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Two chiral fluoranthene-based polyaromatics were isolated 5 

from a Diels-Alder cycloaddition between two molecules of 
7,9-diphenylcyclopenta[a]acenapthylene-8-one. The two 
highly coloured, novel compounds were characterized by a 
combination of spectroscopic techniques and single crystal X-
ray diffraction. Structural differences between the 10 

unexpected products included the nature of their conjugated 
fluoranthene portions and the position, strain and handedness 
of their chiral centres.  

Current understanding of the dimerisation products that result 

from the cycloaddition of polyaromatic cyclopentadienones stems 15 

from the seminal work of Allen and Van Allan.1,2 In 1950 they 

were the first to observe Diels-Alder generated dimerisations of 

2,5-substituted diphenylcyclopentadienones. They postulated that 

a transition state dimer (I) (shown in Scheme 1) was formed upon 

the lateral approach of the two reactant molecules when R1, R2 = 20 

H and that the reactants and dimer were in equilibrium. This idea 

was subsequently supported in publications by Fuchs et al.3,4 and 

Becker et al.5 When bulkier substituents were used (e.g.  R2, = 

methyl, propyl, phenyl in Scheme 1) only the monomeric starting 

materials were observed. This drew them to the conclusion that 25 

steric congestion in the six-member ring of the transition state 

could prevent the reaction from occurring. 

-CO

I II
Scheme 1: Representation of the Allen and Van Allan inspired 

mechanism for the dimerisation of 7,9-diphenylcyclopenta[a] 30 

acenapthylene-8-one. 

   In an interesting twist, our investigations into [2+4] Diels-Alder 

cycloadditions between appropriately substituted alkynes and 

fluoranthene-based cyclopentadienones led us to revisit these 

earlier dimerisation conclusions. On heating 7,9–35 

diphenylcyclopenta[a]acenapthylene-8-one in benzophenone a 

reaction occurred. Based on an adaptation of the earlier findings 

we anticipated that product (IIA) in Scheme 2 might have been 

formed, however as we report here the reaction had proceeded 

very differently. 40 

   Under high-temperature Diels-Alder conditions, as outlined 
previously,6-9 the intermolecular cycloaddition actually 
generated two isomeric products (1 and 2) which differed 
from that predicted, particularly in the para arrangement of 
their fluoranthenes. No evidence for the formation of IIA was 45 

obtained, but it is possible that a two–step process, involving 
a phenyl rearrangement could have generated 1 from IIA. The 
major structural difference between products 1 and 2 is in the 
arrangement of the pendant phenyl rings on their fused 
cyclopentenones: the phenyl ring outlined in purple, now 50 

protrudes from the fused aromatic platform of 2 in position ‘1’ 
of the central ring. The structural consequences of this change 
are manifested in the twisting of the central six-membered 
ring and are evident in the crystal structure of 2a shown in 
Fig. 1.  55 

Scheme 2: (i) Proposed dimerisation to form IIA, as extrapolated 

from Allen and Van Allan (ii) Actual formation of 1 and 2 (maximum 

yields 15% and 10% respectively using benzophenone, 200 °C and 

40% and 30% respectively under microwave conditions)). 

 60 

   1a crystallized from methanol and dichloromethane in the 
P21/c space group, with one dimer molecule (S,R) in the unit 
cell. One dichloromethane solvent molecule was also present. 
The solvent molecules within the crystal lattice exhibited 
weak H-bonding interactions between the aromatic extremities 65 

of adjacent dimers. Nishio et al. 10 have previously observed 
this. The cyclopentenone ring (shown in green), protrudes 
from the central six-member ring at an angle of 104.6° from 
the central plane of the molecule. The central ring, shown in 

IIA(i)

(ii)

1 21, 2     ;   R= H
1a, 2a  ; R= tbutyl
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blue possesses three typical aliphatic bonds; 1.59 Å, 1.53 Å, 
1.56 Å, reflecting its highly strained nature. 2a was found to 
crystallise in the monoclinic C2/c space group, also showing 
two molecules in the unit cell in addition to two molecules of 
methanol. The fluoranthene moiety (shown in red in Scheme 5 

2) is now directly bonded to the cyclopentene ring (green) and 
the C1-C6 bond of the central six-member ring forms the 
hinge of a 101.4° dihedral angle (Figure 1 inset). The iso-
structural (2), synthesised without the cumbersome tert-butyl 
groups, is seen to crystallise in the P-1 space group with a unit 10 

cell containing 4 molecules of R,R or S,S handedness. This 
implies that the generation of 2 from 1 which involves a 
phenyl migration neccessitates a change in the handedness of 
one of the chiral centres.  
 Contrary to expectation, the absence of the tert-butyl 15 

groups in 2 leads to less-efficient crystal packing. The tert-
butyl groups actually serve to open up the pendant phenyls 
thus allowing each molecule to pack more closely with its 
intermolecular neighbour. The overal orientation of the 
molecule however remains unchanged, as seen in Fig. 1.  20 

Figure 1. Single-Crystal XRD structures of 2a (ii) and  2 (ii) (H 

atoms removed). (iii) Two planes through the fused core of the 

molecules forming an obtuse dihedral-angle, as quantified in the text. 

 

   The NMR assignment of such complex systems proved 25 

challenging. Through the use of selective NOESY 
experiments assignment of the pendant phenyl rings was 
succesfully achieved. Through-space experiments then made 
the fused core accessible for full assignment, (Figure 2). Full 
assignment of 2 is presented in Figure S4.  30 

Figure 2: 1H-NMR (RT, 600 MHz, CDCl3) spectral assignment of 1. 

   The structures presented here are similar to other fused 
tetraphenylene derivatives in the literature, comprising fused five-
membered rings and are of interest in the investigation of curved 
graphene analogues. The syntheses of these related systems 35 

generally use fused moieties (such as 5,6,11,12-
tetrahydrodibenzo-[a,e]cycloctene) as masked acetylenes in [2+4] 
Diels Alder reactions with fluoranthene-based 
cyclopentadienones.11 These synthetic conditions require high 
boiling solvents such as benzophenone or diphenylether. In 1995 40 

however, Otto et al.12 correctly predicted the use of microwave 
irradiation in Diels-Alder synthesis and the topic has been the 
subject of more recent attention.13-15 With this in mind a CEM S-
Discover microwave was used to investigate a more streamlined 
synthetic approach to our dimerisation products. The yields and 45 

reaction times to both dimers were successfully optimised. In 
reaction times <25 min, 1 could be synthesised from 7,9-
diphenyl-cyclopenta[a]acenaphtylene-8-one in a 40% isolated 
yield. Subsequently 1 could be reacted, using benzophenone or 
diphenylether as solvents, to directly form 2. This was a 50 

considerable improvement on the yields of both products 
obtained under thermal conditions (under 15%). Given the 
differences in the molecular and therefore electronic structures of 
the two isolated products we went on to investigate these 
properties further. 55 

   1a exhibits several maxima and a degree of fine structure in 
its absorption spectrum; a series of three structured bands in 
the λabs

max = 350-390 nm range (most likely corresponding to 
π-π* transitions) and a wide and low energy shoulder at λabs

max 
= 527 nm. Increasing the polarity of the solvent results in a 60 

bathochromic shift of the structured bands in addition to an 
increase in their absorption. These observations support the 
proposition that these bands emanate from π-π* transitions 
within 1a. The lower energy shoulder at λabs

max = 527 nm, 
visible in Fig. 3 shows negligible solvent dependency and 65 

remains unchanged, even upon the addition of acid. For 2a, a 
similar absorption spectrum is observed but hypsochromically 
shifted. This is most likely caused by the new orientation of 
the pendent phenyl rings, bringing them into closer proximity, 
reducing the planarity and raising the energy of the π* orbital. 70 

In the λmax 
abs

 = 340 – 370 nm range the blue-shifted π-π* 
transitions appear with considerably less fine-structure than 
for 1a, most likely as a result of the less hindered rotation. 
The presence of a six membered ring in 2a decreases the 
degree of unsaturation within the molecule and therefore 75 

reduces the extent of planarity compared to 1a. 
 
 
 
 80 

 
 
 
 
 85 

 
 
 
Figure 3: UV-vis absorption spectra of 1 and 2 in dichloromethane. 
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  The electrochemical data obtained for the two isomers 
correlates well with their optical properties (Table 1). For 
instance the greater aromaticity and planarity of 1, gives rise 
to red shifted π-π* transitions and manifests itself in a higher 
first oxidation potential.  5 

 
Table 1. Redox potentials for 1 and 2 vs Ag/AgCl. Supporting 
electrolyte: (TBA)PF6 (0.1 M) in CH3CN. 

 
   In addition, the stabilisation of the LUMO in 1 due to the 10 

increased conjugation meant that its reversible single electron 
reduction occurred more readily than 2 (Fig. 4), with 
reversible single electron reduction observed at E1/2 red = -1.56 
(∆Ep = 190 mV). 
  15 
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Figure 4: Cyclic Voltammogram of 1 and 2 in 0.1 M TBAPF6 . 
 
   The dimerisation of 7,9–diphenylcyclopenta[a]acenapthylene-
8-one is an interesting process and offers an efficient one-pot 20 

methodology for the total synthesis of two chemically different 
chiral isomers. The resulting curved aromatics comprising several 
fused five-membered rings are structurally similar to those found 
in non-planar PAHs with parabolic, twisted and bowl-shaped 
structures such as fullerene end-caps and extended molecular 25 

clips.16-18
 The structures presented here offer an alternative to 60 

years of well-documented thinking on the reactivity of 
cyclopentadienones and the manner in which they might 
dimerise. Supported by ample evidence; in the form of mass 
spectrometry, full NMR assignment, good quality single-crystal 30 

XRD data, UV-vis and cyclic voltammetry studies, these 
compounds reveal a fascinating twist in a generally accepted tale 
of reactivity.  
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†Electronic Supplementary Information (ESI) available. For 

experimental procedures, selected 1H-NMR spectra and  50 

crystallographic pictures see DOI:.. 

§Crystal data for 1a:   C70H64Cl2O, M = 992.11, monoclinic, 

spacegroup P21/c, a = 14.7164(10), b = 17.2279(12), c = 

22.4826(16) Å, α = 90.00, β = 103.120(2), γ= 90.00 µ, V = 

5551.3(7)) Å, Z = 4, F(000) = 2104, 2θ max = 25.12, wR2 = 55 

0.2083, R1=0.077). CCDC 969865. Crystal data for 2: C53 H32O, 

M = 684.79, triclinic, spacegroup P-1, a = 11.797(2), b = 

17.099(3), c = 18.309(3) Å, α =72.282(4), β = 89.938(4), γ= 

85.625(4)µ, V = 3506.9(7) Å , Z = 4, F(000) = 1432, 2θ max = 

25.00, wR2 = 0.11, R1=0.0499). CCDC 969866. 60 
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