increasing heat of adsorption with
a higher aluminium proportion. However, there is still a signif-
icant dependence of the heat of adsorption on both the frame-
work type, as well as the distribution of aluminium atoms within
the framework. Sodium cations have been shown to reside close
to the aluminium framework atoms6, and can thus affect the
strength of adsorption sites. Furthermore, the geometry of the
framework pores also plays a role in the adsorption strength.

Similarly, the behaviour of the adsorption isotherms is also im-
pacted by the aluminium distribution and the geometry of the
material. As can be seen in Figure 2, the shape of the isotherms
can vary greatly between topologies, showing how the geome-
try of the pores plays a role in the isotherm. Furthermore, there
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Fig. 2 Distribution of loading values at each simulated pressure.

is a significant variance in the isotherms for the same zeolite
topology, suggesting that the distribution and ratio of aluminium
atoms plays a role. This can be seen in Figure 3, where the load-
ing for a given pressure and aluminium proportion is shown for
each zeolite topology. In general, when increasing the pressure,
the loading first increases for structures with a higher aluminium
proportion. However, at higher pressures, these structures tend
to reach saturation earlier, whereas structures with a lower alu-
minium proportion tend to achieve a higher loading.

Using this data, we define two different splits of the data. In
the first split, the generalization split, the model is evaluated on
the ITW and CHA structures, and trained on the remaining zeo-
lites. As such, the model will not have seen the structure of ITW
and CHA. Therefore, we can use this test set to evaluate how well
the model has learned how the structure and distribution of alu-
minium atoms of a zeolite impact its adsorption properties. In
the second split, interpolation split, the data is split in training,
validation and testing set. For each zeolite, the different config-
urations are split in an 80:10:10 between the three sets. Using
this test set, we can evaluate how well the model understands the
effect of the aluminium distribution within each topology.

In our dataset, there is a large class imbalance, with MOR hav-
ing 4300 samples present in the dataset, and EUO having only 78.
To avoid the model overfitting on more prevalent structures, we
over- and under-sample the configurations of different zeolites,
to ensure the model has seen 250 samples per zeolite during an
epoch. The number of structures for each zeolite topology can be
found in the SI†.

4 Symmetry-Informed Graph Neural Networks
Several existing GNN architectures36,37 have leveraged crystal
symmetries to enhance their performance. These models make
use of symmetry-based parameter sharing, where unique node
and message update functions are assigned to each set of equiva-
lent nodes and edges that belong to the same orbit. This approach
increases the model’s expressiveness, as a distinct set of param-
eters is learned for each (abstract) spatial relationship. This is
analogous to how a convolutional neural network learns separate
parameters for each pixel within a kernel.

However, when trained on a specific set of topologies, these
models generally cannot be transferred to a new topology due to
the lack of a clear mapping between sets of atomic orbits in differ-
ent crystals. In Kaba and Ravanbakhsh 36 , this challenge was ad-
dressed by defining symmetries between unit cells, allowing the
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Fig. 3 Loading values for all datapoints with isotherms as a function of the aluminium proportion, at varying pressures.

model to be fully transferable. This was achieved by construct-
ing a 2×2×2 supercell, which enabled the model to recognize
equivalent relationships across unit cells. However, symmetries
within the unit cell itself were not explicitly leveraged, meaning
the approach does not take full advantage of all available symme-
try information. As a result, while the model generalizes across
different crystal topologies, it may not be as efficient or expres-
sive as a model that fully incorporates intra-unit-cell symmetries.
Furthermore, the use of a supercell makes training significantly
more challenging, as porous materials like zeolites often contain
a very large number of atoms, making the process nearly impos-
sible with standard computational resources.

4.1 Symmetry-Informed Message Passing

To address these limitations, we introduce Symmetry-Informed
Message Passing, which explicitly incorporates the generators of
the set of symmetry operations into the node update function.
By doing so, the model is directly informed about how symme-
tries act within a given structure, allowing it to distinguish be-
tween equivalent and non-equivalent atomic environments in a
way that generalizes across different topologies. Unlike previous
approaches, which either lack transferability or fail to fully utilize
symmetry information, our approach ensures that the model can
recognize and leverage shared symmetries while maintaining the
flexibility to adapt to new crystal structures.

The overall message-passing scheme is defined in Equations
13-15. Here, hl

i represents the embedding of node i at layer l,
while ei j denotes the embedding of the edge connecting nodes i
and j. The set of generators associated with node i, denoted as
Gi, encodes the local symmetry properties of the structure. Each
message ml

i j is computed from neighboring nodes and edges us-
ing the message function φe, while node embeddings are updated
through φh, the node update function. Unlike standard message-
passing approaches, φh is explicitly conditioned on Gi, allowing it
to capture symmetry-aware representations and adapt its updates
based on the geometric context of each node.

ml
i j = φe(hl

i ,h
l
j,ei j) (13)

ml
i =

1
|Ni| ∑

j∈Ni

ml
i j (14)

hl+1
i = φh(hl

i ,m
l
i |Gi) (15)

To condition the node update layer on the generators, we utilize
feature-wise linear modulation (FiLM)49, as described in Equa-
tions 16 and 17. In the first step, we apply a standard weight
multiplication for the node update. Then, we introduce γ and
β , which allow the model to adjust the feature values based on
the symmetry information of the node. These parameters act as
dynamic scaling factors, enabling the model to emphasize or sup-
press features according to the symmetries inherent in the crystal
structure. To compute γ and β , we embed the set of genera-
tors using a DeepSets-inspired model50. Each element of the set
of generators is represented by flattening its rotation matrix and
concatenating it with the corresponding translation vector. This
approach captures the relationships between the generators in a
permutation-invariant manner and provides the necessary modu-
lating parameters for the node update.

γi,βi = DeepSets(Gi) (16)

φh(hl
i ,m

l
i |Gi) = γi ⊙W (hl

i∥ml
i)+βi (17)

Figure 4 compares the utilization of symmetries in symmetry-
informed message passing and symmetry-based parameter shar-
ing. While symmetry-based parameter sharing introduces a
greater number of distinct parameters, these assignments are spe-
cific to each topology and cannot be transferred between zeolites.
Consequently, a new model must be trained for each topology.
In contrast, symmetry-informed message passing enables certain
generator sets to be shared across different zeolites. Furthermore,
even when generator sets differ, they may still contain common
symmetry operations, further enhancing parameter transferabil-
ity.

4.2 Model Architecture

To address the challenges of predicting adsorption properties in
zeolites, we introduce SymGNN, a graph neural network that
makes use of symmetry-informed message passing. This approach
allows the model to efficiently predict the CO2 heat of adsorp-
tion and adsorption isotherms across different zeolite structures
by leveraging the inherent symmetries within the zeolite topolo-
gies.

Since the adsorption isotherm is a function rather than a scalar,
and is monotonically increasing with pressure, our model does
not predict the loading at a given pressure directly. Instead, it
predicts the derivative of the loading with respect to the pressure.
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MOR ITW DAC STF NAT

Fig. 4 Comparison of parameter sharing in symmetry-informed message passing (top row) and symmetry-based parameter sharing (bottom row) across
five different zeolite topologies. In the top row, nodes with the same generators are assigned the same color, while in the bottom row, nodes with the
same node-update parameters (belonging to the same orbit) share a color. Notably, while symmetry-based parameter sharing results in more distinct
colors, symmetry-informed message passing allows certain generator sets to be shared across different zeolites, enabling better transferability.

Furthermore, rather than predicting the derivative of the loading
at discrete pressures, our model predicts the isotherm function
itself, similar to the approach used in neural operators. The model
takes the final hidden state of the GNN, concatenates it with the
pressure and predicted heat of adsorption, and passes it through
a multi-layer perceptron (MLP) to produce the loading derivative
predictions. To obtain the full isotherm for a given structure, the
MLP is evaluated at different pressures. The resulting loading
derivatives are then integrated to obtain the true loading‡. The
precision of the predicted isotherm can be controlled by adjusting
the number of pressures at which the MLP is evaluated.

A full overview of the SymGNN architecture is provided in Fig-
ure 5. The model consists of 5 symmetry-informed message pass-
ing layers, each with hidden states of size 64. Nodes are embed-
ded using a single linear layer, while edges are embedded using
radial basis functions (RBF)18 with 64 bins, followed by a linear
layer. Messages are self-importance weighted, and aggregated us-
ing mean pooling. All linear layers in the message and node up-
date steps are followed by layer normalization51. The DeepSets
modules, which provide the parameters for FiLM in the node up-
date, have an internal hidden state of 32. Throughout the model,
the ELU activation function is used. To predict both the heat of
adsorption and the loading derivative, mean aggregation is used

‡ For numerical stability, both the calculation of the loading derivative and the inte-
gration process are performed with respect to the logarithm of the pressure.

to obtain a graph-level representation, as adsorption properties
are independent of the number of atoms in the unit cell.

4.3 Experiments

As described in Section 3.3, we use two dataset splits: general-
ization and interpolation. In the generalization split, the model
is trained on all topologies except ITW and CHA, which are re-
served for evaluation. This experiment assesses how well the
model can learn the influence of different zeolite frameworks with
varying topological features. ITW has a channel-like structure,
while CHA contains cages. The interpolation split, on the other
hand, evaluates the model’s ability to capture the effect of differ-
ent aluminium distributions on CO2 adsorption. In both cases,
we compare SymGNN against a standard GNN with identical hy-
perparameters, where the FiLM layer is replaced by a conven-
tional linear layer. In addition, we evaluate our models against
ALIGNN20 and Matformer22, adapting both architectures to also
predict the isotherms by replacing their output modules with the
same one used in our models (Figure 5). Due to the large size of
zeolite graphs, we reduce the hidden dimensions of these models
relative to their default configurations. A detailed summary of all
model hyperparameters is provided in the SI†.

All models are trained for 400 epochs, using the AdamW52 op-
timizer with default weights and a batch size of 128. The mod-
els were trained using mean-squared error loss for both the heat
of adsorption and loading derivative. During training of GNN
and SymGNN, edge dropout53 with a probability of 0.5 is used to

6 | 1–13Journal Name, [year], [vol.],

Page 6 of 14Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

6:
11

:4
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5TA02482J

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta02482j


||

||

||

Fig. 5 The SymGNN architecture. □ denotes the layer input, ∥ denotes concatenation and ⊙ denotes elementwise multiplication. f is the ELU
activation function, σ is the sigmoid activation and sp is the Softplus activation. In the model, atoms and distances between atoms are embedded,
following which symmetry-informed message passing takes places. In the output module, the final hidden state is used to predict the heat of adsorption
(y). By combining the final hidden state, the predicted heat of adsorption and the pressure, the model predicts the derivative of the loading.

regularize the network. Due to the limited amount of isotherm
data, the network is initially trained using only the heat of ad-
sorption objective for the first 100 epochs. This approach mimics
pre-training strategies used in fields like natural language pro-
cessing (NLP), where models first learn general patterns before
fine-tuning on specific tasks. This phase allows the model to es-
tablish the relationship between adsorption properties and frame-
work geometry. In the following 25 epochs, the coefficient for the
loading derivative loss is linearly increased from 0 to 1. For load-
ing predictions, we evaluate at 100 logarithmically spaced pres-
sures, ranging from 0.01 kPa to 10,000 kPa. A random window
of 25 pressures for each structure is used to calculate the loss to
reduce overfitting.

To construct a graph representation of a zeolite, we use a binary
node encoding, where silicon is represented as 0 and aluminum as
1. This approach is similar to the one used in other crystal GNNs,
where each atomic species is assigned a specific embedding to dis-
tinguish them in the graph. Undirected edges are drawn between
atoms within a radius of 8Å, while ensuring periodic boundary
conditions are respected. Each edge is further annotated with the
Euclidean distance between the connected atoms.

We calculate the generators for each atomic position within a
given topology. Since the goal is to leverage symmetry operations
to inform the GNN about the crystal geometry, atom types are not

considered in the calculation. Including them would cause most
structures to belong to the least symmetric space group, which
would remove any geometric information the generators carry. To
determine the generators, we first obtain space group information
from the GENPOS program of BCS39, then algorithmically iden-
tify the generators for each atomic orbit within the topology.

4.4 Structure Characterization

In experimental settings, the precise atomic structure of a zeolite
is often unknown. Determining key structural properties, such
as the Si/Al ratio or the specific atomic arrangement within the
unit cell, can provide valuable insights into a material’s adsorp-
tion behavior. To address this, we employ an optimization-based
approach to infer likely structures based on adsorption data.

We adopt a genetic algorithm (GA)-based approach, where the
genes represent the Si and Al atom assignments within the frame-
work30. Since we work with fixed framework topologies and do
not optimize atomic positions, our GA operates exclusively on the
distribution of Al and Si atoms within the framework. The al-
gorithm starts with an initial population of 200 candidate struc-
tures, initialized randomly. At each iteration, the top 25 struc-
tures (elite selection) are preserved, while mutations are applied
to both the best 25 and the second-best 25 structures, resulting
in 50 structures undergoing modifications per generation. Muta-
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tions include local swaps of approximately 5% of the atoms, full
permutations of the atom types, and changes that add or remove
a single Al atom. The population is filtered to remove symmetri-
cally equivalent structures (structures which can be transformed
into one another by a symmetry operation from the space group
of the topology), with a 90% probability, allowing high-fitness
configurations to appear multiple times while still limiting redun-
dancy. The population is then replenished to 200 candidates to
maintain diversity. We do not include crossover operations, as our
gene representation, where each gene directly corresponds to an
Al atom, does not benefit from traditional crossover mechanisms.
In this context, crossover would largely resemble random resam-
pling, a role already fulfilled by our existing mutation strategies.
In total, the GA runs for 50 generations, following which we ex-
tract the 25 best performing structures.

The fitness function follows the approach from Petković
et al. 30 , where candidates are evaluated based on their agree-
ment with the experimental isotherm. In addition, the fitness
function penalizes unnecesarily introducing aluminium atoms.
However, to mitigate potential biases in the model, we introduce
an additional term that explicitly evaluates how well the pre-
dicted isotherm captures the overall shape of the experimental
data. This adjustment helps refine the search towards physically
meaningful solutions.

To assess the model’s performance in structure characteriza-
tion, we apply this method to several experimental isotherms
from the literature. Specifically, we consider two MFI54, two
MOR55,56, and one LTA4A57 zeolite, with varying Si/Al ratios.
We analyze how well the algorithm can recover the correct struc-
tural parameters from the adsorption data. For this experiment,
we used the SymGNN model trained on the interpolation data
split.

5 Results

5.1 Model Performance

To evaluate the performance of the different models in both inter-
polation and generalization experiments, we calculate the Mean
Absolute Error (MAE) and Mean Squared Error (MSE) across var-
ious quantities. These include the heat of adsorption, the full
adsorption isotherm, and the isotherm near saturation pressure
(the final 10% of the pressure range). The last metric provides
insight into how well the model captures variations in loading
caused by the framework structure and aluminium distribution.
These metrics are summarized in Table 1.

Table 1 Performance of ALIGNN, Matformer, SymGNN and a regular
GNN for both the generalization and interpolation tasks.

Heat of adsorption Isotherm Isotherm sat.

Task Model MAE MSE MAE MSE MAE MSE

ge
ne

ra
liz

at
io

n ALIGNN 2.07 7.20 0.23 0.10 0.32 0.15
Matformer 2.46 9.45 0.38 0.35 0.95 1.34
GNN 2.17 7.39 0.33 0.19 0.76 0.63
SymGNN 1.44 3.94 0.31 0.16 0.16 0.04

in
te

rp
ol

at
io

n ALIGNN 3.01 15.13 0.16 0.08 0.29 0.21
Matformer 1.18 2.95 0.09 0.02 0.14 0.03
GNN 1.45 3.96 0.07 0.01 0.12 0.02
SymGNN 1.36 3.59 0.07 0.01 0.09 0.01

In the interpolation experiment, we observe that ALIGNN per-
forms poorly, likely due to its limited scalability to larger graphs.
Matformer achieves higher accuracy than the GNN-based models
for predicting the heat of adsorption but underperforms in the
isotherm prediction. SymGNN and the regular GNN show more
balanced performance across both properties. Since all models
have been trained on every topology present in the test set, the
focus shifts away from the influence of the zeolite framework and
more toward learning how aluminium distribution affects adsorp-
tion. As a result, explicitly modeling symmetries provides limited
additional benefit in this setting. As shown in Figure 6, SymGNN
performs slightly better than the regular GNN in both heat of ad-
sorption and isotherm predictions.

In contrast, the generalization experiment reveals a decline
in performance for all models, especially in terms of full
isotherm prediction, where errors increase substantially. How-
ever, SymGNN outperforms all baselines across tasks, achieving
the lowest mean absolute and mean squared errors for both heat
of adsorption and isotherm predictions. Notably, it maintains high
accuracy in the saturation region, with a substantial margin over
the other models. This indicates that incorporating symmetry in-
formation enables better generalization to unseen topologies. To
further analyze this, we compare the distributions of the true and
predicted isotherms for both SymGNN and the standard GNN,
as shown in Figures 7a and 7b. The symmetry-informed model
captures the overall behavior of the isotherm but increases the
loading too early. In contrast, the standard graph neural network
predicts isotherms with little variance, producing almost the same
isotherm for each structure and severely underestimates the load-
ing at higher pressures. This reduced variability can lead to lower
average errors, but at the cost of missing the structure-specific
features that are critical for realistic adsorption modeling.

We further evaluate the GNN and SymGNN in the generaliza-
tion experiment on MOR, MFI, MEL, and ITW, as presented in
the SI†. Both models maintain good predictive performance for
isotherms across most structures, but do not always capture the
full influence of topology on the heat of adsorption. In particular,
we observe a drop in isotherm accuracy for frameworks like TON,
whose adsorption behavior differs substantially from the training
distribution. These results indicate that while the models gener-
alize well overall, capturing subtle topological effects may require
additional training data or further architectural improvements.

Parity plots for the heat of adsorption are shown in Figures 7f
and 7g. For the SymGNN, we observe a slight overestimation of
the heat of adsorption for lower values, whereas the regular GNN
tends to underestimate lower values and overestimate higher val-
ues. This behavior may be attributed to the distribution of train-
ing data, where lower heat of adsorption values are underrep-
resented, potentially leading to underprediction by the model in
those regions. Despite this, SymGNN successfully captures the
underlying trends and generalizes well, effectively learning the
influence of unseen zeolite topologies on the heat of adsorption.

In the parity plots for loading (Figures 7h and 7i), a distinct
trend emerges. SymGNN primarily overestimates the loading,
whereas the regular GNN overestimates lower loadings but un-
derestimates higher ones. Examining the isotherm predictions
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Fig. 6 Comparison of SymGNN and regular GNN on the interpolation experiment. (a-e) True adsorption isotherms (black), SymGNN predicted
isotherms (blue) and GNN predicted isotherms (red), for a high Si/Al ratio structure (dashed) and low Si/Al ratio structure (dotted) for each topology.
(f,g) Parity plots for the heat of adsorption prediction. (h,i) Parity plots for the loading predictions. For all parity plots (f-i), darker blue indicates a
higher count, and increases in log-scale.

for ITW structures with varying Si/Al ratios (Figures 7c–7e), we
find that SymGNN accurately captures the overall trend and the
correct loading near saturation pressure. In contrast, the regu-
lar GNN increases the loading too early and fails to reach the
correct saturation pressure. Additionally, SymGNN better cap-
tures the influence of aluminium distribution across different
pressures (Figure 8), accurately modeling both the initial in-
crease and subsequent decrease in loading, whereas the regular
GNN only captures the decreasing trend. Overall, these results
demonstrate that incorporating symmetry improves generaliza-
tion to unseen zeolite structures, particularly in capturing adsorp-
tion trends across different frameworks, despite the model being
trained on isotherms from only four other topologies.

Table 2 Comparison of model efficiency. Training time is averaged per
epoch for the interpolation experiment. Inference time is averaged for a
batch of 32 zeolite structures. All experiments were run on Nvidia A100
GPUs.

Model Parameters (K) Train / Epoch (s) Inference (ms)

ALIGNN 790 212 338
Matformer 702 85 120
GNN 156 11 79
SymGNN 190 12 82

Table 2 summarizes the computational efficiency of the eval-
uated models. While ALIGNN and Matformer are significantly
more expensive in both training and inference time, the regular
GNN and SymGNN offer substantially faster runtimes. SymGNN
introduces only a small overhead compared to the regular GNN,

with a marginal increase in training and inference time, despite
incorporating symmetry-aware message passing. The generator
calculation required for SymGNN adds approximately 100 ms per
topology, but this step is performed only once and can be further
optimized. Overall, SymGNN provides a favorable trade-off be-
tween computational cost and improved accuracy, particularly in
generalization tasks.

5.2 Symmetry Utilization Analysis

While incorporating symmetry information into the model im-
proves its performance, it is essential to determine whether the
model has genuinely learned to leverage these symmetries or
if the observed improvements arise from other factors. To this
end, we examine whether the generator embedding network as-
signs distinct γ and β parameters to different sets of generators,
indicating that the model differentiates between symmetry ele-
ments. Additionally, we analyze how the model’s predictions
change when substituting the true generators of atoms in a ze-
olite with an alternative set, testing whether the learned symme-
try representations meaningfully influence adsorption behavior.
These experiments are carried out on the SymGNN model used in
the generalization setting.

In total, there are 61 unique sets of generators across all nodes
in the dataset. To examine whether the model has learned dis-
tinct γ and β parameters for each unique set of generators, we
calculate the cosine similarity between these parameters for dif-
ferent generators. Additionally, to assess whether the model has
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Fig. 7 Comparison of SymGNN and regular GNN on the generalization experiment. (a,b) True loading (black) distribution at all simulated pressures
compared with loading distribution obtained from SymGNN (blue) and GNN (red). (c-e) True adsorption isotherms (black), SymGNN predicted
isotherms (blue) and GNN predicted isotherms (red) for ITW structures with varying Si/Al ratios. (f,g) Parity plots for the heat of adsorption
prediction. (h,i) Parity plots for the loading predictions. For all parity plots (f-i), darker blue indicates a higher count, and increases in log-scale.
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function of the aluminium proportion for the symmetry informed (blue)
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learned to associate similar generator sets with similar parame-
ters, we define two distinct sets of generator pairs. The first set
contains pairs (i, j), where Gi ⊂ G j and |G j| − |Gi| = 1, meaning
one set of generators includes all elements of the other set, plus
one additional generator. The second set contains pairs where
this condition does not hold.

As shown in Figure 9, the model has indeed learned distinct γ

and β parameters for the different sets of generators across all lay-
ers of the network. From the plot, we observe that the parameters
of similar generators exhibit higher cosine similarity compared to
dissimilar ones, which is also statistically confirmed by the signif-
icant difference in cosine similarity between similar and different
generators. This indicates that the model has learned a meaning-
ful relationship between the generators, associating similar ones
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Layer 2
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Layer 3
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0
2
4

1 0 1 1 0 1 1 0 1 1 0 1
Cosine Similarity

Fig. 9 Cosine similiraty for γ and β parameters from similar generators
(blue) and different generators (orange), for each message passing layer.

with similar parameter values.
To analyze whether SymGNN bases its predictions on the ge-

ometric information provided by the generators, we replace the
generators of the nodes in the test set (ITW and CHA), with the
generators of nodes from a different zeolite. More specifically, for
each orbit of nodes in both topologies, we replace their genera-
tors with the same generator from a different zeolite. For each
generator replacement, we evaluate the model performance on
the modified test set.

In Figure 10, we observe how the evaluation metrics are im-
pacted when an incorrect set of generators is used for a given
topology. Overall, the performance degrades significantly, render-
ing the model nearly unusable. While there are a few instances
where the performance is marginally better, this is likely due to
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Fig. 10 Distribution of evaluation metrics when replacing true generators
of an orbit. The vertical red line indicates model performance when the
original (correct) generators are used. Note that the x-axis is in log-scale.
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Fig. 11 Aluminium distribution of experimental structures (dashed line)
and aluminium distribution predicted by the genetic algorithm (his-
togram). Structures included are MFI with a Si/Al ratio of 95 (blue)
and a Si/Al ratio of 31 (orange), MOR with a Si/Al ratio of 5.8 (green)
and a Si/Al ratio of 6.5 (red) and LTA with a Si/Al ratio of 1 (purple).

the use of a generator set that is similar to the correct one. In
the full isotherm, there are more incorrect generators for which
the error is lower, but this can be attributed to an inherent bias in
our network when predicting isotherms, as the model performs
notably better near saturation pressure. From this, we can con-
clude that the model indeed leverages the symmetries in the zeo-
lite structures.

5.3 Structure Characterization

To assess our model’s performance in structure characterization,
we examine the aluminium distributions in the generated struc-
tures. Figure 11 compares the predicted distribution of alu-
minium atoms per unit cell from our genetic algorithm with the
true distribution. By generating a range of possible aluminium
arrangements, our approach provides additional insight into the
material, as real crystals often exhibit variations in their unit cell
configurations. In the case of both MFI structures and one of the
MOR structures, the predicted aluminium distribution is centered
around the true value. However, for the other MOR structure,

the model tends to overpredict the aluminium content, while for
LTA4A, it underpredicts it. These deviations suggest that while the
model captures key trends in aluminium placement, there is still
room for improvement in accurately modeling specific cases. One
potential reason for these discrepancies is that the experimental
isotherms used in this analysis may differ from those generated
by simulation, due to factors such as framework defects, cation
presence, or adsorbate-framework interactions not fully captured
by the training data. These real-world variations may introduce
discrepancies that the model is not yet equipped to handle.

As observed in the generalization experiment, the model strug-
gles to fully generalize across different zeolite structures. While
incorporating the isotherm shape into the fitness function im-
proves performance, it may not completely resolve this limitation.
A possible way forward is to increase the diversity of training data
by incorporating more isotherms from a wider range of zeolite
topologies. Additionally, fine-tuning the model using experimen-
tal data could enhance its ability to capture real-world adsorption
behavior more accurately. Such improvements could make the
model more reliable for structure characterization and broaden
its applicability to new materials.

6 Conclusion
In this work, we introduced SymGNN, a symmetry-informed
graph neural network capable of accurately predicting adsorp-
tion properties in zeolites. Our results demonstrate that incor-
porating structural information into message passing allows for
improved generalization, enabling accurate predictions of both
adsorption isotherms and heats of adsorption, even for unseen
topologies. Despite being trained on a limited dataset, SymGNN
exhibits strong predictive performance. The model effectively
learns adsorption trends across different zeolite frameworks and
Si/Al distributions, highlighting its robustness even when data is
sparse. This makes it a promising approach for studying adsorp-
tion in materials where experimental data is limited. Nonetheless,
we observe that the model may struggle when encountering ad-
sorption patterns that deviate significantly from the training dis-
tribution, or when capturing more subtle topological effects on
adsorption properties. These limitations point to potential future
improvements, such as incorporating more diverse training data
or refining the model to better encode global structural features.

A key finding of this work is that a model trained entirely on
simulated isotherms can be used to analyze real zeolite struc-
tures. By applying SymGNN to experimental adsorption data, we
demonstrated its potential for structure characterization, showing
that it can infer properties such as the Si/Al ratio from adsorption
trends. This suggests that machine learning models trained on
computational data can bridge the gap to real-world applications.

One limitation of our study is the restricted availability of ad-
sorption isotherms, both in terms of the number of samples and
the diversity of zeolite topologies. While our model performs well
across the available data, expanding the dataset to include more
topologies and adsorption conditions would likely improve gen-
eralization further.

Additionally, the model currently handles idealized zeolite
structures, and performance might vary with more complex or
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larger frameworks, such as those containing defects or larger unit
cells. However, the model’s design should allow it to scale to
larger structures, as the GNN considers local environments with a
receptive field that extends periodically, resulting in the complex-
ity scaling linearly with the amount of atoms. While the model
may struggle with long-range effects in very large unit cells, tech-
niques like hierarchical GNNs could be explored. For structures
with defects, the model could be trained on single unit cells con-
taining defects, as the large graphs can negatively affect the com-
putational complexity of model training. In turn, this model could
be applied to supercells containing multiple unit cells with vary-
ing defect configurations, as it can combine the local patterns it
learns through message passing, making its output independent
of the number of atoms in the graph.

Looking ahead, generative models offer an exciting avenue for
inverse design, allowing for the discovery of new zeolite struc-
tures with tailored adsorption properties. However, while such
models have shown promise in MOFs34, they only operate on
a building block level. As such, their application at the atomic
level for porous materials remains largely unexplored. Future
work could explore how generative models can be combined with
physics-informed learning to accelerate zeolite design.

Fine-tuning SymGNN with experimental data presents another
promising direction. Incorporating real adsorption measurements
into training could further improve both prediction accuracy and
structure characterization, helping refine our understanding of
real zeolite materials. This approach could also enhance the
model’s ability to generalize beyond simulated conditions, mak-
ing it even more applicable to practical adsorption studies. Fur-
thermore, the method is not limited to zeolites and could be ap-
plied to other classes of porous materials such as MOFs. Extend-
ing SymGNN to these systems would require minimal architec-
tural changes and could open up broader applications in adsorp-
tion, separation, and sensing.

Overall, this work highlights the potential of machine learning
for adsorption modeling in nanoporous materials. By leveraging
structured representations and data-driven learning, models like
SymGNN provide a powerful tool for both predictive modeling
and material characterization, paving the way for future advances
in adsorption science and materials discovery.
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Data for the zeolite structures and their adsorption properties, as well as the code for the 
models and experiments, is available at https://doi.org/10.5281/zenodo.15085783. Code for the 
PORRAN program is available at https://doi.org/10.5281/zenodo.15050435.  
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