Dual model biosensor integrated with peroxidase-like activity and self-assembly for uric acid detection

Abstract

Uric acid (UA), the final product of purine metabolism, is a crucial biomarker for gout diagnostics and highly related to various metabolic diseases. Precise detection of UA levels in serum and urine enables disease diagnosis and guides treatment. Combining the advantages of colorimetry and laser desorption/ionization mass spectrometry (LDI-MS), we developed a dual-model biosensor based on hollow Cu2O@Au nanocubes (h-Cu2O@Au NCs) for UA detection. The h-Cu2O@Au NCs demonstrated excellent peroxidase (POD)-like activity and were used to rapidly detect UA by colorimetric assay, with a linear range of 0.05–2 mM and limit of detection (LOD) of 35.71 μM. Moreover, the h-Cu2O@Au NCs achieved enrichment and detection of UA via the liquid–liquid interface self-assembly-assisted LDI-MS, with a linear range of 0.01–0.5 mM, LOD of 15.6 μM, and reproducibility of <5%. In view of its advantages, the dual-model nanoplatform based on h-Cu2O@Au NCs achieved UA detection in serum samples by colorimetry assay and in urine samples by LDI-MS, obtaining results consistent with the commercial UA assay kit (72–511 μM for serum, R2 = 0.956 and 2–9 mM for urine, R2 = 0.876), presenting potential in the rapid and sensitive detection of UA in clinic.

Graphical abstract: Dual model biosensor integrated with peroxidase-like activity and self-assembly for uric acid detection

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2025
Accepted
06 May 2025
First published
27 May 2025

J. Mater. Chem. B, 2025, Advance Article

Dual model biosensor integrated with peroxidase-like activity and self-assembly for uric acid detection

D. Liang, Z. Ding, Y. Ding, W. Tang, S. Yang, X. Xu, Y. Wang and K. Qian, J. Mater. Chem. B, 2025, Advance Article , DOI: 10.1039/D5TB00692A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements