Nanozymes as Next-Generation ROS Scavengers: Design Strategies, Catalytic Mechanisms, and Therapeutic Frontiers
Abstract
Reactive oxygen species (ROS) play a dual role in human physiology, acting as essential signaling molecules at physiological levels while driving oxidative damage and disease pathogenesis when overproduced. This review systematically examines the molecular mechanisms of ROS-induced tissue injury and the evolution of antioxidant materials. Conventional antioxidants and emerging nano-antioxidants are discussed here, with particular focus on nanozymes - engineered nanomaterials mimicking natural enzyme activities. The article details design strategies for metal-based, carbonaceous, and polymeric nanozymes, their catalytic ROS scavenging mechanisms (including superoxide dismutase-, catalase-, and peroxidase-like activities), and therapeutic applications in inflammatory diseases, organ protection, and chronic disorders. Through comparative analysis of material performance and biological effects, we highlight nanozymes' advantages in stability, multifunctionality, and targeted delivery. Current challenges regarding biocompatibility optimization, in vivo fate prediction, and clinical translation are critically discussed. This work provides strategic insights for developing next-generation antioxidant nanomaterials with enhanced therapeutic precision and safety profiles.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles