Fiber-reinforced zwitterionic elastomer composites for artificial heart valves†
Abstract
Valvular heart disease (VHD) is a leading cause of cardiovascular morbidity and mortality. Polymeric heart valves (PHVs) offer potential solutions for treating VHDs but are limited by issues like thrombosis, calcification, and inflammation. Surface modification with antifouling coatings has been explored to mitigate those complications, but these coatings often exhibit poor stability and mechanical mismatch with elastomer substrates. Here, we report a fiber-reinforced zwitterionic elastomer composite for PHVs that simultaneously achieves antifouling surfaces and robust mechanical properties. This approach generates zwitterionic surfaces in situ and incorporates orthogonally aligned electrospun fibers for mechanical reinforcement. The resulting composite integrates excellent anticoagulant and antifouling properties with anisotropic mechanics, mimicking the structure and function of natural heart valve leaflets. It maintained chemical and mechanical integrity during 60-day serum immersion and withstood 100 million cycles in accelerated fatigue testing. In vivo evaluation using a rat subcutaneous implantation model revealed remarkable anti-inflammatory and anti-calcification effects.
- This article is part of the themed collection: Journal of Materials Chemistry B HOT Papers