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Abstract. This paper considers the asymptotic (semiclassical) analysis of a forward 

glory and a rainbow in the differential cross section (DCS) of a state-to-state chemical 

reaction, whose scattering amplitude is given by a Legendre partial wave series 

(PWS). A recent paper by C. Xiahou, J. N. L. Connor and D. H. Zhang [Phys. Chem. 

Chem. Phys., 2011, 13, 12981] stated without proof a new asymptotic formula for the 

scattering amplitude, which is uniform for a glory and a rainbow in the DCS. The new 

formula was designated “6Hankel” because it involves six Hankel functions. This 

paper makes three contributions: (1) we provide a detailed derivation of the 6Hankel 

approximation. This is done by first generalizing a method described by G. F. Carrier 

[J. Fluid Mech., 1966, 24, 641] for the uniform asymptotic evaluation of an oscillating 

integral with two real coalescing stationary phase points, which results in the 

“2Hankel” approximation (it contains two Hankel functions). Application of the 

2Hankel approximation to the PWS results in the 6Hankel approximation for the 

scattering amplitude. We also test the accuracy of the 2Hankel approximation when it 

is used to evaluate three oscillating integrals of the cuspoid type. (2) We investigate 

the properties of the 6Hankel approximation. In particular, it is shown that for angles 

close to the forward direction, the 6Hankel approximation reduces to the 

“semiclassical transitional approximation” for glory scattering derived earlier. For 

scattering close to the rainbow angle, the 6Hankel approximation reduces to the 

“transitional Airy approximation”, also derived earlier. (3) Using a J-shifted Eckart 

parameterization for the scattering matrix, we investigate the accuracy of the 6Hankel 

approximation for a DCS. We also compare with angular scattering results from the 

“uniform Bessel”, “uniform Airy” and other semiclassical approximations. 
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 2

I. INTRODUCTION 

 The angular scattering of a state-to-state chemical reaction contains 

fundamental information on the dynamics and mechanism of the reaction.
1
 However, 

it has often proven difficult to quantitatively understand the physical content 

contained within a plot of the differential cross section (DCS) versus reactive 

scattering angle. Consider, for example, the F + H2 → FH + H reaction, whose 

angular scattering was measured in the famous crossed molecular-beam experiments 

of Neumark et al. 
2
 in 1985.  It took 19 years before the enhanced forward peak in the 

small-angle scattering of the product FH(vf = 3) vibrational state was identified 
3
 as a 

glory. And it took 24 years before the scattering at larger angles in the DCS was 

recognized 
4
 as a rainbow.  

 More recently (in 2008), state-of-the-art DCS measurements for the F + H2 

reaction were reported by Wang et al.
5
 using quantum-state-selected crossed 

molecular beams.  An analysis of the angular scattering by ourselves and Zhang 
6
 

again revealed the presence of glories and rainbows in the FH(vf = 3) DCSs;  they are 

also accompanied by diffraction oscillations arising from nearside-farside 

interference.  

 The analyses in ref. 3, 4 and 6 used powerful asymptotic (semiclassical) 

techniques to extract physical information from the large number of interfering partial 

waves which contribute to the scattering amplitude. Two different asymptotic theories 

were employed: One theory 
3, 7

 led to the uniform glory approximation (and 

subsidiary approximations), whilst the second theory 
8
 resulted in the uniform (and 

transitional) rainbow approximations. A disadvantage of these theoretical treatments 

is that the uniform glory approximation becomes non-uniform for rainbow scattering, 

and vice versa. By a uniform approximation, we mean one in which the error remains 
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 3

approximately constant as a parameter, such as the reactive scattering angle, passes 

though certain critical values, such as zero (for a forward glory) or the rainbow angle. 

3, 4, 6-8
 A transitional approximation is one in which the error remains small in the 

neighbourhood of these critical values, but the error usually increases as the parameter 

moves away from the critical values. 
3, 4, 6-8

 

 It is desirable to develop new asymptotic scattering theories that are uniform 

for both forward glory and rainbow scattering. This was partially done in our paper 

with Zhang, 
6
 where we stated without proof a new asymptotic approximation for the 

scattering amplitude that is valid for both a glory and a rainbow.  We called our new 

result, the 6Hankel asymptotic approximation, since it contains six Hankel functions. 
6
 

For the DCS, our new result is a generalization to reactive scattering of a formula 

given by Miller 
9
 for elastic scattering.  

 The purpose of this paper is: (1) to present a derivation of the 6Hankel 

approximation, (2) to discuss its properties, and (3) to assess its accuracy for the DCS 

of a chemical reaction. In our DCS computations, we use a J-shifted Eckart 

parameterization of the scattering (S) matrix, 
10, 11

 as it allows flexibility in the 

location of the rainbow angle, thereby allowing us to test the 6Hankel approximation 

over a wide angular range. 

 For information on the mathematical description of glories and rainbows, we 

refer to the extensive review by Adam.
12

 Earlier work on the role of forward glories in 

the DCSs of chemical reactions can be found in ref. 3,6,7,10,11,13-17. Likewise the 

role of rainbows is discussed in ref. 4 and 6.  

 In order to describe a rainbow, we first must consider the uniform asymptotic 

evaluation of a one-dimensional oscillating integral with two coalescing stationary 

phase points. This is done in Section II. In particular, we generalize a method 
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 4

described by Carrier.
18

 He assumes that the phase of the integrand is an odd function 

of x and that the pre-exponential factor is an even function of x, where x is the 

integration variable. We extend his result to the case when neither of these symmetry 

properties holds. We call our generalization, the 2Hankel asymptotic approximation, 

since it involves two Hankel functions.  We also investigate the limit when the 

stationary phase points coalesce, which leads to the transitional Airy approximation 
4, 

6, 8 
for rainbow scattering. 

 Section III applies the 2Hankel approximation to the scattering amplitude for a 

chemical reaction, when it given by a Legendre partial wave series, thereby providing 

a derivation of the 6Hankel approximation. The limit when the scattering angle tends 

to zero is investigated, resulting in the semiclassical transitional approximation 
3 

previously derived for glory scattering. 

 The J-shifted Eckart parameterization for the S matrix 
10, 11

 is defined in 

Section IV. The values of the parameters are chosen so that the rainbow angle occurs 

at a large value, namely 109.2°  in the centre-of-mass reference frame. This allows us 

to conduct a better test of the accuracy of the 6Hankel approximation than previously, 

which used numerical S matrix data. 
6
 An important point is that the 6Hankel formula 

is generic, i.e., it also applies to numerous chemical reactions at numerous different 

energies which have S matrix properties analogous to the J-shifted Eckart 

parameterization.  

 Section V describes our results for the DCS using the 6Hankel and other 

semiclassical approximations. In order to provide additional physical insight into 

interference structure in the DCS, we have also applied nearside-farside (NF) theory 

19, 20
 and local angular momentum (LAM) theory, 

21-24
 in both cases including up to 

three resummations of the partial wave series.
21-24

 We also make contact with 
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 5

complex angular momentum (or Regge pole) theory, which has been used to calculate 

DCSs. 
25-27

 

 Our Conclusions are in Section VI. The Appendix describes a test of the 

2Hankel approximation when it is applied to three oscillating integrals of the cuspoid 

type. 
28, 29

 

 Finally, we emphasize that there is a long tradition in the chemical physics 

literature of papers concerned with the asymptotic evaluation of oscillating integrals, 

see for example ref. 3, 4, 6-17, 20, 23, 25-28, 30-36. 

 

II. UNIFORM ASYMPTOTIC INTEGRATION: THE 2HANKEL 

APPROXIMATION 

IIA. Introduction 

 This section is concerned with the uniform asymptotic evaluation of the 

oscillating integral: 

 ( ) ( ) ( )exp i ;I g x f x d xα α
∞

−∞

=   ∫       (1) 

where α is a real parameter and ( );f xα  is a real-valued function. In addition, ( )g x  

is slowly varying; it can be a real- or complex-valued function and may also depend 

on α, although this is not indicated. We assume there exist two real points of 

stationary phase, denoted ( )1x α  and ( )2x α , with ( )1x α  ≤ ( )2x α , which are the 

roots of ( ); 0f xα′ = , where the prime indicates differentiation with respect to x. As α 

varies, it is assumed that the two roots coalesce on the caustic at ( )0x x α=  for 

0α α= . 
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 6

 The convenient notations ( )i ix x α= , ( )i ig g x= , ( );i if f xα= , 

( );
i

i x x
f f xα

=
′ ′= , ( );

i
i x x

f f xα
=

′′ ′′=  and ( );
i

i x x
f f xα

=
′′′ ′′′=  for i = 0, 1, 2 will often 

be employed in the following. In our application in Section III, ( );f xα  has a linear 

dependence on α of the type, xα± , which means that the second and third derivatives 

of ( );f xα  are independent of α.  But note that if ′′  and if ′′′  do depend on α via the 

( )i ix x α= . 

 Given the above assumptions, two cases arise, depending on whether 

( );f xα →+∞  or →−∞  as x →+∞   [or equivalently, ( );f xα →−∞  or →+∞  as 

x →−∞ ].  These two cases are illustrated in Fig. 1, where ( );f xα  is given by simple 

polynomial functions. The black solid curves for ( );f xα  in Fig. 1 possess a local 

maximum and a local minimum. Also illustrated are the curves (blue solid) when the 

two stationary points have coalesced for 0α α= . The two cases have the following 

properties, which we use later: 

Case A-see Fig. 1(a) 

For 1 2x x<  so that 0α α≠  

 
1 2 1 2

1 2 1 2

, 0,

0, 0, 0, 0

f f f f

f f f f

′ ′> = =

′′ ′′ ′′′ ′′′< > > >
 

For 1 2 0x x x= =  so that 0α α=  

 0 0 00, 0, 0f f f′ ′′ ′′′= = >  

 

Case B-see Fig. 1(b) 

For 1 2x x<  so that 0α α≠  

 
1 2 1 2

1 2 1 2

, 0,

0, 0, 0, 0

f f f f

f f f f

′ ′< = =

′′ ′′ ′′′ ′′′> < < <
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 7

 

For 1 2 0x x x= =  so that 0α α=  

 0 0 00, 0, 0f f f′ ′′ ′′′= = <  

 

 

Remarks: 

 

• It is also assumed that ( )g x  does not possess any singularities or zeros near to 

the stationary phase points. A modified treatment can be given if this is not the 

case (e.g., see ref. 37 and 38, for example). 

• If ( ) ( ); ;f x f xα α= − − , i.e., f is an odd function of x,  then 1 2x x= − . 

• If ( );f xα  possesses more than two real stationary points, then the following 

derivation is valid locally in the region of the two coalescing stationary 

points,
8, 28

 provided that the additional stationary points are well separated 

from the coalescing pair. 

• The mathematical level of our derivations is similar to that of ref. 8 by one of 

us (JNLC) and Marcus (hereafter referred to as CM).  The CM paper applied a 

different technique, that of Chester, Friedman and Ursell, 
39

 for the uniform 

asymptotic evaluation of an oscillating integral with two coalescing saddle 

points. In particular, CM presented the Chester et al. technique in an 

accessible, yet general, way, making it straightforward to apply to problems in 

molecular scattering theory. 

 

       A comparison of Fig. 1(a) and 1(b), shows that Cases A and B are related by a 

minus sign.  In the following, we focus only on Case A, since the uniform asymptotic 

theory for Case B is similar. We have chosen Case A because it is used in our analysis 

of a reactive DCS in Section III. 
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 8

 

IIB. Two limiting cases  

 Before proceeding, it is helpful to write down results for ( )I α  in two limiting 

cases. The results we require can be found in CM. The first limiting case is when 1x  

and 2x   are well separated. Then the simple stationary phase approximation (SPA) 

can be applied at both stationary points, which results in 
8
 

 ( )SPA 1 1 2 2
1 2

2 2
exp i exp i

4 4
I g f g f

f f

π π π π
α

      = − + +      ′′ ′′      
  (2) 

Notice that the simple stationary phase approximation (2) does not depend on if ′′′ . 

Now in practice the sign of if ′′′ can change as 1x  and 2x  move far apart from 0x , i.e., 

the sign of if ′′′  is then no longer fixed by Cases A and B. We include this effect in our 

2Hankel result in Section IIC.4. The simple stationary phase result (2) is equivalent to 

making a second-order Taylor series expansion of ( );f xα  at each stationary point, 

together with the approximations, ( ) ( )1g x g x≈  and ( ) ( )2g x g x≈ . 

 The second limiting case is when 0α α≈  so that 1 0 2x x x≈ ≈ . We make a 

third-order Taylor series expansion of ( );f xα  at the point 0x  

 ( ) ( ) ( )( ) ( )( )31
0 0 0 0 06

; ; ; ;f x f x f x x x f x x xα α α α′ ′′′≈ + − + −   (3) 

where the result ( )0; 0f xα′′ =  has been used. Then making the approximation,  

( ) ( )0g x g x≈ , we obtain the transitional Airy approximation (tAiry), namely 
8
 

 ( ) ( )
1 3 1 3

tAiry 0 0 0
0 0

2 2
2 exp i AiI g f f

f f
α π

     ′=    ′′′ ′′′     

   (4) 
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 9

where ( )Ai •  is the regular Airy function. The result (4) is valid for 0 0f ′ <  (two real 

roots) as well as for 0 0f ′ >  (two complex roots). When 0α α= , i.e., on the caustic, 

we have ( )0 0 0; 0f f xα′ ′= = , and eqn (4) simplifies to  

 

( ) ( ) ( )

( )
( )

1 3

tAiry 0 0 0
0

1 3

0 02 3
0

2
2 exp i Ai 0

2 2
exp i

3 2 3

I g f
f

g f
f

α π

π

 
=  ′′′ 

 
=  ′′′Γ  

    (5) 

where ( )Γ • is the Gamma function. 

 In the following, to avoid repeating phrases like “the kth-order Taylor series 

expansion of ( );f xα  at the point ix ”, we will often use the concept of a k-jet,
40, 41

 

which is defined as the Taylor series expansion of order k for ( );f xα  at the point ix . 

For example, eqn (3) written as a 3-jet is 

 ( ) ( ) ( )( ) ( )( )
0

33 1
0 0 0 0 06

; ; ; ;
x

j f x f x f x x x f x x xα α α α′ ′′′= + − + −   (6) 

Note: all k-jets in this paper are functions and not members of a polynomial ring. 

 The problem now is to deduce a uniform approximation which reduces to eqn 

(2) and (4) in the appropriate limits. 

 

IIC. Extension of Carrier’s method 

IIC.1 Introduction 

 Carrier presents his derivation for the integral ( )I α  in the Appendix of his 

paper, 
18

 assuming that ( );f xα  is an odd function of x, and for ( ) 1g x = (n.b., there 

are many misprints). At the end of his derivation, he extends his result assuming 
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 10

( )g x  to be an even function of x. We need to generalize Carrier’s derivation to the 

case when neither of these assumptions is valid. 

 The basic idea of Carrier is to use 3-jets at the points 1x  and 2x , similar to eqn 

(3) or (6) for the point 0x . This seems straightforward and physically reasonable, but 

Fig. 1(a) shows there is a serious problem. We see that the 3-jet at 2x  is accurate 

close to 2x , but it possesses another stationary point, say ( )2 2u u α= , which is quite 

different from 1x . This implies that the approximation to ( )I α  using the 3-jet at 2x , 

denoted ( )
2xI α , will be quite different from ( )I α , unless ( );f xα  and ( )

2

3
;

x
j f xα  

are very similar as functions of x.  Evidently we must eliminate the contribution from 

the additional stationary point 2u .  

 Similar remarks apply if the 3-jet at 1x  is used-see Fig. 1(a); we must 

eliminate the contribution from the additional stationary point 1u . And similarly for 

Case B in Fig. 1(b).  Eliminating the unwanted contributions from 1u  and 2u  is the 

essence of our derivation. 

IIC.2 Contribution to ( )I α  from a third-order Taylor expansion at the 

stationary point 2x  

 The 3-jet at 2x  is given by 

 ( ) ( ) ( )
2

2 33 1 1
2 2 2 2 22 6

;
x

j f x f f x x f x xα ′′ ′′′= + − + −     (7) 

using 2 0f ′ = . Then assuming ( ) ( )2g x g x≈ , we obtain an approximation denoted 

( )
2xI α  to ( )I α , namely  
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 11

 ( ) ( ) ( ) ( ){ }2

2 31 1
2 2 2 2 2 22 6

exp i exp i dxI g f f x x f x x xα
∞

−∞

 ′′ ′′′= − + −  ∫  (8) 

where the integration limits have been kept at −∞  to +∞ . Denoting the stationary 

phase points of the integrand in eqn (8) by 2x  and 2u  as in Fig. 1(a) with 2 2u x≤ , we 

find 

 2x  (by construction)        (9) 

 ( )2 2 2 22u x f f′′ ′′′= −                  (10) 

Next we use the identity 

 ( )
1 3 2 3

3 2 2 3
d exp i 2 exp i Ai

6 2 2

a b
x x x

a
π ς ς

∞

−∞

       ± + = −                 
∫           (11) 

where 

 ( )3 23b aς =  

which is valid for 0a <  or 0a >  but 0a ≠ , and 0b ≤  or 0b > . When 0b < , the 

argument of the Airy function is to be interpreted as ( )
2 3

2 22b a− . Applying eqn 

(11) to eqn (8) gives 

 ( ) ( )
2

1 3 2 3

2 2 2 2
2

2 3
2 exp i Ai

2
xI g f A A

f
α π

     = + −        ′′′     
            (12) 

where 

 
( )
( )

3
2

2 2
23

f
A

f

′′
=

′′′
                   (13) 

The result (12) evidently contains contributions from both the stationary points, 2x  

and 2u .  
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 12

 Next we use the following identity connecting ( )Ai •  and Hankel functions of 

the first and second kinds, 
( ) ( )1

1 3
H •  and 

( ) ( )2

1 3
H •  respectively, both of order one-

third. 
42

 

 ( ) ( ) ( ) ( ) ( )1 2

1 3 1 3

1 i i
Ai exp exp

2 3 6 6

z
z H H

π π
ξ ξ

    − = + −        
          (14) 

where 

 3 22
3

zξ =  or equivalently, ( )2 3
3
2

z ξ=             (15) 

We now use the identity (14) to write eqn (12) as the sum of two terms 

 ( ) ( ) ( ) ( ) ( )
2 2 2

1 2
x x x

I I Iα α α= +  

where 

 
( ) ( ) ( ) ( )

2

1 3
1 12

2 2 2 21 31 6
2

exp i
63

x

A
I g f A H A

f

π π
α

    = + +     ′′′    
          (16) 

and 

 
( ) ( ) ( ) ( )

2

1 3
2 22

2 2 2 21 31 6
2

exp i
63

x

A
I g f A H A

f

π π
α

    = + −     ′′′    
          (17) 

 Next we consider the limit where 2x  and 2u  are well separated, so we can use 

the following asymptotic approximations for the Hankel functions 
43

 as x →∞  

 
( ) ( )1 2 1

exp i
2 4

H x x
x

ν
π

πν
π

  − −  
  

�              (18) 

 
( ) ( )2 2 1

exp i
2 4

H x x
x

ν
π

πν
π

  − − −  
  

�              (19) 

with 1 3ν = . We obtain for 
( ) ( )

2

1

x
I α  and 

( ) ( )
2

2

x
I α  the results 
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 13

 
( ) ( )

2

1
2 2 2

2

2
exp i 2

4x
I g f A

f

π π
α

  = + −  ′′   
              (20) 

 
( ) ( )

2

2
2 2

2

2
exp i

4x
I g f

f

π π
α

  = +  ′′   
               (21) 

Inspection of eqn (20) and (21) shows that 
( ) ( )

2

2

x
I α  is the simple stationary phase 

result for 2x , as given by the second term on the rhs of eqn (2). This suggests the 

other integral, 
( ) ( )

2

1

x
I α , is associated with the simple stationary phase result at 2u . 

We now confirm this suggestion by expressing 2f , 2A  and 2f ′′  in eqn (20) in terms of 

2u  rather than 2x . 

 From eqn (7) , we have for 2x u=  

 ( ) ( ) ( )
2

2 33 1 1
2 2 2 2 2 2 2 22 6

;
x

j f u f f u x f u xα ′′ ′′′= + − + −  

which simplifies to  

 ( )
2

3
2 2 2; 2

x
j f u f Aα = +                  (22) 

when eqn (10) is used and 2A  is defined by eqn (13). Also from eqn (7) we have upon 

differentiation 

 
( )

( )2

2 3

2 2 22

d ;

d

x
j f x

f f x x
x

α
′′ ′′′= + −  

and so for 2x u=  

 
( )

( )2

2

2 3

2 2 2 22

d ;

d

x

x u

j f x
f f u x

x

α

=

′′ ′′′= + −  

which simplifies to 
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( )

2

2

2 3

22

d ;

d

x

x u

j f x
f

x

α

=

′′= −                 (23) 

upon using eqn (10). With the help of eqn (22) and (23), we can now write eqn (20) in 

the form 

 
( ) ( )

( )
( )2

2 2

2

2 3
1 3

2 22

d ;
2 exp i ;

4d

x

x x

x u

j f x
I g j f u

x

α π
α π α

=

 
    = − −       
 

    (24) 

Eqn (24) is the simple stationary phase result at 2u  for ( )
2

3
;

x
j f xα , except for the 

presence of ( )2 2g g x≡  rather than ( )2g u .  However this small difference is of no 

consequence because it is 
( ) ( )

2

1

x
I α  that we must eliminate from our theory, since eqn 

(24) may be quite different from the simple stationary phase result at 1x  for ( )I α , as 

given by the first term on the rhs of eqn (2), namely 

 1 1
1

2
exp i

4
g f

f

π π  −  ′′   
 

Note: The fact that ( );f xα  has a maximum at 1x x=  did not play an essential role in 

the argument that 
( ) ( )

2

2

x
I α  should be retained and 

( ) ( )
2

1

x
I α  discarded when ( );f xα  

is approximated by ( )
2

3
;

x
j f xα . Thus if ( );f xα  increases monotonically for 2x x< , 

we would still retain 
( ) ( )

2

2

x
I α  and discard 

( ) ( )
2

1

x
I α  when using ( )

2

3
;

x
j f xα . Also, if 

in eqn  (1), ( ) constantg x = , then trivially ( ) ( )2 2g x g u= . 

 In the next section, we repeat the above analysis using the 3-jet at 1x  rather 

than 2x . 
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IIC.3 Contribution to ( )I α  from a third-order Taylor expansion at the 

stationary point 1x  

 The following derivation is analogous to that presented in Section IIC.2 and is 

shorter because only an outline is presented. Note that eqn (27)-(30) derived below 

are used in Sections IIC.4 and IIIC.  

 The 3-jet at 1x  is given by 

 ( ) ( ) ( )
1

2 33 1 1
1 1 1 1 12 6

;
x

j f x f f x x f x xα ′′ ′′′= − − + −             (25) 

using 1 0f ′ = . Then assuming ( ) ( )1g x g x≈ , we get for the approximation, ( )
1x

I α  to 

( )I α , the integral 

 ( ) ( ) ( ) ( ){ }1

2 31 1
1 1 1 1 1 12 6

exp i exp i dxI g f f x x f x x xα
∞

−∞

 ′′ ′′′= − − + −  ∫        (26) 

with the integration limits kept at −∞  to +∞ . Denoting the stationary phase points for 

the integrand of the integral (26) by 1x  and 1u  with 1 1x u≤ [see Fig. 1(a)], we have 

( )1 1 1 12u x f f′′ ′′′= +  and 1x (by construction).           

    Next we apply the identity (11) to eqn (26) obtaining 

 ( ) ( )
1

1 3 2 3

1 1 1 1
1

2 3
2 exp i Ai

2
xI g f A A

f
α π

     = − −        ′′′     
                      (27) 

where 

 
( )

3
1

1 2
13

f
A

f

′′
=

′′′
                  (28) 

The result (27) evidently contains contributions from both 1x  and 1u .  
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 We again use the relations (14) and (15) connecting ( )Ai •  and the Hankel 

functions of the first and second kinds.  This lets write eqn (27) as the sum of two 

terms 

 ( ) ( ) ( ) ( ) ( )
1 1 1

1 2
x x x

I I Iα α α= +             

where 

 
( ) ( ) ( ) ( )
1

1 3
1 11

1 1 1 11 31 6
1

exp i
63

x

A
I g f A H A

f

π π
α

    = − +     ′′′    
           (29) 

and 

 
( ) ( ) ( ) ( )
1

1 3
2 21

1 1 1 11 31 6
1

exp i
63

x

A
I g f A H A

f

π π
α

    = − −     ′′′    
           (30) 

 Next we consider the limit where 1x  and 1u  are sufficiently well separated 

that we can use the asymptotic approximations for the Hankel functions, as given by 

eqn (18) and (19)  for x →∞  with 1 3ν = . We obtain 

 
( ) ( )
1

1
1 1

1

2
exp i

4x
I g f

f

π π
α

  = −  ′′   
                          (31) 

 
( ) ( )
1

2
1 1 1

1

2
exp i 2

4x
I g f A

f

π π
α

  = − +  ′′   
              (32)

Inspection of eqn (31) and (32) shows that 
( ) ( )
1

1

x
I α  is the simple stationary phase 

result at 1x , given by the first term on the rhs of eqn (2). Hence 
( ) ( )
1

2

x
I α  should be 

associated with the simple stationary phase result at 1u . We confirm this suggestion 

by manipulations in which 1f , 1A  and 1f ′′  in eqn (32) are expressed in terms of 1u  
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rather than 1x - these manipulations are analogous to those in Section IIC.2 for eqn 

(20).  It is found that 
( ) ( )
1

2

x
I α  can be written in the alternative form  

   
( ) ( )

( )
( )1

1 1

1

2 3
2 3

1 12

d ;
2 exp i ;

4d

x

x x

x u

j f x
I g j f u

x

α π
α π α

=

  = +    
           (33) 

Now eqn (33) is the simple stationary phase result for ( )
1

3
;

x
j f xα  at 1u , except for 

the presence of ( )1 1g g x≡  rather than ( )1g u . Again this small difference is of no 

consequence since it is 
( ) ( )
1

2

x
I α  that we must eliminate from our theory. Note that 

eqn (33) may be quite different from the simple stationary phase result at 2x  for 

( )I α , which is given by the second term on the rhs of eqn (2), namely 

 2 2
2

2
exp i

4
g f

f

π π  +  ′′   
 

Note: The fact that ( );f xα  has a minimum at 2x x=  did not play an essential role in 

the argument that 
( ) ( )
1

1

x
I α  should be retained and 

( ) ( )
1

2

x
I α  discarded when ( );f xα  

is approximated by ( )
1

3
;

x
j f xα . Thus if ( );f xα  decreases monotonically for 1x x> , 

we would still retain 
( ) ( )
1

1

x
I α  and discard 

( ) ( )
1

2

x
I α  when using ( )

1

3
;

x
j f xα . This 

observation is used in Section IIIC for the nearside scattering of the J-shifted Eckart 

parametrization of the S matrix. Also, if in eqn (1), ( ) constantg x = , then trivially 

( ) ( )1 1g x g u= . 
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IIC.4 2Hankel approximation to ( )I α   

  The 2Hankel approximation is obtained by retaining 
( ) ( )
1

1

x
I α  and 

( ) ( )
2

2

x
I α  

[i.e., eqn (29) and (17) respectively]. But we drop 
( ) ( )
1

2

x
I α  and 

( ) ( )
2

1

x
I α  [i.e., eqn (30) 

and (16) respectively] because they correspond to unwanted contributions from the 

stationary phase points 1u  and 2u  respectively, which arise when ( );f xα  is 

approximated by its 3-jet at 1x  and 2x  respectively.  

 The 2Hankel approximation, denoted ( )2HI α , is thus given by 

 ( ) ( ) ( ) ( ) ( )
1 2

1 2
2H x x

I I Iα α α= +                 (34) 

where 

 
( ) ( ) ( ) ( )
1

1 3
1 11

1 1 1 11 31 6
1

exp i
63

x

A
I g f A H A

f

π π
α

    = − +     ′′′    
            (35) 

    1 1
1

2
exp i

4
g f

f

π π  −  ′′   
�                (36) 

with 

 
( )

3
1

1 2
13

f
A

f

′′
=

′′′
                  (37)

  

and 

 
( ) ( ) ( ) ( )

2

1 3
2 22

2 2 2 21 31 6
2

exp i
63

x

A
I g f A H A

f

π π
α

    = + −     ′′′    
           (38) 

     2 2
2

2
exp i

4
g f

f

π π  +  ′′   
�                (39) 

with 
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( )
( )

3
2

2 2
23

f
A

f

′′
=

′′′
                  (40) 

Remarks: 

• The 2Hankel approximation has the advantage that the two stationary phase 

points, 1x and 2x , appear separately in eqn (34)-(40). 

• The 2Hankel approximation has the disadvantage that it involves the third 

derivatives, 1f ′′′  and 2f ′′′ . For numerical input data with associated errors, 

these third derivatives may be difficult to determine accurately. 

• Note that the asymptotic limits (36) and (39), valid when 1x and 2x  are well 

separated, do not involve third derivatives. Typically, 
( ) ( )1

1 3
H x  and 

( ) ( )2

1 3
H x  

attain their asymptotic limits in eqn (18) and (19) respectively for 1x >
%

. 

• As 0,x →  we have 
( ) ( )1

1 3
iH x → − ∞  and 

( ) ( )2

1 3
iH x → ∞ , or in more detail 

44
 

  
( ) ( )

1 3
1,2

1 3

i 1 2

3
H x

xπ
    → Γ    
    

m              (41) 

 where ( )Γ •  is a gamma function. These results imply that the 2Hankel 

 expression (34) becomes numerically unstable as 1A  and 2A  approach zero 

 because of subtractive cancellation. This can be a problem for numerical input 

 data. In Section IIC.5, we investigate analytically the 2Hankel limit 

 when 1 0A →  and 2 0A → . 

• In practical applications of the 2Hankel approximation, the third derivatives 

can change sign as α varies; in particular, as 1x and 2x  separate and we 

approach the stationary phase results (36) and (39). Equations (34)-(40) have 
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been written so they are valid for either sign [If the third derivatives are 

identically zero, then eqn (34), (35), (37), (38) and (40) are ill-defined]. 

• If ( ) 1g x =  and ( );f xα  is exactly a cubic polynomial in x, eqn (4), (12), (27) 

and the 2Hankel formula (34) are exact results for ( )I α  because the 3-jets are 

then exact representations of ( );f xα . This is useful for the checking of 

computer programs. 

 

Since our application of the 2Hankel approximation to reactive scattering in Section 

III is relatively complicated, in the Appendix we apply the 2Hankel approximation to 

three oscillating integrals of the cuspoid type.
28, 29

 

 

IIC.5 Limiting case for the 2Hankel approximation when 0α α→  

 In the derivation of the 2Hankel approximation, the case when 1x and 2x  are 

well separated played an important role. For this limiting case, the simple stationary 

phase approximation (2) is valid, which enabled us to eliminate the unwanted 

contributions from the stationary phase points 1u  and 2u .   

 In this section, we examine the 2Hankel approximation for the limiting case 

0α α→  and ask the question: Do we obtain the transitional Airy approximation (4) in 

this limit?  In eqn (34), (35), (37), (38) and (40) we evidently have to express  

1g , 1f , 1f ′′ , 1f ′′′ , 1A   and 2g , 2f , 2f ′′ , 2f ′′′ , 2A  in terms of their values at 0x  rather than 

at 1x  and 2x . Now for 0α α→ , we have 1 0 2x x x≈ ≈  and to extract the limiting 

behaviour we approximate ( );f xα  by its 3-jet at 0x , as given by eqn (3) or (6). 
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 When the approximation (3) is valid for ( );f xα , the two real stationary phase 

points, 1 2x x≤ , are the roots of 

 ( )20 0 02x x f f′ ′′′− = −        (42) 

Since 1x and 2x  are assumed to be real in eqn (42), we must have 0 0f ′ ≤  (also recall 

from Section IIA that 0 0f ′′′> ). We can write for the two roots 

 1 0 0 02x x f f′ ′′′= −        (43) 

  2 0 0 02x x f f′ ′′′= +        (44) 

Now from the cubic approximation (3), we obtain 

 ( ) ( )0 0;f x f x xα′′ ′′′= −  

 ( ) 0;f x fα′′′ ′′′=  

It follows that for 1x x=  

  ( )1 0 1 0 0 02f f x x f f′′ ′′′ ′ ′′′= − = −  

and for 2x x=  

 ( )2 0 2 0 0 02f f x x f f′′ ′′′ ′ ′′′= − = +  

where eqn (43) and (44) have been used. We then find from the definitions (37) and 

(40) that 

 
( )
( )

3 2
0

1 2 1 2
0

2

3

f
A A

f

′
= =

′′′
 

To obtain 1f  and 2f  we again use eqn (3) together with eqn (43) and (44). The results 

are 

 1 0 1f f A= +  

 2 0 2f f A= −  
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Finally, we make the approximation, 1 0 2g g g≈ ≈ . Then we can substitute the above 

results for 1g , 1f , 1f ′′ , 1f ′′′ , 1A   and 2g , 2f , 2f ′′ , 2f ′′′ , 2A  into the 2Hankel 

approximation, eqn (34), (35), (37), (38) and (40) . The last step is to use the identity 

(14) to replace the two Hankel functions with an Airy function, yielding after 

simplification 

 ( ) ( )
1 3 1 3

0 0 0
0 0

2 2
2 exp i AiI g f f

f f
α π

     ′= −   ′′′ ′′′     

            (45) 

Equation (45) is the transitional Airy approximation mentioned in Section IIB. 

Although it has been obtained from the 2Hankel formula assuming 0 0f ′ ≤  (two real 

stationary phase points), it is also valid for 0 0f ′ > , provided 0f ′−  is replaced by 0f ′  

in eqn (45)-see eqn (4). 

 Thus we have demonstrated that the 2Hankel approximation contains both 

limiting cases presented in Section IIB. 

 

 

III. DERIVATION OF THE 6HANKEL APPROXIMATION FOR 

RAINBOW AND GLORY SCATTERING 

IIIA. Introduction 

 Our starting point is the expansion for the scattering amplitude, ( )Rf θ , in a 

basis set of Legendre polynomials. We write the resulting partial wave series (PWS) 

in the form 

 ( ) ( ) ( ) ( )1
R R

0

2i 2 1 cosJ J
J

f k J S Pθ θ
∞

−

=

= +∑ %            (46) 
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where k is the initial translational wavenumber, J is the total angular momentum 

quantum number, ˜ S J  is the Jth modified scattering matrix element, and PJ •( ) is a 

Legendre polynomial of degree J.  In order to keep the notation simple, the label, vi, 

ji, mi → vf, jf, mf  for the initial and final states, has been omitted from f θR( ) and 

JS% , as has the label, vi, ji, from k. Here v, j, m are vibrational, rotational and helicity 

quantum numbers respectively, with i f 0m m= =  in our case.  

 We now introduce standard semiclassical approximations into the PWS (46) to 

convert it into an oscillating integral.
3, 4

 Firstly, we transform the PWS into a Poisson 

series and retain the leading ( 0m = ) term; this assumes all the stationary phase points 

lie in ( ),π π− + , which is the case for our application-see Section IIIB. We have 

 ( ) ( ) ( ) ( ) ( )1
R R

1 2

2i d 2 1 cosJf k J J S J Pθ θ
∞

−

−

= +∫ %    (47) 

In eqn (47), ( )S J%  is the continuation of the set of values, { }JS% , from integer to real 

values of J and ( )RcosJP θ  is now a Legendre function of the first kind. Secondly, we 

introduce the Hilb approximation to express the Legendre function in terms of a 

Bessel function, ( )0J • , of order zero 
45,  46

 

 ( ) ( )( )R 1
R 0 R2

R

cos
sin

JP J J
θ

θ θ
θ

+�  

The Hilb approximation has an error, ( )3 2O J − , which is uniform for [ )R 0,θ π ε∈ −  

with 0ε > , We obtain 

 ( ) ( ) ( ) ( )( )R 1
R 0 R2

R 1 2

1
d 2 1

2i sin
f J J S J J J

k

θ
θ θ

θ

∞

−

= + +∫ %  
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Thirdly, we express the Bessel function as a sum of two Hankel functions 
47 

 ( ) ( ) ( ) ( ) ( )1 21
0 0 02

J x H x H x = +  
            (48) 

We can then write the scattering amplitude as the sum of nearside and farside 

subamplitudes,
3,4,6,19,20

 which are indicated by superscripts, “(−)” and “(+)”, 

respectively:  

 ( ) ( ) ( ) ( ) ( )R R Rf f fθ θ θ− += +  

The nearside subamplitude is given by 

 
( ) ( ) ( ) ( ) ( ) ( )( )2R 1 1

R R02 2
R 1 2

1
d

2i sin
f J J S J H J

k

θ
θ θ

θ

∞
−

−

= + +∫ %        (49) 

or 

 

( ) ( ) ( ) ( )

( ) ( ){ }
( ){ } ( ) ( )( )

R 1
R 2

R 1 2

R

2 1
R R0 2

1
d

2i sin

exp i arg 1 2 4

exp i 1 2 4

f J J S J
k

S J J

J H J

θ
θ

θ

θ π

θ π θ

∞
−

−

= +

 × − + + 

× + − +  

∫ %

%

� �
� �
� �� �

           (50) 

The farside subamplitude is given by 

 
( ) ( ) ( ) ( ) ( ) ( )( )1+ R 1 1

R R02 2
R 1 2

1
d

2i sin
f J J S J H J

k

θ
θ θ

θ

∞

−

= + +∫ %          (51) 

or 

 

( ) ( ) ( ) ( )

( ) ( ){ }
( ){ } ( ) ( )( )

+ R 1
R 2

R 1 2

R

1 1
R R0 2

1
d

2i sin

exp i arg 1 2 4

exp i 1 2 4

f J J S J
k

S J J

J H J

θ
θ

θ

θ π

θ π θ

∞

−

= +

 × + + − 

× − + − +  

∫ %

%

� �
� �
� �� �

            (52) 
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In writing down eqn (50) and (52), we have followed Miller 
9
 and introduced the 

factors  

( ){ } ( ){ }R Rexp i 1 2 4 exp i 1 2 4

1

J Jθ π θ π± + − + −      

=

m
 

This is because the asymptotic eqn (18) and (19) with 0ν =  and ( )1
R2

1J θ+ �  show 

that 

 
( ) ( )( ) ( ) ( ){ }1,2 1 1

R R0 2 21
R2

2
exp i 4H J J

J
θ θ π

π θ
 + ± + −
 +

�   

which implies that the expressions in double braces, � �• , are relatively slowly 

varying with respect to J. 

Remark: As in our previous work, 
3, 4, 6

 we use “m ” to indicate nearside/farside in the 

semiclassical theory and reserve “N/F” for nearside/farside decompositions in the 

PWS theory. 

 The fourth step is the asymptotic evaluation of the oscillatory integrals (50) 

and (52) using the theory developed in Section II. To do this we must first examine 

the general properties of ( )S J%  for our application. This is done next. 

IIIB. Properties of ( )S J%  

 Fig. 2 illustrates the properties of ( )S J%  for the J-shifted Eckart model defined 

in Section IV. In particular, Fig. 2(a) and 2(b) display ( )S J%  and ( )arg S J%  versus J 

respectively, whilst Fig. 2(c) is a plot of the quantum deflection function versus J, 

which is defined by 

 ( ) ( )d arg

d

S J
J

J
Θ ≡

%
%   
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For eqn (50) and (52), the stationary phase points are the roots of 

 ( ) R 0J θΘ =% m  

where “−” corresponds to nearside scattering and “+” to farside scattering. We see 

there can be a contribution from both the nearside and farside scattering at a given 

value of Rθ ; we consider the nearside and farside cases separately. 

IIIC. Nearside scattering 

 Fig. 2(c) shows there is a single real root to ( ) RJ θΘ = +% , which we denote by 

( )1 1 RJ J θ≡ . The asymptotic theory developed in Section IIC.3 applies, in particular 

eqn (29). 

We make the following identifications between eqn (1)  and eqn (50) 

 ( ) ( ) ( ) ( ){ } ( ) ( )( )
( ) ( ) ( )

1 1 R

21 1
R R02 2

R

, ,

exp i 1 2 4

; arg 1 2 4

x J x J

g x J S J J H J

f x S J J

α θ

θ π θ

α θ π

= = =

= + + − +  

= − + +

� �
% � �

� �� �

%

 

so that 

 

( ) ( )
( ) ( )
( ) ( )

R;

;

;

f x J

f x J

f x J

α θ

α

α

′ = Θ −

′′ ′= Θ

′′′ ′′= Θ

%

%

%

 

Note that the phase has a linear dependence on Rθ , namely, ( ) R1 2J θ− + .  Then 

from eqn (28), (29) and (50), we can write for the nearside subamplitude to the 

6Hankel approximation 
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( ) ( )

( )
( )( )

( ) ( )( )

( )( ) ( ){ }
( ) ( )( ) ( ) ( )( )

R
R6H 1 6

R

1 3

1 R 1
1 R 1 R2

1 R

1 R 1 R

2 1
1 R R 1 R0 1 3

1
1|

2i sin 3

exp i arg 6

1 2

f
k

B
J S J

J

S J B

H J H B

θ π
θ

θ

θ
θ θ

θ

θ θ π

θ θ θ

−
=

 
  × + ′′Θ  

 × − + 

× +  

%

%

%

  (53) 

with 

 ( )
( )( )
( )( )

3
1 R

1 R 2
1 R3

J
B

J

θ
θ

θ

′Θ
=

 ′′Θ 

%

%

      (54) 

. IIID. Farside scattering 

 Perusal of Fig. 2(c) shows there are two real roots to ( ) RJ θΘ = −% , which we 

denote ( )2 2 RJ J θ≡  and ( )3 3 RJ J θ≡  with 2 3J J≤ . At the rainbow angle, 

r
R Rθ θ= , 2J  and 3J  coalesce to rJ , the value of the rainbow angular momentum 

variable; we then have, ( )rJΘ% = r
Rθ− .  For the farside scattering, the asymptotic 

theory developed in Section IIC.4 applies and in particular we can use the 2Hankel 

approximation. 

 We make the following identifications between eqn (1)  and eqn (52) 

 ( ) ( ) ( ) ( ){ } ( ) ( )( )
( ) ( ) ( )

1 2 2 3 R

11 1
R R02 2

R

, , ,

exp i 1 2 4

; arg 1 2 4

x J x J x J

g x J S J J H J

f x S J J

α θ

θ π θ

α θ π

= = = =

= + − + − +  

= + + −

� �
% � �

� �� �

%

 

so that 

 

( ) ( )
( ) ( )
( ) ( )

R;

;

;

f x J

f x J

f x J

α θ

α

α

′ = Θ +

′′ ′= Θ

′′′ ′′= Θ

%

%

%
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Note that the phase has a linear dependence on Rθ , namely, ( ) R1 2J θ+ + .  Then 

from eqn (34), (35), (37), (38), (40) and (52) we have for the two farside 

subamplitudes which contribute to the 6Hankel approximation 

( ) ( )

( )
( )( )

( ) ( )( )

( )( ) ( ){ }
( ) ( )( ) ( ) ( )( )

R
R6H 1 6

R

1 3

2 R 1
2 R 2 R2

2 R

2 R 2 R

1 1
2 R R 2 R0 1 3

1
2 |

2i sin 3

exp i arg 6

1 2

f
k

B
J S J

J

S J B

H J H B

θ π
θ

θ

θ
θ θ

θ

θ θ π

θ θ θ

+
=

 
  × + ′′Θ  

 × − + 

× +  

%

%

%

  (55) 

with 

 ( )
( )( )
( )( )

3
2 R

2 R 2
2 R3

J
B

J

θ
θ

θ

′Θ
=

 ′′Θ 

%

%

     (56) 

and 

( ) ( )

( )
( )( )

( ) ( )( )

( )( ) ( ){ }
( ) ( )( ) ( ) ( )( )

R
R6H 1 6

R

1 3

3 R 1
3 R 3 R2

3 R

3 R 3 R

1 2
3 R R 3 R0 1 3

1
3 |

2i sin 3

exp i arg 6

1 2

f
k

B
J S J

J

S J B

H J H B

θ π
θ

θ

θ
θ θ

θ

θ θ π

θ θ θ

+
=

 
  × + ′′Θ  

 × + − 

× +  

%

%

%

  (57) 

with 

 ( )
( )( )
( )( )

3
3 R

3 R 2
3 R3

J
B

J

θ
θ

θ

′Θ
=

 ′′Θ 

%

%

     (58) 
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IIIE. 6Hankel approximation 

 The 6Hankel approximation for the full scattering amplitude is then obtained 

by summing the subamplitudes (53), (55) and (57) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )6H R R R R6H 6H 6H1| 2 | 3 |f f f fθ θ θ θ− + +
= + +   (59) 

The corresponding DCS is 

 ( ) ( ) 2
6H R 6H Rfσ θ θ=       (60) 

Eqn (59) is the 6Hankel approximation that was written down without proof in our 

recent paper with Zhang.
6
 We see that it contains six Hankel functions, three of order 

zero, 
( ) ( )1,2
0H • , and three of order 1 3 , 

( ) ( )1,2

1 3
H • . 

 Note that the farside subamplitudes (55) and (57) are only valid on the bright 

side of the rainbow angle, where the two roots of ( ) RJ θΘ = −%  are real. Thus in our 

calculations in Section V, we will only apply the full 6Hankel approximation (59) for 

r
R R0 θ θ< < .  

 When the arguments of the Hankel functions in eqn (53), (55) and (57) are 

large, we can substitute the asymptotic results (18) and (19) with 0 or 1 3ν = . We 

then obtain the following expressions for the subamplitudes, which constitute the 

primitive semiclassical approximation (PSA): 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R R R R6H PSA 1 11| 1| i exp if fθ θ σ θ β θ− − − − = −   

�             (61)

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R R R R6H PSA 2 22 | 2 | exp if fθ θ σ θ β θ+ + + + = −   
�   

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R R R R6H PSA 3 33 | 3 | i exp if fθ θ σ θ β θ+ + + + = −   

�  

where the “classical-like” DCSs are given by 
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( ) ( )
( ) ( )( )

( )( )

21
1 R 1 R2

R1 2
R 1 Rsin

J S J

k J

θ θ
σ θ

θ θ

−
 + =

′Θ

%

%
               (62)

 
( ) ( )

( ) ( )( )
( )( )

21
2 R 2 R2

R2 2
R 2 Rsin

J S J

k J

θ θ
σ θ

θ θ

+
 + =

′Θ

%

%
   

 
( ) ( )

( ) ( )( )
( )( )

21
3 R 3 R2

R3 2
R 3 Rsin

J S J

k J

θ θ
σ θ

θ θ

+
 + =

′Θ

%

%
 

and the phases are 

 
( ) ( ) ( )( ) ( ) 1

R 1 R 1 R R1 2
arg S J Jβ θ θ θ θ−  = − + 

%             (63)

 
( ) ( ) ( )( ) ( ) 1

R 2 R 2 R R2 2
arg S J Jβ θ θ θ θ+  = + + 

%    

 
( ) ( ) ( )( ) ( ) 1

R 3 R 3 R R3 2
arg S J Jβ θ θ θ θ+  = + + 

%   

In a systematic semiclassical (SC) notation, 
4, 6

 eqn (61)-(63) are written SC/N/PSA.  

We call the sum of the two farside subamplitudes, SC/F/PSA.   

 

IIIF. The limit r
R Rθ θ→ : farside rainbow scattering 

 When r
R Rθ θ→ , 

( ) ( ) ( ) ( )R R6H 6H2 | 3 |f fθ θ+ +
+  becomes numerically unstable 

because of subtractive cancellation.  This arises because ( )( )2 R 0J θ′Θ →%  and  

( )( )3 R 0J θ′Θ →%  as the rainbow angle is approached, and the asymptotic limits (41) 

apply to the 
( ) ( )( )1

R1 3 iH B θ  with 1 and 2i = . We examined this limit in Section IIC.5, 

and showed that the 2Hankel approximation contains the transitional Airy 

approximation (45) [or eqn (4)] when 0α α→ . We can apply this result to the farside 

scattering, as given by eqn (55) and (57). Making the identifications 
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  r
0 r R 0 R, , ,x J x J α θ α θ= = = =  

we can write for the farside subamplitude. 

 

( ) ( ) ( ) ( )

( ) ( ){ }

rr
RtAiry 1 3

R r

r r R

r
R R

1 3
r

2 1 21

sin

exp i arg 1 2 3 4

Ai

S JJ
f

k q

S J J

q

π
θ

θ

θ π

θ θ

+ +
=

 × + + − 

 −
×   

 

%

%  (64) 

where 

 
( ) ( )

r r

2 3

r 2 3

d d arg1 1

2 2d d
J J J J

J S J
q

J J
= =

Θ
= =

%%

 

The approximation (64) is equivalent to replacing ( )JΘ%  by its 2-jet at rJ , namely 

 ( ) ( )
r

22 r
R r rJ

j J q J JθΘ = − + −%  

Eqn (64) has the advantage that it can be used on both the bright side, r
R Rθ θ< , and 

the dark side, r
R Rθ θ> , of the rainbow, as well as at r

R Rθ θ= .  

Remarks:  

• In a systematic semiclassical notation, 
4, 6

 eqn (64) is written as SC/F/tAiry, or 

tAiry for short. 

• When the tAiry subamplitude (64) is used to calculate the DCS, we must also 

include the contribution from the nearside scattering. We use the SC/N/PSA 

subamplitude of eqn (61)-(63) for this purpose. 

• It is known that the tAiry subamplitude is a special case of the more general 

uniform Airy approximation, as derived in ref. 4 and 6. In a systematic 

notation,
4, 6

 it is described as SC/F/uAiry, or uAiry for short. 
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IIIG. The limit R 0θ → : glory scattering 

 Finally we must examine the glory limit, R 0θ → , for 

( ) ( ) ( ) ( )R R6H 6H1| 2 |f fθ θ− +
+ . In eqn (53) and (55), we note the following limits as 

R 0θ → , for 1 or 2i = ; 

 R

R

1
sin

θ
θ

→  

 ( ) ( )R g0i iJ J Jθ → ≡ ,  

 ( )( ) ( )( ) ( )R g g0i iJ J Jθ′ ′ ′ ′Θ →Θ = Θ ≡ Θ% % % %  

 ( )( ) ( )( ) ( )R g g0i iJ J Jθ′′ ′′ ′′ ′′Θ →Θ = Θ ≡ Θ% % % %  

 ( ) ( )R g0i iB B Bθ → ≡  

 ( )( ) ( )( ) ( )R g g0i iS J S J S J Sθ → = ≡% % % %  

 
( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1

R g1 3 1 3 1 3
0i iH B H B H Bθ → ≡  

We can use the above limits and the identity (48) to deduce that in the limit R 0θ →  

 

( ) ( )( ) ( ) ( )( )
( )

2 1
1 R R 2 R R0 0

0

1 2 1 2

2 0

2

H J H J

J

θ θ θ θ+ + +      

→

=

 

We then obtain 

 

( ) ( ) ( ) ( )

( ) ( )

R R6H 6H

1 3

1g
g g g g1 31 6

g

1| 2 |

1 1
exp i

i 2 63

f f

B
J S B H B

k

θ θ

π π

− +
+

       = + − −     ′′    Θ   

%

%

 (65) 

where 

Page 32 of 63Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 33

 
( )
( )

3

g

g 2

g3

J
B

J

′Θ
=

 ′′Θ 

%

%

       (66) 

Inspection of Fig. 2(c) shows that we expect ( )gJ′′Θ% to be very small in magnitude; 

hence from eqn (66), we conclude that g 1B � , and so can use the asymptotic 

approximation (18) with 1 3ν =  in eqn (65). We obtain for the limit R 0θ →  

 

( ) ( ) ( ) ( )
( )
R R6H 6H

g g
g

1| 2 |

exp i 4 2 1

2

f f

J S
k

θ θ

π π

− +
+

 → − + 
′  Θ

%

%

 

which is recognized as the semiclassical transitional approximation (STA) at R 0θ = , 

as given by eqn (14) of ref. 3 or eqn (29) of ref. 7. 

Remarks:  

• The contribution from 
( ) ( )R6H 3 |f θ+

 to the scattering at R 0θ ≈  is very small 

in our application in Section V.  It has been neglected in the above derivation. 

•  
( ) ( )R6H 1|f θ−

 and 
( ) ( )R6H 2 |f θ+

 become large in magnitude as R 0θ → , but 

their sum 
( ) ( ) ( ) ( )R R6H 6H1| 2 |f fθ θ− +

+  is much smaller. This implies the 

6Hankel approximation becomes numerically unstable as R 0θ → . 

• The STA is a special case of the uniform semiclassical approximation (USA) 

for forward glory scattering which was derived and discussed in ref. 3 and 7. 

However, in this paper we will use the more explicit name, uniform Bessel 

approximation, and use the abbreviation, uBessel. 
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IIIH. Discussion 

We note the following: 

• The 6Hankel approximation (59) is generic. This means it is applicable to 

numerous chemical reactions at numerous collision energies (in principle, an 

infinite number of cases) which have S matrix elements that are analogous to 

those in Fig. 2.  

• The 6Hankel approximation (59) is uniform for both rainbow and glory 

scattering, with the advantage that the contributions from all three roots 

1 2 3, ,J J J  appear separately. In contrast, in the standard semiclassical 

approach, it is necessary to apply two different theories: the uniform rainbow 

theory (SC/F/uAiry or uAiry),
4, 6

 which involves the pair of roots, 2 3andJ J ; 

and the uniform glory theory (uBessel),
3, 7

 which involves the pair 1 2andJ J . 

• The 6Hankel approximation (59) has the disadvantage that it involves third 

derivatives of ( )arg S J% ; these can be difficult to calculate accurately for 

numerical input data. Moreover in practical applications, these third 

derivatives can change sign. In contrast, the uAiry and uBessel theories 

involve just the second derivatives. 

• The 6Hankel approximation (59) has the disadvantage that it becomes 

numerically unstable for R 0θ →  and for r
R Rθ θ→ , in particular for 

numerical { }JS%  that possess errors. These problems can be overcome by 

using the STA for glory scattering and the tAiry approximation for rainbow 

scattering. 

• The 6Hankel formula for the DCS is a generalization to reactive scattering of a 

result given by Miller for elastic collisions. In particular, if we set in eqn (53)-
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(60), ( ) 1S J →%  and ( ) ( )arg 2S J Jδ→% , where ( )Jδ  is the elastic phase 

shift, then, after considerable algebraic manipulations, we obtain for 

( )6H Rσ θ  the result quoted by Miller [eqn (6) of ref. 9] . One difference is 

that Miller assumes the Wentzel-Kramers-Brillouin approximation for ( )Jδ , 

whereas our derivation shows that this assumption is not necessary. 

 

IV.  J-shifted Eckart parameterization and the values of its 

parameters 

 This section defines the J-shifted Eckart parameterization for ( )S J%  in Section 

IVA, whilst Section IVB gives the values of its parameters that are used in our DCS 

computations in Section V. 

 

IVA. J-shifted Eckart parameterization 

 Sokolovski introduced the J-shifted Eckart parameterization for ( )S J%  in order 

to model the DCS for the state-selected H + D2 → HD + D reaction; in particular to 

mimic a resonance near the reaction threshold. 
10, 48

 It has subsequently been found to 

be very useful for understanding the dynamics of chemical reactions. 
11, 48, 49

   The J-

shifted Eckart parameterization is based on the exact quantum solution for a particle 

of reduced mass µ transmitted by a symmetric Eckart potential, ( )2
0 0coshW s s , 

where s is a reaction coordinate, 0s  is a reference distance and 0W  is the height of the 

energy barrier. The following formulae define this parameterization: 
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( ) ( ) ( ) max

max max

exp i , 0,1,2,...,

0 1, 2,...

S J s J J J J

J J J

φ  = =   
= = + + 

% %%
 

where  

 ( ) 2J aJ bJφ = +%  

is a quadratic phase, with real parameters, a and b. Also 

 ( )
( )( ) ( )( )

( )( ) ( )( )

1 1
2 2

i i i i

i 1 i

K J Q K J Q
s J N

K J K J

Γ − + + Γ − − +
=

Γ − Γ −
%  

In addition 

• N = scaling factor (dimensionless). 

• 0 1 4Q W ε= −  (dimensionless because of the following definition). 

• ( )2 2
02 sε µ= h  (dimensions of energy). 

• ( ) ( )1K J E BJ J ε= − +    (dimensionless). In this equation, E is the total 

energy and B is the rotational constant for the triatomic complex. The term 

( )1BJ J +  represents the J-shifted approximation, because it introduces a J 

dependence into the mathematically one-dimensional Eckart barrier. 

• ( )K J  has two branch points at real values of J, which are the roots of 

( )1 0E BJ J− + = . The larger root is located at c 1 4 1 2J E B= + − . The 

integer maxJ  is then defined by ( )max cFloorJ J= . It follows that ( )maxK J  

is real and ( )max 1K J +  is purely imaginary. In our application in Section V, 

we have max 1J � . 
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IVB. Parameter values for the J-shifted Eckart parameterization 

 We used the following values for the parameters 

 
0

0.052, , 0.03

226.54, 0.11247, 90

a b N

E B W

π

ε ε ε

= − = = 


= = = 
   (67) 

which results in max 44J = . Plots of ( )S J% , ( )arg S J%  and ( )JΘ%  versus J 

respectively have already been shown and discussed in Fig. 2(a), 2(b) and 2(c) 

respectively. In Section V, we will require the position of the leading Regge pole (n = 

0) in the first quadrant of the complex angular momentum plane for the J-shifted 

Eckart potential with the parameter values (67). It is obtained from the poles of 

( )( )i i 1 2K J QΓ − + +  and is given by 0 34.4 1.21iJ = + , which corresponds to a life-

angle of ( )01 2Im 0.415rad 23.8J = = ° . 

 Remark: the parameter values (67) are based on the “standard values” 

employed for the H + D2 reaction,
10, 11

 which have 0.12247B ε =  and 0 150W ε = . 

However, the standard values result in r
R 24.0θ = °  at r 25.2J = , which only allows a 

test of the 6Hankel approximation over a relatively small range of angles. Changing 

B ε  to 0.11247 and 0W ε  to 90 gives r
R 109.2θ = °  at r 34.5J = , which permits the 

semiclassical approximations to be tested over a wider range of Rθ . 

 

 

 

V. Results for the J-shifted Eckart parameterization 

 This section presents our results for the angular scattering in Section VA, 

whilst Section VB reports a nearside-farside (NF) analysis of the (dimensionless) 
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DCS, as well as a NF analysis for the local angular momentum (LAM). All the 

semiclassical DCSs are defined as the square modulus of the corresponding scattering 

amplitude. 

VA. Dimensionless differential cross sections 

 Figure 3 plots, on a linear scale, the dimensionless differential cross section 

(dDCS), ( )2
Rk σ θ , versus Rθ  for the PWS, where it is compared with the uAiry + 

SC/N/PSA, uBessel and 6Hankel approximations for r
R Rθ θ< . When r

R Rθ θ≥ , the 

dDCS for the tAiry + SC/N/PSA approximation is drawn. For consistency with ref. 4, 

the tAiry subamplitude includes the first correction term to eqn (64), even though it 

makes only a small contribution to the dDCS [see eqn (33) of ref. 4].  Notice that the 

uAiry + SC/N/PSA curve diverges as R 0θ → ° , the uBessel curve diverges as 

r
R Rθ θ→ , and the tAiry + SC/N/PSA curve diverges as R 180θ → ° .  

 Fig. 3(a) shows the range, R0 30θ° ≤ ≤ ° . We see that the PWS, uBessel and 

6Hankel dDCSs agree to graphical accuracy, as does the uAiry + SC/N/PSA dDCS 

for R 2θ > °
%

. The same is mostly true for the range, R30 80θ° ≤ ≤ ° , displayed in Fig. 

3(b), except near the maxima of the diffraction oscillations.   

 For r
R R80 θ θ° ≤ < , Fig. 3(c) shows that the uAiry + SC/N/PSA curve 

generally agrees best with the PWS dDCS, with the uBessel and 6Hankel dDCSs 

being less accurate. This last result can be traced back to the 2Hankel approximation, 

which is generally less accurate than the uAiry approximation for the cuspoid test 

integrals in the Appendix.  For r
R Rθ θ>

%
, the agreement between the PWS and tAiry + 

SC/N/PSA curves is satisfactory. As expected, the discrepancies between these two 

curves generally increases as we move further into the dark side of the rainbow.  
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 Notice that the rainbow does not possess any supernumerary rainbows in the 

angular scattering; rather it is an example of a “broad rainbow”.
4, 6, 50

 

 

VB. Nearside-farside analyses 

  The NF decomposition of the PWS for ( )Rf θ  is given by
 3, 4, 6, 11, 13-17, 19-24

 

 ( ) ( ) ( ) ( ) ( )N F
R R Rf f fθ θ θ= +      (68) 

where the N,F subamplitudes are ( )R 0,θ π≠  

 
( ) ( ) ( ) ( ) ( )N,FN,F

R R
0

1
2 1 cos

2i
J J

J

f J S Q
k

θ θ
∞

=

= +∑ %    (69) 

with 

 
( ) ( ) ( ) ( )N,F

R R R
1 2i

cos cos cos
2

J JJQ P Qθ θ θ
π

 = ±  
   (70) 

Eqn (68)-(70) are the Fuller decomposition for ( )Rf θ .
51

 The corresponding N,F 

PWS DCSs are defined by 

 
( ) ( ) ( ) ( )

2
N,F N,F

R Rfσ θ θ=      (71) 

 In practice, we resum the PWS (46) three times (r = 3) before carrying out the 

NF decomposition because it is known this helps “clean” the N and F unresummed 

dDCSs and LAMs of unphysical structure.
21-24

 We then write PWS/N/r=3 and 

PWS/F/r=3 for the N and F resummed subamplitudes respectively. Totenhofer et al.
24

 

have presented a detailed account of resummation theory for a Legendre PWS; this 

theory is not repeated here.    

 Fig. 4(a) reports a NF analysis of the PWS dDCS. We see that the reaction is 

N dominant, although the PWS/F/r=3 dDCS is always significant, becoming 

increasingly important upon moving to smaller scattering angles. This results in 
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pronounced diffraction oscillations in the full dDCS, which arise from interference 

between the N and F subamplitudes. 

  The PWS results in Fig. 3 for the dDCS, allowed us to test the accuracy of the 

semiclassical approximations. This is not the case for Fig. 4, because it is known that 

the NF PWS decomposition of eqn (68)-(71) is not unique: there is no guarantee that 

it will produce physically useful results.
20-24

 Rather we use the semiclassical 

approximations to provide a check on the physical effectiveness of the N,F PWS/r=3 

results. We also recall that the SC/F/6Hankel, SC/F/uAiry, SC/F/PSA and 

SC/N/6Hankel approximations are only defined for r
R Rθ θ< . 

 Fig. 4(a) plots the N and F dDCSs for the PWS/r=3, PSA and 6Hankel 

approximations, and the F dDCSs for the uAiry and tAiry approximations. The 

agreement between the semiclassical and N,F PWS/r=3 dDCSs is seen to be generally 

good.  The discrepancies are those expected from our earlier work.
3, 4, 6, 11, 13-17, 19-24

 

For example, the SC/F/PSA dDCS diverges as r
R Rθ θ→ , whilst the N and F 

PWS/r=3 dDCSs exhibit unphysical oscillations at large angles. 

 Next we consider the NF analysis of the LAMs. 
21-24

  The full LAM is defined 

by 

 ( ) ( )R
R

R

d arg
LAM =

d

f θ
θ

θ
      (72) 

whilst the N,F LAMs are obtained from 
21-24

 

 
( ) ( )

( ) ( )N,F
N,F R

R
R

d arg
LAM =

d

f θ
θ

θ
     (73) 

In the PWS calculations, we again resum ( )Rf θ  three times (r = 3) before making 

the NF decomposition.
24

 The args in eqn (72) and (73) are not necessarily principal 

values in order that the derivatives be well defined. 
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 Fig. 4(b) shows full and N,F LAMs for the PWS/r=3 and semiclassical 

approximations. We observe that the LAM information in Fig. 4(b) is consistent with 

the dDCS information in Fig. 4(a). The discrepancies between the N,F curves are 

similar to those we have seen previously, e,g., the unphysical oscillations in the N,F 

PWS/r=3 LAMs as we approach the backward direction.
21-24

  

  We observe that the semiclassical N LAMs decrease in magnitude as Rθ  

increases, and are similar to the LAM for the repulsive scattering of two hard 

spheres,
23, 24

 i.e., the N scattering is direct. Next we examine the semiclassical F 

LAMs. We see that the semiclassical F LAMs are slowly increasing at small Rθ ; then 

the SC/F/tAiry LAM becomes approximately constant at large angles, where it has the 

value 34.9.  In fact to a very good approximation we have 
4, 6

 

 ( )(+)
R rtAiry

LAM 1 2 35.0Jθ ≈ + =   

This behaviour of SC/F/tAiry corresponds in a Regge treatment to decaying 

(creeping) surface waves that propagate around the reaction zone (see also ref. 52.) 

When a single Regge pole (n = 0) dominates, we have 
6, 27

 

 ( )(+)
R 0ReggeLAM Re 1 2 34.9Jθ ≈ + =  

For a broad rainbow, we also expect r 0ReJ J≈ , 
6, 27

 which is what we find.  If we 

average over the oscillations in the PWS/F/r=3 LAM for R100 165θ° ≤ ≤ °  we obtain 

a mean value of 34.5. Thus we have the result 

 
( ) ( ) ( )(F) (+) (+)

R R RRegge3 tAiry

0 r

LAM LAM LAM

Re 1 2 1 2

r

J J

θ θ θ= ≈ ≈

≈ + ≈ +
 

This important result tells us that the PWS, semiclassical and Regge theories are all 

consistent with each other for the broad rainbow in Fig. 3 and 4(a). 
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VI.  Conclusions 

 In our recent paper with Zhang, 
6
 we stated without proof the 6Hankel 

asymptotic approximation for the scattering amplitude, which has the desirable 

property of being uniform for both a forward glory and a rainbow in the DCS of a 

chemical reaction. It is also a generic approximation. In this paper we have: 

• Presented a detailed derivation of the 6Hankel approximation. Our derivation 

generalizes a method described by Carrier for an oscillating integral with two 

coalescing real stationary phase points. The generalization uses 3-jets of the 

phase at the stationary phase points, 1x and 2x , followed by a discardation of 

the contributions from the unwanted stationary phase points, 2u  and 1u . 

Applying the resulting 2Hankel approximation to the Legendre PWS for the 

scattering amplitude gives rise to the generic 6Hankel approximation. We also 

made a test of the accuracy of the 2Hankel approximation by applying it to 

three cuspoid oscillating integrals. 

• Investigated some properties of the 6Hankel approximation. It has the 

advantage that each root contribution, 1 2 3, ,J J J , appears separately in the 

6Hankel expression, but has the disadvantage that third derivatives of 

( )arg S J%  are required. In the limit R 0θ → , the 6Hankel approximation 

reduces to the STA for describing the glory. And in the limit r
R Rθ θ→ , we 

obtain the tAiry approximation for rainbow scattering. 

• Assessed the accuracy of the 6Hankel approximation for r
R Rθ θ< . Using a J-

shifted Eckart parametrization of the S matrix, we found that both the 6Hankel 

and uBessel DCSs agreed well with the PWS DCS at angles close to the 
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forward direction. However using numerical S matrix data, we earlier had 

found 
6
 the 6Hankel DCS to be less accurate than the uBessel DCS at small 

angles - probably because of the difficulty of accurately calculating the 

( )iJ′′Θ% . Near the rainbow angle, the 6Hankel DCS generally exhibited greater 

deviations from the PWS DCS compared to the uAiry + SC/N/PSA DCS. This 

can be traced back to the 2Hankel approximation, which was generally less 

accurate than the uAiry approximation for the cuspoid test integrals. 

 

     The above trends can be understood in a more general way by remembering that 

the phases of the semiclassical integrands are not approximated in the uBessel and 

uAiry approximations - rather exact local one-to-one transformations are made - and 

only the pre-exponential factors are approximated.
3, 4, 7, 8

 Whereas, in the 2Hankel and 

6Hankel approximations, both the phases and pre-exponential factors are 

approximated. 

Also relevant is the following comment made by Ursell in his last published 

paper concerning the solution of (water) wave problems: 
53

   

“Such a problem is usually solved by applying a sequence of mathematical 

arguments, and it would be helpful if some or all of the successive steps in this 

sequence could be given a physical interpretation. In the author’s experience this is 

generally not possible.” 

Ursell illustrates his comment by several examples of mathematical steps that 

do not have a physical interpretation, in particular the use of the exact local one-to-

one transformation employed in the method of Chester et al.
39

 for the uniform 

asymptotic evaluation of an oscillating integral with two coalescing saddle points. 
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This is also the key transformation used in the derivation of the uAiry 

approximation.
4, 8

 

 

 

Appendix: Application of the 2Hankel approximation to cuspoid 

integrals 

 In this Appendix, we assess the accuracy of the 2Hankel approximation (34) 

when it is applied to three cuspoid integrals 
28, 29

 of the Case A type.  We also 

compare with results from the uniform Airy approximation (uAiry) derived by CM, 
8
 

which is based on the technique of Chester et al. 
39

  For a Case A integral, the uniform 

Airy approximation is given in Section IIIG of CM, namely 

 

( ) ( )
( ) ( )

( )

( ) ( )
( )

1 2 1 41 2
uAiry 1 2 1 2

1 2

1 41 2
1 2 1 2

1 2

2 exp i Ai

i Ai

g g
I A

f f

g g

f f

α π ς ς

ς ς−

    = + −
 ′′ ′′−  

    ′+ − − 
 ′′ ′′−   

          (A1)   

where 

 ( ) ( )1
1 22

A f fα = +                 

and 

 ( ) ( )
2 3

3
1 24
f fς α  = −                

Here ( )Ai x′  means ( )dAi dx x . Note that ( ) 0ς α ≥  for real roots. When 1ς � , so 

the stationary phase points are well separated,  the simple stationary phase result (2) is 

obtained upon replacing ( )Ai ς−  and ( )Ai ς′ −  by their asymptotic approximations. 

When 0ς ≈ , so the stationary phase points are close together, the transitional Airy  

approximation (4) is obtained when ( );f xα  is approximated by its 3-jet, as in eqn (3) 
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or (6). For this situation, eqn (A1) for ( )uAiryI α  becomes an exact result, provided 

( ) 1g x = . 

 In the following three examples, all the phases are real and have a linear 

dependence on α  of the type, xα− . In all three cases, ( ) 1g x = . The corresponding 

oscillating integrals have been calculated numerically by deforming the contour of 

integration from the real axis into the complex plane as explained in ref. 54-56. 

 

Example 1. Cubic polynomial phase 

 We write the cubic phase in the form 

 ( )
2 3

1 2 3;
2 3

x x
f x x a aα α= − + +          (A2) 

where 2 3, ,a aα  are real numbers chosen so that ( )1 ;f xα  has two real stationary 

phase points [i.e., real roots of ( )1d ; d 0f x xα = ], which can coalesce as α  varies; 

for example, 2 31, 1, 1 4a a α= = ≥ − .  More generally, we require the discriminant, 

1D , of the quadratic equation ( )1d ; d 0f x xα = , namely 2
1 2 34D a aα= + , to satisfy 

1 0D >  for separate real roots or 1 0D =  for one real double root.  Then ( )2HI α , 

( )uAiryI α  and ( )tAiryI α  are exact results for the cubic phase (A2), which is useful 

for the checking of computer programs. 

 

Example 2. Quintic polynomial phase: An oddoid integral of order two  

 In this example we choose  

 ( )
3 5

2 3 5;
3 5

x x
f x x a aα α= − + +      (A3) 
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where 3 50, 0a a> >  and 0α ≥ . (For the tAiry approximation we also let 0α < .) 

Since ( )2 ;f xα  is an odd function of x, ( )2I α  is purely real; it is an example of an 

oddoid integral of order two. 
29

 We have 

  

( ) ( ) ( )2 2 2

0

3
21 5 1 5 3 5

5 5 5

exp i ; d 2 cos ; d

1
,

I f x x f x x

a
O

a a a

α α α

α

∞ ∞

−∞

= =      

 − =
 
 

∫ ∫
 

where the oddoid integral is defined by 
29

 

 ( )
3 5 3 5

2 1 2 1 2 1 2

0

, exp i d 2 cos d
3 5 3 5

t t t t
O b b b t b t b t b t

∞ ∞

−∞

    
= + + = + +            
∫ ∫  

with 1 2andb b  real. Hobbs et al. 
29

 have discussed the properties of oddoid (and 

evenoid) integrals. Now Descartes’ Rule of Signs 
57 

tells us that the quartic equation 

( )2 ; 0d f x d xα =  for 0α >  has one positive root and one negative root, which 

coalesce when 0α = . For 0α < , these roots become complex conjugates. 

 Fig. 5(a) plots ( )2I α  versus α  for the range 0 15α≤ ≤  with phase 

parameters of 3 5 5a a= = . The oscillatory nature of ( )2I α  can be clearly seen. Also 

plotted are the 2Hankel and uAiry approximations as well as the SPA [these curves 

are also drawn in more detail for 5α ≤  in Fig. 5(b)].  The SPA is accurate for 2α >
%

 

and, as expected, it diverges as 0α → . The 2Hankel approximation becomes 

systematically smaller than ( )2I α  for 3α <
%

, until 0.15α ≈ , when the two curves 

cross.  The uAiry approximation agrees closely with ( )2I α  over the whole range of 

α. 
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 It was mentioned in Section IIB that the tAiry approximation is also valid for 

negative α. Fig. 5(b) compares ( )tAiryI α  with ( )2I α  for 5 5α− ≤ ≤ . It can be seen 

that there is good agreement between the two curves for negative α. This finding is 

very useful since the theory and application of the 2Hankel and uAiry approximations 

for negative α in practical applications is usually much more difficult than for 0α > . 

However Fig. 5(b) shows that the tAiry approximation quickly becomes inaccurate for 

positive α, in particular for the amplitude of the oscillation at 2α ≈ . And this 

continues to be the case for 5α >  where the positions and amplitudes of the maxima 

and minima in ( )2I α  are not reproduced (not shown).  At 0α = , the 6Hankel and 

uAiry approximations become equivalent to the tAiry approximation; this result can 

be seen visually in the inset to Fig. 5(b) . Note that tAiry approximation is obtained by 

putting 5 0a =  in the phase (A3).   Also from eqn (5) we have 

 ( )
( ) ( )

tAiry 1 3

2
0 1.305

45 2 3
I

π
α = = =

Γ
  

The accurate value for ( )2 0I α =  is 1.251, so the percentage error in ( )tAiry 0I α =  is 

4.3 %. 

 

Example 3. Quintic polynomial phase: A swallowtail integral 

 In our third example we choose  

 ( )
3 4 5

3 3 4 5;
3 4 5

x x x
f x x a a aα α= − + + +      

with 3 4 50, 0, 0a a a> > >  and 0α ≥ . (Again we also let 0α <  for the tAiry 

approximation.)  The corresponding oscillating integral 
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 ( ) ( )3 3exp i ; dI f x xα α
∞

−∞

=   ∫  

is an example of a swallowtail integral,
28, 55

 which is complex valued in general. 

Descartes’ Rule of Signs 
57

 tells us that the quartic equation ( )3 ; 0d f x d xα =  for 

0α >  has one positive root and one negative root, which coalesce at 0α = . For 

0α < , these roots become complex conjugates. We have compared ( )2HI α , 

( )uAiryI α , ( )tAiryI α  with ( )3I α  for many values of 3 4 5, ,a a a  when 0 20α≤ ≤  

[and also 5 20α− ≤ ≤  for the tAiry approximation]. In general, the accuracy of the 

asymptotic formulae are similar to that already discussed in Fig. 5 for Example 2, so, 

we do not display the corresponding graphs. 
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Figure Captions 

 

FIG. 1. Properties of the phase ( );f xα  and three of its 3-jets.  

(a) Case A. Black solid line: ( ) 3 4 5; 3 4 5f x x x x xα α= − + − +  for 1α = . Its 

stationary phase points are given by, 1 0.682328x ≈ −  (local maximum) and 2 1x =  

(local minimum). Lower red dashed curve: The 3-jet at 2x , ( )
2

3
1;

x
j f xα = .  Its 

stationary phase points are denoted, 2 1 4u =  (local maximum) and 2 1x =  (local 

minimum). Upper red dashed curve: The 3-jet at 1x , ( )
1

3
1;

x
j f xα = .  Its stationary 

phase points are denoted, 1 0.682328x ≈ −  (local maximum) and 1 0.00804454u ≈  

(local minimum).  Blue solid curve: ( ) 3 4 50; 3 4 5f x x x xα = = − + . Its two 

stationary phase points have coalesced at 0 0x = .  Green dashed curve: The 3-jet at 

0x , ( )
0

3 3
0; 3

x
j f x xα = = . Its two stationary phase points have coalesced at 0 0x = .  

(b) Case B. Black solid line: ( ) ( )3 4 5; 3 4 5f x x x x xα α= − − + − +  for 1α = . Its 

stationary phase points are given by, 1 0.682328x ≈ −  (local minimum) and 2 1x =  

(local maximum). Upper red dashed curve: The 3-jet at 2x , ( )
2

3
1;

x
j f xα = .  Its 

stationary phase points are denoted, 2 1 4u =  (local minimum) and 2 1x =  (local 

maximum). Lower red dashed curve: The 3-jet at 1x , ( )
1

3
1;

x
j f xα = .  Its stationary 

phase points are denoted, 1 0.682328x ≈ −  (local minimum) and 1 0.00804454u ≈  

(local maximum). Blue solid curve: ( ) ( )3 4 50; 3 4 5f x x x xα = = − − +  . Its two 
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stationary phase points have coalesced at 0 0x = .  Green dashed curve: The 3-jet at 

0x , ( )
0

3 3
0; 3

x
j f x xα = = − . Its two stationary phase points have coalesced at 0 0x = . 

 

FIG. 2.  S matrix data for the J-shifted Eckart parameterization. The values of the 

parameters are given in Section IVB. 

(a) ( )S J%  versus J.  

(b) ( )arg radS J%  versus J. The maximum of the ( )arg radS J%  curve defines the 

glory angular momentum variable, gJ , which is indicated by a green dashed line and 

arrow. 

(c) ( ) degJΘ%  versus J. The red dashed lines and arrow indicate Rθ+  and 

( )1 1 RJ J θ=  for the nearside scattering. The blue dashed lines and arrows indicate 

Rθ− , as well as ( )2 2 RJ J θ=  and ( )3 3 RJ J θ=  for the farside scattering. Also 

shown is the rainbow angular momentum variable, rJ , which is located at the 

minimum of the ( ) degJΘ%  curve, where ( ) r
r RJ θΘ = −%  (pink arrow and dashed line 

respectively) , together with gJ , which satisfies the equation ( )g 0JΘ =%  (green 

arrow). 

  

FIG. 3.  Linear plot of the dimensionless angular distribution, ( )2
Rk σ θ  versus Rθ . 

Black solid curve: PWS. Purple solid curve: uAiry + SC/N/PSA. Purple dashed curve: 

tAiry + SC/N/PSA. Green solid curve: uBessel. Orange solid curve: 6Hankel.  

(a) R0 30θ° ≤ ≤ ° . The uAiry + SC/N/PSA curve diverges as R 0θ → ° .  
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(b) R30 80θ° ≤ ≤ ° . The PWS and uAiry + SC/N/PSA curves are almost coincident 

for R 35θ > °
%

. 

(c) R80 180θ° ≤ ≤ ° . The pink solid arrows indicate the rainbow angle, r
R 109.2θ = ° . 

The uBessel curve diverges as r
R Rθ θ→ . The tAiry + SC/N/PSA approximation is 

used for r
R Rθ θ≥ ; it diverges as R 180θ → ° . 

FIG. 4.  

Nearside-farside analyses for the dimensionless logarithmic angular distribution and 

the Local Angular Momentum. Black solid curve: PWS. Red solid curve:  

PWS/N/r=3. Red dashed curve: SC/N/PSA. Solid purple curve: SC/F/uAiry. Purple 

dashed curve: SC/F/tAiry. Blue solid curve: PWS/F/r=3. Blue dashed curve: 

SC/F/PSA. Green solid curve: SC/N/6Hankel. Orange solid curve: SC/F/6Hankel. The 

pink solid arrows indicate the rainbow angle, r
R 109.2θ = ° .  

(a) Full and NF ( )2
Rlog k σ θ  versus Rθ . 

(b)  Full and NF ( )RLAM θ  versus Rθ . 

FIG. 5. 

(a) ( )2I α  and three asymptotic approximations for 0 15α≤ ≤ . Black solid curve: 

( )2I α . Red solid curve: uAiry. Blue solid curve: 2Hankel. Green dashed curve: SPA. 

(b) ( )2I α  and three asymptotic approximations for 5 5α− ≤ ≤ . Black solid curve: 

( )2I α . Red solid curve: uAiry. Blue solid curve: 2Hankel. Green dashed curve: SPA. 

Pink dashed curve: tAiry. The inset shows the corresponding curves for 

0.6 0.6α− ≤ ≤  (not SPA). 
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Text for graphic 

 

The 6Hankel approximation agrees very closely with a partial wave series calculation 

for the forward angular scattering. 
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