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Abstract

Polydimethylsiloxane (PDMS) is one of the most widely used materials in triboelectric nanogenerators 

(TENGs) due to its remarkable flexibility and robustness, yet its triboelectric output often limits 

practical applications. In this study, we presented a method for tuning the triboelectric properties of 

PDMS through surface functionalization using self-assembled monolayers of siloxane-based molecules. 

Our results demonstrate that the functionalized PDMS films exhibit distinct charge donating or 

withdrawing behaviours, confirmed by molecular simulations and experimental characterizations. 

Notably, trimethylsiloxyphenylmethacrylate (TMSPMA) functionalized PDMS achieved the highest 

voltage of 189 ± 6 V and current output of 6.75 ± 0.26 µA, leading to a 2-fold increase in peak power 

density compared with the standard PDMS. Moreover, to elucidate the charge transfer mechanisms 

between the functionalized PDMS and indium tin oxide (ITO) electrode, nanoanalytical techniques such 

as nano-Fourier transform infrared spectroscopy (nano-FTIR) and Kelvin probe force microscopy 

(KPFM) were employed to evaluate the surface chemical and electrical properties at the local scale. 

This research not only enhances the understanding of polymer/metal contact electrification but also 

opens avenues for optimizing TENG efficiency through targeted surface functionalization strategies.

Keywords: Triboelectric nanogenerators; Polydimethylsiloxane; Surface functionalization; Self-

assembled monolayers

1. Introduction 

Triboelectric Nanogenerator (TENG) is an emerging technology that converts mechanical energy into 

electrical energy based on contact triboelectrification and electrostatic induction. With its great 
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advantages of scalability, simple fabrication, and flexibility, extensive research has been conducted 

towards commercial applications [1,2]. Polydimethylsiloxane (PDMS), a silicone polymer with 

excellent mechanical resilience and electron-withdrawing ability, has become one of the most widely 

used polymer materials in the research pertaining to TENG devices [3]. As a soft elastomer material, 

PDMS exhibits several advantages during TENG device manufacturing including ease of processing, 

low cost, good transparency, and potential for surface functionalization [4,5]. Various applications of 

PDMS-based TENG have been developed in biomechanical energy harvesting [6,7], vital sign 

monitoring [8,9], robotic sensors [10,11], and Internet of Things (IoT) [12]. However, the energy 

conversion efficiency of prepared TENG devices is still limiting real-world applications. For example, 

a PDMS film generates a triboelectric output of 232 V and 6 µA while contacting with a copper 

electrode, as reported by Xu et al [4]. To overcome the current bottleneck in the triboelectric output of 

TENG devices, many approaches have been made to improve the triboelectric performance of PDMS-

based TENG devices including ion injection [13,14], surface micro-patterning design [15,16], and 

incorporating high dielectric constant fillers [17,18]. For example, by the combination of using ion 

injection through an antistatic gun and surface microstructure using cilia, Seo et al. significantly 

improved the triboelectric performance of a single electrode PDMS-based TENG [13]. In 2017, Rasel 

and Park fabricated microstructured PDMS using sandpaper to enlarge the contact area during 

triboelectrification, producing a peak-to-peak open-circuit voltage of up of 103 V against the human 

skin [19]. Moreover, Shi et al. modulated a PDMS-TENG by incorporating BaTiO3 and Ag 

nanoparticles, improved the dielectric constant and the charge-trapping ability of the nanocomposites, 

yielding a maximum output voltage and current of 88 V and 8.3 µA [20]. While these approaches 

contribute to performance improvements, a comprehensive understanding of the underlying charge 

transfer mechanism in PDMS remains elusive. The triboelectrification process involves complex 

surface interactions between materials, and the basic origin of the charge transfer is still being debated. 

The three proposed theories, including electron transfer, ion transfer, and material transfer, have been 

observed with experimental and computational studies under various cases [21-25], but a need for more 

refined characterization techniques is becoming evident to study these mechanisms.

Herein, we report a method to functionalize the PDMS surface with various siloxane groups to examine 

the effect of surface functionalization on the triboelectric output performance. Our previous findings 

have proven the improved charge generation properties by altering the combination of functionalized 

surfaces under a dielectric-to-dielectric system [26]. In this research, we investigated the actual 

performance of a TENG device under a dielectric-to-metal condition by measuring the open-circuit 

voltage and short-circuit current output. The neat PDMS materials are prepared and then functionalized 

with three different types of self-assembled monolayers (SAM) with different electron-

donating/withdrawing behaviour. Our result indicates that the triboelectric properties of PDMS can be 

tuned through surface functionalization. Moreover, using nanospectroscopy techniques, we observed 
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variations in the work function of functionalized PDMS surfaces and evidence of bond cleavage and 

charged materials transfer to the ITO surface, elucidating the underlying charge transfer mechanisms. 

The functionalization approach and discussion of mechanisms introduced in this study aim to link 

nanoscale characterizations with fundamental triboelectric principles, providing guidelines to advance 

TENG design for higher output performance.

2. Methods

2.1 Fabrication of functionalized PDMS

Polydimethylsiloxane (PDMS) elastomer and curing agent was obtained from Dow Corning (Sylgard 

184). The PDMS samples were prepared by mixing the precursor and curing agent at a mass ratio of 

10:1. The resulting mixture was poured onto an ITO-coated glass substrate and spun at 2500 rpm for 

10 seconds. After curing the PDMS samples at 80 °C for 3 h, the obtained PDMS samples were cut into 

squares, each with an area of 2.5 × 2.5 cm2 and a thickness of 100 μm. The PDMS samples were then 

plasma treated by oxygen to attach hydroxyl groups on the surface. Three different types of 

functionalized groups, (3-aminopropyl)triethoxysilane (APTES), 3-(trimethoxysilyl)propyl 

methacrylate (TMSPMA) and vinyltrimethoxysilane (VTMS) was dissolved in ethanol respectively at 

a concentration of 20 g L-1. The prepared PDMS was immersed in prepared solutions for 1 h and dried 

in ambient air for 30 min to yield functionalized PDMS. 

2.2 Electrical Performance Measurements

The triboelectric output of the as-prepared functionalized PDMS was measured under contact-

separation mode. A permanent electromagnetic shaker (Brüel & Kjær LDS V201) powered by a 

voltage-amplified arbitrary function generator (GW Instek AFG-2105) was used to generate the 

periodic contact-separation motion. The ITO-contacted PDMS was then coupled with another ITO 

surface as the counter electrode. The TENGs were contacted for 30 minutes to reach stability. The 

standard electrical output was tested under impact driven by a 2 Hz square wave at a separation distance 

of 4 mm. The average speed of the moving electrode during contact-separation was 0.4 m s-1. The 

contact force was monitored by a loadcell (RS PRO) connected to the sample holder. The instantaneous 

force at contact was maintained at 50 N by the controlled separation gap and shaker driving voltage. 

The voltage output of samples was measured using a digital oscilloscope (PicoScope 5444B) equipped 

with a 100 MΩ high voltage probe (Rigol RP1300H). The current output was measured by an 

electrometer (Keithley 6514). 

2.3 Materials Characterizations
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A scanning electron microscope (SEM) was used to reveal the surface morphology of the prepared 

materials. The Fourier-transform infrared spectra (FTIR) were recorded by a Nicolet iS10 FTIR 

spectrometer equipped with an attenuated total reflectance (ATR) module. The atomic force 

microscopic (AFM) surface height topography and the nano-FTIR spectra via infrared 

nanospectroscopy were determined through a scattering-type scanning nearfield optical microscope 

(Neaspec s-SNOM) [27]. The nano-FTIR spectra were taken at 20 nm resolution, combining the spectra 

of two laser sources with ranges from 700 to 1400 cm-1 and 1000 to 1600 cm-1. An average of 11 

individual interferograms were recorded for each spectrum with a spectral resolution of 12 cm-1 and an 

integration time of 10.2 ms. The far-IR spectra (spectral range 150-650 cm-1) were recorded at the 

multimode IR imaging and microspectroscopy (MIRIAM) Beamline B22 at the Diamond Light Source 

synchrotron. A Bruker Vertex 80v FTIR spectrometer equipped with an ATR accessory (Bruker Optics) 

was used to perform the measurement. The detector was equipped with a liquid helium cooled Si-

Bolometer. Post-measurement, the obtained data was processed using the OPUS 7.2 software. The 

Kelvin-probe force microscopy (KPFM) data were recorded using an Asylum Research Cypher ES with 

an ASYELEC-01-R2 conductive tip under SKPM mode. The scan area was set to 1 µm × 1 µm, with a 

scan resolution of 128 × 128 pixels and a scan rate of 2.44 Hz to minimize drift. The KPFM results 

were processed using Gwyddion software [28], where the color scale and range were adjusted, and the 

average surface potential was calculated. The pull-off test was conducted in a nanoindenter (iMicro 

KLA Tencor). The test employed a cylindrical flat punch with a nominal diameter of 52 µm. Initially, 

the flat punch was lifted 2 µm above the sample surface. Then the tip approaches the surface at a speed 

of 100 nm s-1, with surface detection facilitated by monitoring the phase signal. After contact, the punch 

applied a load at a rate of 0.01 mN s-1 until reaching a maximum load of 0.1 mN. The tip was held at 

this peak load for 2 seconds. Then the tip was unloaded at the same rate and retracted 5 µm from the 

surface. The pull-off stress was calculated by dividing the measured pull-off force by the nominal 

contact area. The work of adhesion was calculated by integrating the area under the load-depth curve. 

A total of 12 tests were performed on a 5 × 5 mm2 sample area. 

2.4 Density functional theory (DFT) calculations

DFT calculations were performed to investigate the electronic properties of SAM molecules for surface 

functionalization. The molecular structures were first geometrically optimized utilizing the B3LYP 

functional combined with the 6-31G basis set [29,30] using Gaussian 09 [31]. The electrostatic potential 

maps were then generated to visualize the charge distribution across the molecules.

3. Results 

3.1 Materials
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Figure 1 outlines the sample preparation stages in the surface functionalization of PDMS. The pristine 

PDMS samples are first prepared by spin coating on ITO-coated glass followed by 3 hours of curing. 

The samples are then plasma treated and immersed in several siloxane-based molecules to attach certain 

functional groups on the PDMS surface. The surface-functionalized PDMS films show similar surface 

topography AFM, as shown in Figure S1, with all functionalized PDMS showing surface roughness 

less than 1.2 nm, confirming the flatness of PDMS during contact. Figure 2 shows the schematics of 

organic molecules that can be covalently linked to the PDMS backbone, including APTES, VTMS, and 

TMSPMA. Despite their structural similarity, these molecules were selected for their distinct functional 

properties. The relative electronic characteristics of these molecules are confirmed through ab initio 

density functional theory (DFT) calculations, where their electrostatic potential distributions are shown 

in Figure 2. The siloxane groups in these molecules facilitate bonding with the PDMS backbone, while 

the distinctive parts of each molecule offer unique electronic properties to the overall structure leading 

to different chemical polarities. In general, the aminopropyl group in APTES offers a strong electron-

donating property through the amine group within the molecule, whereas VTMS has a vinyl group that 

is relatively neutral due to the localized electron density around the C=C bond. On the other hand, the 

methacrylate bond in TMSPMA possesses a strong electron-withdrawing property resulting from the 

electronegative oxygen atoms in the carbonyl and ester groups, showing the most deficit in electrostatic 

potential [32].

The successful surface functionalization of PDMS with various functional groups has been confirmed 

through ATR-FTIR spectroscopy. Figure 3a displays the mid-infrared absorption bands for the different 

PDMS samples. All PDMS samples show characteristic vibrational bands, including CH3 rocking mode 

at 789 cm-1, Si-O-Si stretching mode at 1000-1100 cm-1, and Si-C stretching mode at 1257 cm-1 [33]. In 

addition, the APTES functionalized PDMS shows additional bands at 1561 and 1484 cm-1, representing 

the N-H bending modes. The TMSPMA-PDMS also shows the C=O stretching mode at 1721 cm-1. The 

VTMS-PDMS displays less apparent changes in spectra, with a slight signal at 1722 cm-1 for C=C 

stretching, as shown in Figure S2. The nano-FTIR spectra were also taken to confirm the obtained FTIR 

results, as displayed in Figure 3b. The nearfield result is well-aligned with ATR-FTIR findings from 

bulk samples. In the far-IR region as shown in Figure S3, all functionalized PDMS exhibit similar 

Terahertz absorption bands, with a dominant peak observed at around 400 cm-1 (~12 THz) for the Si-

O-Si backbone bending and 285 cm-1 (~8.5 THz) for Si-C stretching. 

3.2 Electrical Performance

The triboelectric outputs of prepared PDMS samples were examined by cyclic contact-separation 

motion against an ITO surface, acting as the counter tribo-positive material. The experimental setup for 

the measurement is shown in Figure S4. The maximum force at contact was maintained at 50 N for all 

measurements, monitored by a load cell, as shown in Figure S5. Regarding the open-circuit voltage 
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output, the standard PDMS material reaches a maximum voltage of 136 V and peak-to-peak voltage of 

196 V, as shown in Figure 4a. In contrast, APTES-PDMS and VTMS-PDMS both show reduced voltage 

output, with peak-to-peak voltages of only 34% that of the neat PDMS. On the other hand, TMSPMA-

PDMS, functionalized with a more electronegative functional group, demonstrates a 1.42 times 

improvement in maximum voltage and 2.25 times improvement in maximum current, showing the 

highest voltage and current output of 189 ± 6 V and 6.75 ± 0.26 µA, derived from 40 contact-separation 

cycles. Although APTES-PDMS and VTMS-PDMS show similar voltage output in value, their output 

profile differs significantly. When looking at a single spike of electric signal generated during contact 

and separation in Figure 4b, all PDMS materials, except for APTES-PDMS, show a positive voltage 

during contact followed by a negative voltage during separation. Typically, PDMS material is 

considered an excellent tribo-negative material, which means it withdraws and holds negative charges 

on its surface in a triboelectric pair. While the PDMS and ITO surfaces are in contact, the surface of 

PDMS gets negatively charged by taking away the free electrons on the conductive ITO surface. 

However, an inverted phenomenon was observed for the case of APTES-PDMS, under the premise that 

the electrical connections during data collection are the same for all samples, indicating that the APTES-

PDMS has become a more tribo-positive material relative to the ITO. The APTES-PDMS donates 

electrons to ITO during contact and retrieves during separation, resulting in the reversed voltage profile 

exhibited in Figure 4b. The strong electron-donating effect of the amine group in APTES resulted in 

changes in the original surface property of PDMS. Although VTMS-PDMS also reduces the 

triboelectric output due to the neutral surface alkene groups, the reduction did not alter its relative 

position in the triboelectric series compared to ITO.

A similar trend is observed in the closed-circuit current output as shown in Figure 4c. APTES-PDMS 

shows the lowest current output, followed by VTMS-PDMS, neat PDMS, and TMSPMA-PDMS. 

Although APTES-PDMS and VTMS-PDMS have similar voltage output, the current for APTES-PDMS 

is much lower.  While the output voltage reflects the potential difference between the contacting 

materials, the measured current compensates the induced charges on electrodes. As ITO is a conductive 

material abundant with free charge carriers, it has limited ability to hold or transfer more electrons from 

the APTES-PDMS side, resulting in the low current output of APTES-PDMS. When examining the 

individual signal peaks in Figure 4d, APTES-PDMS has the only reversed output peak shape compared 

to other membranes, confirming our findings in voltage measurements. It is widely accepted that the 

surface property of a material plays a vital role in its triboelectric performance. While modifying the 

material surface with various functional groups, the work function of the material compared to 

the electrode is altered, leading to different charge transfer phenomena. These triboelectric performance 

results align with our DFT predictions, as shown in Figure 1c, highlighting the role of surface 

functionalization in tuning charge transfer characteristics. Summarizing the relative electron-donating 

and withdrawing propensities of PDMS materials during contact, a triboelectric series can be 
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established for materials studied in this work, as shown in Figure 4e. Among these, APTES-PDMS is 

the only material that exhibits stronger electron-donating behaviour compared to conductive ITO, 

placing it as the most tribo-positive material in the series. On the other hand, through functionalization, 

TMSPMA-PDMS with enhanced withdrawing ability ranks furthest to the right within the series. 

The peak power density of prepared materials was measured and calculated by connecting the TENG 

devices to loads with varying resistances. The closed-circuit voltage was measured across the resistors, 

and the peak power density was calculated using Pd = V2/(RA). As summarized in Figure 4f, the 

TMSPMA-modified PDMS exhibits the highest power density of 393 mW m-2, which has doubled the 

power output of the neat PDMS attributed to the higher voltage and current output of the former, 

whereas APTES-PDMS shows the lowest power output. It is worth noticing that all these materials 

show their highest power density at around 3 MΩ, except for APTES-PDMS, which peaks at 10 MΩ. 

This optimum resistance at the highest power density denotes the internal resistance of the device [34]. 

The high internal impedance of the APTES-PDMS device can be explained by the high electron transfer 

resistance between the surfaces of two tribo-positive materials. Individual measurements of voltage-

resistance relationships for functionalized PDMS are shown in Figure S6. The alternating charge 

transferred during contact-separation can be rectified into direct current and harvested by capacitors for 

real-world applications. Figure S7 shows the charging curves for capacitors ranging from 0.1, 0.47, 1, 

and 10 μF capacitances. Comparing the charging rate for a 0.1 μF capacitor, TMSPMA-PDMS achieved 

the fastest charging speed, reaching a voltage of 7.3 V in 50 s, as shown in Figure 4g.

3.3 Charge Transfer Mechanism 

The charge transfer mechanism of prepared PDMS-based TENGs is revealed and discussed based on 

results from various nano-scale characterization techniques. Among the three charge transfer 

mechanisms, the ion transfer model explains charge transfer by the formation of a water layer on the 

surface. This model normally applies to ionic and hydrophilic polymers. However, in our case, PDMS 

has high hydrophobicity where the water layer and amount of charge transfer through ions can be 

neglected since surface ionization reaction is unlikely to happen between the hydrophobic solid surfaces 

[35].  We therefore mainly elucidate the role of electron transfer and mass transfer mechanisms during 

the mechanical interaction between functionalized PDMS and ITO surfaces. 

From the electron transfer perspective, electrons are transferred from a material with lower work 

function to higher, and the amount of charge transfer is proportional to the difference in the work 

function of two materials. In this study, the work function of functionalized PDMS (Φsample) was 

indirectly measured by KPFM through the measurement of contact potential difference (VCPD):

 𝛷sample = 𝛷tip ―𝑒 ⋅ 𝑉CPD (1)
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where Φtip is the work function of the KPFM probe tip and e is the charge amount carried by an electron. 

According to Equation 1, a higher measured contact potential difference corresponds to a lower surface 

work function. To measure the contact potential difference of PDMS samples, pristine polymers were 

cut into squares of 5 mm × 5 mm and stabilized for two days after sample preparation to ensure no 

accumulated charge on the surface. Figure 5a demonstrates the average VCPD values and surface 

potential distribution maps of functionalized PDMS samples measured under stabilized condition. The 

functionalized PDMS samples exhibit a relatively homogeneous surface potential, with APTES-PDMS 

showing the highest VCPD and, therefore, the lowest work function, while TMSPMA-PDMS showed the 

lowest VCPD and highest work function, consistent with the trend in previously summarized triboelectric 

series in Figure 4e. The work function of a material is the minimum thermodynamic energy required to 

remove an electron from a solid to a point just outside the solid surface [36]. Electrons will be 

transferred from the material with a lower work function to higher in order to maintain Fermi level 

balance, resulting in the material with lower work function positively charged after contact [37]. This 

behaviour is illustrated in the surface state model to explain the electron transfer phenomenon as 

proposed in Figure 5b. Here, the energy levels of functionalized PDMS are ranked according to the 

measured VCPD values in comparison to the counter material ITO. While the APTES-PDMS has the 

lowest work function, its Fermi level exceeds the energy level of ITO, thereby transferring electrons 

during contact. Conversely, when PDMS surface is functionalized with TMSPMA, the work function 

increases, resulting in a lower Fermi level. As a result, this increased energy gap between TMSPMA-

PDMS and the ITO electrode, compared to neat PDMS, thereby driving more electrons to hop from 

ITO surface to TMSPMA-PDMS and enhancing charge generation within a TENG device. 

On the other hand, evidence of material transfer has been observed via nano-FTIR analysis and KPFM 

scans. Mass transfer or material transfer model proposes that the charge transfer between two materials 

is due to the transfer of small fragment materials that carry a certain amount of charge that adhere to 

another surface during contact. As a soft polymer material with relatively low Young’s modulus and 

high surface adhesion, PDMS is more likely to transfer materials during contact from the high contact 

area and higher density of van der Waals intermolecular bonds [38]. To examine the mass transfer 

between PDMS film and ITO electrode, pristine materials were clamped together using spring clamps 

under 6.9 N to ensure conformal surface contact and eliminate potential contamination effects. Then 

the materials were separated and evaluated under AFM integrated nano-FTIR spectroscopy at a 20-nm 

spatial resolution [27]. The surface topography of the contacted ITO surface from AFM shows 

increased surface roughness with particles of different sizes. Figure 6a shows the observation of several 

nano-sized particles on the ITO surface. By scanning the nano-FTIR spectra across the particles, 

characteristics peaks at 1265 cm-1 and 1091 cm-1 representing Si-C stretching and Si-O-Si stretching 

were observed on the particles which confirmed the presence of PDMS.  The IR absorption peaks are 

only observable near the particles but not on the smooth ITO surface, demonstrating the transfer of 
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PDMS residues during contact. In addition to nano-sized PDMS particles, larger transferred fragments, 

up to 10 μm, are also observed as shown in Figure S8. In this case, the absorption peaks are detectable 

even far away from the particle, indicating a layer of PDMS being transferred to ITO surface not only 

of the large particle but also with cleavage of bonds. The same observation is found for TMSPMA-

PDMS, as shown in Figure S9. Comparing the relative peak intensity of 1265 cm-1 and 1091 cm-1, the 

Si-O-Si peak shows a lower peak intensity at the ITO surface, compared with bulk TMSPMA-PDMS. 

This could be an indication of Si-O bond breaking due to the physical contact, that the chemical bond 

breakage on the backbone of functionalized PDMS leads to the transfer of small material fragments 

across the contact interface [4]. These fragments carry charges due to chemical bond breaking, which 

cause the transfer of charges while contacting with the counter material. 

The KPFM results further support the material transfer mechanism. In Figure 7a, we detected rounded 

PDMS residue on the ITO surface immediately after contact, showing a significantly more negative 

surface potential than the pristine ITO surface. The 3D topography and potential distribution of PDMS 

residues revealed sizes from 2 µm down to the nanoscale, as shown in Figure 7b. The surface charge of 

ITO initially after contact shows a highly positive value due to the withdrawal of electrons from the 

conductive surface, then gradually drops as it stabilizes and discharges under ambient conditions. 

However, it can be observed that the PDMS residue retains a much lower surface potential compared 

to ITO surface, as shown in Figure 7c, indicating that these charged tribo-negative counterpart 

fragments transfer to the surface may contribute importantly to charge transfer during contact. In 

addition to the observed transferred polymer fragments on the electrode surface, further experiment has 

revealed the correlation between the surface adhesion properties and triboelectric output of materials, 

as shown in Figure 8. Detailed experimental methods and results are presented in Figures S10 and S11. 

TMSPMA-PDMS shows the highest pull-off stress and work of adhesion of 0.11 MPa and 374.4 pJ, 

respectively, relative to the other functionalized PDMS, indicating a more adhesive surface and a higher 

rate of acceleration during separation. The high pull-off stress and work of adhesion promote more bond 

cleavage, leading to more material and charge transfer. The functionalization of PDMS alters the surface 

mechanical properties, further contributing to improved charge transfer efficiency. Together, these 

observations highlight the critical role of surface adhesion and material transfer in optimizing the 

triboelectric performance.

4. Conclusion

In summary, we introduced a surface functionalization method to tune the surface triboelectric 

properties of PDMS by self-assembled monolayers of APTES, VTMS and TMSPMA. The 

functionalized PDMS shows different relative positions on the triboelectric series due to the 

introduction of surface chemical bonds, validated through molecular simulations and experimental 
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characterizations. The TMSPMA functionalized PDMS shows the highest voltage and current output 

of 189 ± 6 V and 6.75 ± 0.26 µA, increasing the peak power output density by 2 times compared with 

the neat PDMS. Moreover, advanced nanoanalytical techniques, including nano-FTIR and KPFM, were 

employed to investigate the charge transfer mechanisms between the functionalized PDMS and an ITO 

counter electrode. Our findings indicate that the surface functionalization approach varies the surface 

work function of PDMS, potentially serves as the driving force for the charge transfer against ITO 

electrode. In addition, evidence of material transfer at the nanoscale is observed through surface 

topographical changes and chemical composition variations, which also significantly contributes to 

charge transfer. Future studies can leverage these insights in studying the mechanisms under 

polymer/metal contact electrification and improving the triboelectric performance through strategic 

surface modification strategies.
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Figure 1. Schematic of sample preparation steps for the surface functionalized PDMS. 
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Figure 2. Molecular structures of the functional groups and electrostatic potential maps predicted by 

DFT calculations for (a) APTES, (b) VTMS, and (c) TMSPMA. Unit is kcal/mol.
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Figure 3. (a) ATR-FTIR and (b) nano-FTIR spectra of surface-functionalized PDMS.
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Figure 4. (a) Open-circuit voltage profile and (b) a single-spike voltage signal of PDMS-based TENG. 

(c) Short-circuit current profile and (d) a single spike current signal of PDMS-based TENG. (e) 

Triboelectric series summarizing the relative triboelectric properties of functionalized PDMS and ITO 

electrode in this study. (f) Peak power densities of different PDMS-based TENG over a range of load 

resistances. (g) Voltage profile across a 0.1 μF capacitor while charging by different PDMS-based 

TENG.
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Figure 5. (a) KPFM surface potential maps and average VCPD values of different functionalized PDMS 

after stabilization. (b) Schematic diagram of contact electrification mechanism elucidated by the 

electron transfer between PDMS and ITO due to different work functions. Evac, vacuum level; EX, Fermi 

level of the functionalized PDMS; ϕD, work function of functionalized PDMS; ϕITO, work function of 

the ITO electrode. The relative position of PDMS samples in the energy diagram is determined by the 

measured VCPD values, where EX = Evac−(ϕtip− e⋅VCPD_X ).
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Figure 6. (a) AFM topography and (b) nearfield IR absorption image of nanoscale PDMS residues 

detected on the ITO surface after contact. (c) Nano-FTIR linescan spectra corresponding to the points 

marked on the AFM image. 
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Figure 7. (a) AFM height topography and KPFM surface potential of a PDMS residue on the ITO 

surface after contact. (b) 3D maps of the height profile topography with the KPFM surface potential 

superimposed with corresponding colour scales of PDMS contacted ITO surface. (c) Surface potential 

profile across the PDMS residue on ITO surface at different times after contact.
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Figure 8. Comparison of the pull-off stress and work of adhesion for the pristine and functionalized 

PDMS samples. Work of adhesion values were obtained using a cylindrical flat punch with a nominal 

diameter of 52 µm. Mean and standard deviation values were derived from 12 measurements shown in 

Figure S11. 
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Study of Charge Transfer Mechanisms 

• The data supporting this article have been included as part of the Supplementary 
Information.
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