Issue 5, 2025

High emission quantum yields and color-tunable properties of Ln-chelates embedded in PMMA

Abstract

This research presents a series of PMMA thin layers (labelled Ln_PMMA, where Ln = Eu3+, Tb3+, Sm3+, Dy3+) with high overall emission quantum yields of QLEu = 85%, QLTb = 66%, QLSm = 3%, and QLDy = 6% with introduced lanthanide (Ln3+) coordination compounds of the type [Na2LnL4(OTf)(DMF)] (where L = N-(diphenylphosphoryl)-pyrazine-2-carboxamide, OTf = [CF3SO3], DMF = N,N-dimethylformamide). This is the first analysis comparing the photophysical properties of coordination compounds encapsulated in PMMA with single crystals, which includes the influence of factors such as the inhomogeneity of the Ln3+ coordination polyhedra and the refractive index. A model is proposed to estimate the change in QLLn when the Ln chelate is incorporated into a PMMA medium, and it satisfactorily reproduces the experimental data with a maximum absolute error of 3% for the case of Eu3+ samples. At the same time, our work shows the influence of the PMMA matrix on the photophysical properties of Ln3+ with large (Eu, Tb) and small energy gaps (Sm, Dy) between the emitting levels and adjacent levels with lower energy. QLLn for coordination compounds introduced into PMMA decreases relative to single crystals by about 10% for Eu3+ and Tb3+ as well as by about 70% for Sm3+ and Dy3+ for which emitting levels are quenched by the electron–phonon coupling presented by the vibrational modes of the PMMA matrix. Ln_PMMA thin layers containing a mixture of Eu3+, Tb3+, Sm3+ and Dy3+ coordination compounds are characterized by multicolor tunable emission.

Graphical abstract: High emission quantum yields and color-tunable properties of Ln-chelates embedded in PMMA

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2024
Accepted
04 Dec 2024
First published
05 Dec 2024

J. Mater. Chem. C, 2025,13, 2142-2153

High emission quantum yields and color-tunable properties of Ln-chelates embedded in PMMA

A. Lipa, Y. H. Pham, A. N. Carneiro Neto, V. A. Trush, H. Li, O. L. Malta, V. M. Amirkhanov and P. Gawryszewska, J. Mater. Chem. C, 2025, 13, 2142 DOI: 10.1039/D4TC03939D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements