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application in municipal
wastewater treatment to enhance the performance
of a sequencing batch reactor wastewater
treatment plant

Hagar H. Hassan *

Municipal wastewater treatment plants (WWTPs) with sequencing batch reactors (SBRs) face many

challenges due to organic shock load (OSL) flocculation caused by population growth and

industrialization. Guaranteeing that effluent quality remains within regulatory limits is vital for

environmental protection and public health. Using conventional methods for managing variations in OSL

faces a lot of difficulties, specifically when it comes to accurately predicting the effluent quality that

complies with regulatory standards. This study addressed this by integrating a machine learning (ML)

model, to anticipate how varying OSL can affect the effluent quality of an operational SBR WWTP

located in Egypt. The novelty of this research lies in using ML to predict the system's performance when

applied to different OSL scenarios, showing a dynamic method for SBR optimization operations. Initial

trials with OSL values of 2× and 1.6× the actual influent levels resulted in non-compliance with

regulatory standards, whereas the optimal OSL was determined to be 1.3×. The study illustrates that the

incorporation of ML into the process results in superior plant performance and greater decision-making

amid variable settings, presenting an innovative approach for employing data-driven models in municipal

wastewater treatment, and yielding fresh perspectives on the improvement of WWTP operations.
Environmental signicance

The use of machine learning (ML) in municipal wastewater treatment marks a signicant step forward in managing uctuating organic shock loading (OSL) in
Sequencing Batch Reactor (SBR) systems. Predicting effluent quality under different inuent conditions boosts the stability and efficiency of wastewater
treatment plants (WWTPs). This study shows how ML models, particularly linear regression, can optimize the treatment process by keeping effluent quality
within legal limits, even with increased OSL. By pinpointing the optimal inuent load that maintains compliance, this research offers essential guidelines for
plant operators, improving management practices, reducing environmental risks, and enhancing public health. The potential of ML to forecast and handle
plant responses to organic load changes highlights its value for sustainable and effective wastewater management.
Introduction

With the increase in population and industrialization, there is
a substantial impact on the management of WWTPs1 due to the
immense pressure to manage higher loads while maintaining
treatment efficiency. In the eld of wastewater treatment engi-
neering, the key concern should be the environmental impact
and public health.2 It is crucial to ensure that stringent regu-
latory standards are applied before wastewater is discharged
into natural aquatic systems.3 One major challenge faced by
WWTPs is the effect of OSL since a sudden increase in inuent
organic matter leads to the disruption of the entire treatment
process4 and effluent quality noncompliance with regulatory
standards.5
ty of Engineering, Alexandria University,
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the Royal Society of Chemistry
Traditional methods for handling WWTPs are oen based
on empirical adjustments and manual involvement, which
especially in dynamic contexts may not be so adaptive.6 This
shows that there is a need for more sophisticated and adaptable
alternatives, such as open-source programming, which can offer
an effective solution for wastewater treatment operational
problems with minimal effort and cost.7

This has increased attention to ML, which is a subset of
articial intelligence (AI) technologies, used in classifying
patterns in complex data for prediction purposes with high
accuracy.8 Integrating ML models in the eld of wastewater
treatment can provide plant operators with a more responsive
and adaptive approach.9,10 This semi-supervised approach is
capable of managing variations in the inuent conditions while
maintaining compliance with effluent regulatory standards.5

ML is already being successfully applied in environmental
modeling, such as in predicting weather events and air quality.11
Environ. Sci.: Adv., 2025, 4, 125–132 | 125
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This research seeks to bridge the gap in this knowledge by
employing ML tools to improve the performance of SBR WWTP
effluent quality when applied to different OSL scenarios.12

The study also aimed to achieve the following specic
objectives: rstly, to establish a model that can predict the
acceptable effluent quality of an SBR WWTP that complies with
effluent limitations; secondly, to specify the best OSL threshold
while maintaining compliance with acceptable effluent limita-
tions, without overloading the system; nally, to assess the
performance and reliability of this developed model using
inuent and effluent data obtained from a real operational
WWTP to ensure that the data are valid and conrm that the
model is robust since it is based on real-world data.13,14

This research is a novel contribution because it applies
a linear regressionmodel, which is a supervised and simpler ML
approach, to dynamically predict and optimize SBR WWTP
performance under different OSL conditions. In contrast to
prior studies that rely on complex and computationally expen-
sive models, this study shows that linear regression models can
be used effectively and deployed for real-time wastewater
management. This approach helps plant operators by providing
a more advanced tool for anticipating the impact of occulating
OSL on the effluent quality,15 providing more efficient solutions
Fig. 1 Methodology flow chart.

Table 1 Design parameters of the biological treatment technology at th

Average inuent ow rate (m3 per day)
Number of SBR units
Dimensions V (m3)

A (m2)
Depth (m)

Cycle period (min) Total
Fill
Aeration
Settle
Decant
Wastage

Decant ow rate (m3 per cycle)
Waste sludge ow rate (m3 per cycle)

126 | Environ. Sci.: Adv., 2025, 4, 125–132
for maintaining regulatory compliance with minimal effort and
less wasted time.16
Materials and methods

The overall owchart adopted for this study methodology is
shown in Fig. 1 including data collection, model evaluation, and
validation. This overall workow highlights each step in inte-
grating a MLmodel for predicting effluent quality when applied
to different OSLs. The experimental data were collected from an
SBR unit of a WWTP located in Alagamy (Alexandria, Egypt).17

The plant is designed to treat municipal wastewater with an
average inuent ow rate of 50 000 m3 per day. The WWTP used
in this study is divided into three main units, and all are SBR
biological processes, each with specic details as shown in
Table 1.

The data collected from the SBR units included biochemical
oxygen demand (BOD), total suspended solids (TSS), chemical
oxygen demand (COD), dissolved oxygen (DO), temperature,
and pH for both inuent and effluent.17 These data were
recorded over 90 weeks giving valuable details into the perfor-
mance of the entire WWTP before any applied variations in OSL.

Throughout the entire 90 week period, over 500 samples
were recorded for each parameter previously mentioned, and
these samples were the basis for validation, training, and
testing. The data were used as the core for integrating the
machine learning model that was designed to predict and
analyze the response of the SBR WWTP when applied to
different operational conditions.17

The data were all collected directly from theWWTP and there
were no external sources used for this phase of the study.
Moreover, all effluent data were compared to the Egyptian
environmental requirements18 shown in Table 2.

The main objective of the study is to integrate an ML model
to predict the effluent quality of the SBR WWTP aer applying
varying OSL to improve the performance of the WWTP. The
overall workow involved collecting data, developing the model,
evaluation, and validation. Pre-processing data were applied by
cleaning any raw data to remove outliers and managing missing
values with data analysis techniques.19 All parameters were
e Hannoville wastewater treatment plant17

First unit Second unit Third unit

10 000 10 000 30 000
2 5 4
4167 2420 8333
970 484 1852
4.3 5.0 4.5
360 570 480
90 140 120
135 220 180
60 90 90
60 90 60
15 30 30
1200 750
50 25 100

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Specifications of some water parameters when discharged into the marine environment according to the Egyptian environmental
requirements.18

Item Max. limits of specications (mg L−1) unless otherwise indicated
Temperature 10 °C > average temperature of the receiving body
pH 6–9
COD (chemical oxygen demand) 100
BOD (biochemical oxygen demand) 60
Total suspended solids 60
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normalized to ensure that they were uniform to assist in
improving the model performance.20 Moreover, a linear
regression model was created to predict the effluent quality of
the plant, based on the inuent data. The linear regression
algorithm was selected due to its simplicity and efficiency in
predicting the effluent data according to the input.21 Prior to
linear regression selection, linear supervised algorithms were
tested, including ridge and logistic regression, but the linear
regression model gave the best outputs for the dataset applied.
Mean absolute error (MAE) and R-squared (R2) techniques were
used to avoid over-tting22,23 and to ensure the accuracy of the
model. Additionally, several graphs were created for further
validation including the difference between actual and pre-
dicted effluent, a residual plot that compares the actual BOD
values, and a regression plot with condence intervals. These
metrics and visualizations were very important to ensure that
the model was not over-tted and could further be applied to
new data.21 This was done by controlling the shock loadings to
conrm that the model was accurate and reliable. Furthermore,
according to these acceptable predictions, more applications
were done on the plant. Here, more OSLs were applied, along
with testing the quality of effluent when compared to the
acceptable regulatory standards in ref. 18 (Table 2).
Fig. 2 Comparison of the actual BOD effluent with the predicted
values from the trained model.

Fig. 3 Residual plot showing the residuals distributed around zero.
Results and discussion

A linear regression model was developed and evaluated to
predict the effluent quality of the SBR WWTP when varying the
OSL inuents. The key metrics and the techniques applied for
validation were analyzed to ensure the accuracy and reliability
of the performance of the model.

For the validation of the model, cross validation was per-
formed where the model yielded a mean squared error (MSE) of
1.4615 and a Root Mean Squared Error (RMSE) of 1.2063. These
metrics indicate the average squared and absolute deviations of
the effluent BOD from actual values, respectively. Moreover, the
mean absolute percentage error (MAPE) was 0.1107, which
shows the average percentage deviation of predictions from the
actual values. Furthermore, the model had reached an MAE of
1.108 mg2 L−2. This represents the average squared difference
between the actual and predicted BOD effluent values of the
WWTP. The low value of MAE represents that the predictions of
the trained model are accurate and also near the actual data of
the SBR WWTP performance. Additionally, the trained model
displayed an R2 value of 0.762, which means that approximately
76.2% of the effluent BOD variance data are explained by the
model.
© 2025 The Author(s). Published by the Royal Society of Chemistry
All these metrics suggest that the model will perform well in
cross validation, where this demonstrates the robustness and
effectiveness in the prediction of the effluent BOD from the SBR
WWTP.

Three validation techniques were applied to prove that the
model is working successfully. Firstly, a graph showing the
alignment between actual and predicted effluent BOD values is
presented (Fig. 2). Secondly, a residual plot demonstrates the
residuals distributed around zero to indicate how the model is
not over-tted (Fig. 3). Finally, a regression plot with condence
intervals further validates the predictions of the model (Fig. 4).

Fig. 2 shows a comparison between the actual BOD effluent
and the predicted effluent BOD from the trained linear regres-
sion model for the SBR WWTP. The green dashed line indicates
a perfect prediction for the model, where every predicted value
exactly matches the corresponding value accurately. This can be
represented by eqn (1).24
Environ. Sci.: Adv., 2025, 4, 125–132 | 127
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Fig. 4 Regression plot with confidence intervals validating the
predictions of the model.
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y = x (1)

The regression line shown in Fig. 2 represents the best linear
t for the actual data points as determined by the linear
regression algorithm. This line is described as y = 0.75x + 2.27,
where the slope “m” is 0.75 and the intercept “c” is 2.27. This
equation demonstrates that with every increase in the actual
effluent BOD, the predicted effluent BOD increases by 0.75 units
from the beginning of an intercept of 2.27. As presented in the
following equation shown in eqn (2),25 it minimizes the
summation of residuals between actual and predicted values.

y = mx + c (2)

The linear regression line shows the overall trend data
captured by the linear model. The slope m represents the pre-
dicted effluent BOD with respect to changes in the actual
effluent BOD.

Scattered points show the actual vs. the predicted effluent
BOD values as seen in Fig. 2. Ideally, all points should lie exactly
on the green dashed line for a perfect prediction. However, this
will only mean an overly perfect answer, which means that the
model ts the trained data extremely well. In other words,
covering all the complexities, deviations, and noise is exactly
what is called over-tting.7 The main drawback of over-tting is
that while it can perform perfectly well on a trained model, it
will perform poorly with a new model or any unseen data.26

The current model demonstrates a good balance between the
spread of the scattered points and the regression line, with
some deviations shown but not excessively. This spread of
scattered points presents the variability in prediction and this
indicates that the model captures all the underlying trend
rather than the noise in the data.26,27 The R-squared value of
0.7616 and the adjusted R-squared value of 0.7393 imply that
the model is capable of explaining a signicant amount of
variance in the actual effluent BOD data.

Although some of the scattered points deviate, the overall
trend shown by the data in Fig. 2 indicates that the linear
regression model captures the whole pattern of BOD effluent
levels, which substantially means that the model is robust
enough to predict the effluent quality and can manage further
predictions of applied OSL in the SBR WWT.
128 | Environ. Sci.: Adv., 2025, 4, 125–132
The representation of the accuracy of the ML model for
predicting the effluent BOD values28 is shown in Fig. 3. The x-
axis indicates the actual BOD effluent values, while the y-axis
shows the difference between the actual and predicted BOD
values, which are called “residuals”. The red dashed line at the
y-value indicates that the predictions perfectly match with the
actual values.

The scattered residual points around the red dashed line
presented in Fig. 3 have no obvious pattern, which signies that
the prediction errors of the model are biased in any specic
direction.15 This demonstrates how the model is performing
reliably. Since most of the residuals are in a close range between
2 and −2, this shows that the actual effluent BOD values are
close to the predictions of the model and that it is performing
accurately. Moreover, there are no curvatures in the residuals
that prove that the residuals are consistent when compared to
all actual BOD effluent values.

In the residual plot shown in Fig. 3, some of the values were
more than 10 representing a suboptimal accuracy of the model.
While considering that the deviation is not signicant, the
results suggest that it is not severely deviated and within the
acceptable range. The residual plot is very important for proving
the accuracy and reliability of the ML model.29

The residual plot displayed in Fig. 3 can predict the effluent
BOD values for the SBR WWTP. Meanwhile, the residuals are
around zero and no patterns are evident, demonstrating that
the model has random errors without aws in the model itself.
Moreover, the small range of residuals shows that the model is
accurate.

In Fig. 4, a detailed analysis of the predictive performance of
the model is presented. This plot compares the predicted values
produced by the trained ML model with the actual BOD effluent
values of the SBE WWTP.

The blue dots demonstrate the values of actual effluent BOD
from the SBR WWTP and the red line demonstrates the values
of predicted effluent BOD by the trained ML model. Moreover,
the close alignment of the red line with the blue dots as seen in
Fig. 4 indicates that the model effectively captures the rela-
tionship between the values of inuent and effluent BOD. Also,
the shaded area around the regression line represents the
condence intervals that indicate the prediction uncertainty of
the model. The narrow width of the condence interval showed
in most parts suggests high precision in the linear regression
model's overall prediction.30

Despite a slight deviation between the actual and predicted
values presented in Fig. 4, they still fall within an acceptable
range.28 Consequently, the model appears to be reliable for
further applications, including predicting outcomes under
varying OSL to test the performance of the SBR WWTP.

Aerwards, the model is applied to various scenarios of
increasing the organic shock load for the SBR WWTP, and the
resulting effluent in each scenario is compared with the Egyp-
tian requirements outlined in Table 2. As shown in Fig. 5, before
applying the OSL, it ranged from 15.36 to 17.90 mg L−1. Aer
applying 2× OSL, the BOD effluent ranged from 75.34 to
85.83 mg L−1 and aer applying 1.6× OSL, the BOD effluent
shock load was from 65.49 to 69.91 mg L−1, and then for the last
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Correlation heatmap of influent and effluent parameters in the
SBR WWTP.

Fig. 5 Effluent quality before and after applying the OSL for BOD,
COD, DO, TSS, and pH.
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trial with 1.3× OSL, the effluent BOD ranged from 41.67 to
46.88 mg L−1.

For COD effluent, the values before applying the OSL ranged
from 30.14 to 32.76 mg L−1 and aer doubling the OSL, COD
effluent data ranged from 162.31 to 154.28 mg L−1. Aer
another trial of applying 1.6× OSL, the effluent was from 91.38
to 102.04 mg L−1 and in the last trial, effluent COD was from
58.65 to 61.63 mg L−1.

As for the TSS before applying OSL, it ranged from 13.58 to
16.65 mg L−1 and aer doubling the OSL, it ranged from 13.1 to
15.8 mg L−1, while aer applying 1.3× OSL, the effluent TSS
ranged from 12.9 to 16.1 mg L−1. For the last trial, the effluent
ranged from 15.13 to 17.56 mg L−1.

For the inuent DO before applying the OSL, it ranged from
2.1 to 3.3 mg L−1, and for the 2× OSL, the effluent DO was 1.3 to
2.5 mg L−1 and for the 1.6× OSL, the effluent DO ranged from
1.9 to 2.4 mg L−1. For the last trial, it ranged from 2.2 to
3.4 mg L−1. As for pH in all cases, it was almost within the same
range from 6.7 to 7.1.

Fig. 6 shows the variation between values for all three trials
including the trained model where the red line represents the
maximum permissible limit according to Egyptian require-
ments. Generally, any effluent quality below the 60 mg L−1

threshold is considered acceptable. The output shows that for
2× the organic load the values were signicantly higher than
the threshold with approximately 80 mg L−1 while when
decreasing the organic load to 1.6× BOD effluent values
complied to the acceptable thershold.

Organic shock loading *1.3: although the increase in effluent
quality is approaching the acceptable range, it is still below the
threshold and thus permissible. Organic shock loading *1.6:
the effluent quality is nearing the acceptable range but remains
Fig. 6 Effluent quality over 90 weeks for the ML-trained model with
OSL trials.

© 2025 The Author(s). Published by the Royal Society of Chemistry
higher than the threshold, necessitating additional trials.
Organic shock loading *2: the effluent quality is signicantly
above the acceptable range, indicating potential process failure.

The correlation map presented in Fig. 7 shows a compre-
hensive view of the relationship between various inuents and
effluent parameters in the wastewater treatment process.31

The correlation coefficient of inuent temperature (Temp.
Inf.) is perfectly aligned with the effluent temperature (Temp.
Eff.), showing a correlation value of 1.00. This denotes how the
temperature remains constant in the entire treatment process.
Moreover, Temp. Inf. has a negative correlation with effluent
BOD (BOD Eff.) at −0.66 and effluent COD (COD Eff.) at −0.40.
The results demonstrate that at higher temperatures the
inuent temperature can be associated with lower effluent BOD
and COD levels.

For DO correlations in the inuent DO (DO Inf.), the results
show a weak negative correlation in the BOD Eff. at −0.32 and
COD Eff. at −0.39. This represents a slight inverse correlation.
As for the effluent DO (DO Eff.), it has a weak positive correla-
tion when compared to BOD Eff. at 0.26 and COD Eff. at 0.39,
and this shows that when effluent DO levels are high, they are
associated with high BOD and COD levels.

The inuent BOD (BOD Inf.) has a medium positive rela-
tionship with the COD Eff. at a value of 0.53, meaning that the
higher the BOD Inf. levels, the higher the COD Eff. levels.
Additionally, for BOD Eff., it has a medium positive relationship
with COD Eff. at a value of 0.57, strengthening the connection
between both parameters in the treatment process.

The inuent COD (COD Inf.) has a strong positive relation-
ship with COD Eff. at a value of 0.87, and this indicates the COD
Inf. values have a substantial impact on effluent COD levels.
COD Eff. has a high negative relationship with time (Time) at
a value of −0.84, and this suggests that when the treatment
takes longer times it will be associated with low effluent COD
levels.

From the percentage of BOD removal shown in Fig. 8, the
highest removal efficiency was achieved by the trained model,
Environ. Sci.: Adv., 2025, 4, 125–132 | 129
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Fig. 9 Percent of TSS removal in each trial under four conditions: 1.5,
1.6, double, and trained.

Fig. 8 Percent of BOD removal in each trial under four conditions: 1.5,
1.6, double, and trained.
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which ranged from 94% to 97%. When subjected to 2× and
1.6×OSLs, the removal efficiency decreased to a range of 80% to
97%. For the 1.3× shock load, the removal efficiency ranged
from 75% to 98%. The decreased removal efficiency signies
that variability in rising organic loads can reduce the efficiency
of BOD removal.

The trained model has the highest removal efficiency,
ranging from 90% to 99% as shown in Fig. 9. Furthermore,
regarding the 1.3× and 1.6× trials, the removal efficiency was
approximately 88% to 85%. Subsequently, a decrease in the
stability of the system under these conditions was observed.
When doubling the organic load, the removal efficiency drops to
80%, demonstrating reduced performance for this trial.

Fig. 10 shows the removal efficiency for COD in all applied
trials. For the trained model, the removal percent of TSS ranged
from 95, it had the highest efficiency. Under the 2× and 1.6×
organic loads, the COD range was from 85% to 95%, which is
greater than that of the trained model. The last removal effi-
ciency trail ranged from 71% to 96%. This indicates the stress of
the system under increased OSL. Therefore, improving the
performance of the system to handle such conditions is very
important for optimal operation.
Fig. 10 Percent of COD removal in each trial under four conditions:
1.5, 1.6, double, and trained.

130 | Environ. Sci.: Adv., 2025, 4, 125–132
Conclusion

This study shows the signicant role of ML in improving the
performance of WWTPs, specically when applied to different
OSLs. A linear regression model was integrated from an SBR
WWTP located in Egypt, and the study demonstrated that aer
several trials of increased levels of OSL, the optimal OSL
threshold was 1.3 times the normal inuent level. Effluent
quality failed to meet the regulatory standards when exceeding
this threshold, showing how ML can be practically applied to
guide operational limits and process management. These
results provide the operators of WWTPs with an essential
predictive tool for reducing environmental risks and avoiding
mechanical failures. The ability of the ML model to predict the
effluent outcome when varying the OSL gives signicance to the
ML capabilities in offering substantial improvement in
decision-making, and this leads to more effective strategical
maintenance in WWTPs. By integrating predictive ML models,
operators for the WWTPs can subsequently anticipate the
potential performance issues that might affect the whole
system, leading to plant optimization efficiency and also
maintaining regulatory compliance under different OSL condi-
tions. The study quantitatively supports the incorporation of
ML into wastewater management, showing its potential for
addressing real-world challenges in municipal wastewater
treatment.
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The data utilized in this research were collected from a real
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plant located in Alagamy, Alexandria, Egypt. Detailed experi-
mental effluent and inuent data, covering a period of 90 weeks,
along with specic parameters and dimensions of the waste-
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inuent data were collected from this plant. The modeling
approach for this study references: Hassan H. H. Improving the
performance of SBR WWTP under the effect of organic shock
load using Stoat soware. International Journal of Environmental
Sciences & Natural Resources, 2019; 20(2), doi: https://doi.org/
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performance of an SBR WWTP under the effect of shock load
using STOAT soware. Master's thesis, Arab Academy for
Science, Technology and Maritime Transport, Alexanderia,
Egypt, 2019. The analysis was conducted using Python.
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