Nanozyme-mediated high-entropy-driven photothermally enhanced tumor catalytic therapy†
Abstract
Nanozyme-mediated catalytic therapy has emerged as a promising strategy for antitumor treatment, but it is imperative to further improve the catalytic efficiency of nanozymes to achieve potentiated antitumor efficacy. Single-phase high-entropy (HE) nanozymes with desirable enzyme-like catalytic activity and photothermal properties are appealing for enhancing the efficacy of catalytic therapy but have remained synthetically challenging. As a proof-of-concept demonstration, we herein prepared a single-phase HE Prussian blue analogue (HEPBA) using a conventional coprecipitation method. The HE mixing state enabled an exceptionally high photothermal conversion efficiency of 95.3% and a notable photothermally enhanced peroxidase-like catalytic activity. Therefore, the HEPBA-mediated photothermally enhanced catalytic therapy led to potentiated antitumor efficacy in both 4T1 and CT26 tumor-bearing mouse models. Thus, this work provides a rational and flexible platform for convenient and green preparation of biocompatible HE nanozymes and offers new perspectives on the use of HE nanozymes to improve the efficacy of catalytic therapy.