Ice templating water-stable macroporous polysaccharide hydrogels to mimic plant stems

Abstract

Water-stable macroporous hydrogels, inspired by the structural and chemical characteristics of plant stems, are expected to open a wide range of possibilities in soft materials for passive liquid transport. However, obtaining efficient materials for these applications still poses a major challenge due to the complexity of shaping hydrogels at the relevant scale-length. Here, water-stable macroporous hydrogels were fabricated using alginate and TEMPO-oxidized cellulose via a new approach involving ice templating and topotactic ion-crosslinking with Ca2+. This approach fully avoids the energy-intensive lyophilization process and results in composite hydrogels with pore sizes akin to those found in celery xylem, a model we chose for plant stems. Importantly, the pore size could be tailored by adjusting both the ice-growth velocities and the ratios of alginate to oxidized cellulose. The resulting hydrogels displayed remarkable water stability along with viscoelastic properties and wettability that depend on the alginate and oxidized cellulose ratios. Mechanical properties, such as compression stress and toughness, consistently increased with higher alginate contents. In addition, liquid transport measurements on crosslinked hydrogels with varying compositions and ice growth velocities revealed rising speeds comparable to those observed in celery, confirming the ability of polysaccharide-based hydrogels obtained by ice templating and topotactic crosslinking as relevant materials to mimic the function of plant stems. Due to their intrinsic biocompatibility, the materials presented here offer significant potential for developing soft liquid transport systems suited for biological settings, with promising applications in both environmental and bioengineering fields.

Graphical abstract: Ice templating water-stable macroporous polysaccharide hydrogels to mimic plant stems

Supplementary files

Article information

Article type
Paper
Submitted
01 Oct 2024
Accepted
28 Jan 2025
First published
28 Jan 2025

J. Mater. Chem. B, 2025, Advance Article

Ice templating water-stable macroporous polysaccharide hydrogels to mimic plant stems

K. Komiyama, M. Allard, C. Eschenbrenner, C. Sicard, A. Hamraoui and F. M. Fernandes, J. Mater. Chem. B, 2025, Advance Article , DOI: 10.1039/D4TB02204A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements